1
|
Notbohm J, Perica T. Biochemistry and genetics are coming together to improve our understanding of genotype to phenotype relationships. Curr Opin Struct Biol 2024; 89:102952. [PMID: 39522438 DOI: 10.1016/j.sbi.2024.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Since genome sequencing became accessible, determining how specific differences in genotypes lead to complex phenotypes such as disease has become one of the key goals in biomedicine. Predicting effects of sequence variants on cellular or organismal phenotype faces several challenges. First, variants simultaneously affect multiple protein properties and predicting their combined effect is complex. Second, effects of changes in a single protein propagate through the cellular network, which we only partially understand. In this review, we emphasize the importance of both biochemistry and genetics in addressing these challenges. Moreover, we highlight work that blurs the distinction between biochemistry and genetics fields to provide new insights into the genotype-to-phenotype relationships.
Collapse
Affiliation(s)
- Judith Notbohm
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Biomolecular Structure and Mechanism PhD Program, Life Science Graduate School Zurich, Switzerland
| | - Tina Perica
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Manipur I, Giordano M, Piccirillo M, Parashuraman S, Maddalena L. Community Detection in Protein-Protein Interaction Networks and Applications. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:217-237. [PMID: 34951849 DOI: 10.1109/tcbb.2021.3138142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ability to identify and characterize not only the protein-protein interactions but also their internal modular organization through network analysis is fundamental for understanding the mechanisms of biological processes at the molecular level. Indeed, the detection of the network communities can enhance our understanding of the molecular basis of disease pathology, and promote drug discovery and disease treatment in personalized medicine. This work gives an overview of recent computational methods for the detection of protein complexes and functional modules in protein-protein interaction networks, also providing a focus on some of its applications. We propose a systematic reformulation of frequently adopted taxonomies for these methods, also proposing new categories to keep up with the most recent research. We review the literature of the last five years (2017-2021) and provide links to existing data and software resources. Finally, we survey recent works exploiting module identification and analysis, in the context of a variety of disease processes for biomarker identification and therapeutic target detection. Our review provides the interested reader with an up-to-date and self-contained view of the existing research, with links to state-of-the-art literature and resources, as well as hints on open issues and future research directions in complex detection and its applications.
Collapse
|
3
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
4
|
Li P, Wang L, Di LJ. Applications of Protein Fragment Complementation Assays for Analyzing Biomolecular Interactions and Biochemical Networks in Living Cells. J Proteome Res 2019; 18:2987-2998. [PMID: 31274323 DOI: 10.1021/acs.jproteome.9b00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) are indispensable for the dynamic assembly of multiprotein complexes that are central players of nearly all of the intracellular biological processes, such as signaling pathways, metabolic pathways, formation of intracellular organelles, establishment of cytoplasmic skeletons, etc. Numerous approaches have been invented to study PPIs both in vivo and in vitro, including the protein-fragment complementation assay (PCA), which is a widely applied technology to study PPIs and biomolecular interactions. PCA is a technology based on the expression of the bait and prey proteins in fusion with two complementary reporter protein fragments, respectively, that will reassemble when in close proximity. The reporter protein can be the enzymes or fluorescent proteins. Recovery of the enzymatic activity or fluorescent signal can be the indicator of PPI between the bait and prey proteins. Significant effort has been invested in developing many derivatives of PCA, along with various applications, in order to address specific questions. Therefore, a prompt review of these applications is important. In this review, we will categorize these applications according to the scenarios that the PCAs were applied and expect to provide a reference guideline for the future selection of PCA methods in solving a specific problem.
Collapse
Affiliation(s)
- Peipei Li
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li Wang
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China.,Metabolomics Core, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| |
Collapse
|
5
|
Abuin L, Prieto-Godino LL, Pan H, Gutierrez C, Huang L, Jin R, Benton R. In vivo assembly and trafficking of olfactory Ionotropic Receptors. BMC Biol 2019; 17:34. [PMID: 30995910 PMCID: PMC6472016 DOI: 10.1186/s12915-019-0651-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/22/2019] [Indexed: 01/29/2023] Open
Abstract
Background Ionotropic receptors (IRs) are a large, divergent subfamily of ionotropic glutamate receptors (iGluRs) that are expressed in diverse peripheral sensory neurons and function in olfaction, taste, hygrosensation and thermosensation. Analogous to the cell biological properties of their synaptic iGluR ancestors, IRs are thought to form heteromeric complexes that localise to the ciliated dendrites of sensory neurons. IR complexes are composed of selectively expressed ‘tuning’ receptors and one of two broadly expressed co-receptors (IR8a or IR25a). While the extracellular ligand-binding domain (LBD) of tuning IRs is likely to define the stimulus specificity of the complex, the role of this domain in co-receptors is unclear. Results We identify a sequence in the co-receptor LBD, the ‘co-receptor extra loop’ (CREL), which is conserved across IR8a and IR25a orthologues but not present in either tuning IRs or iGluRs. The CREL contains a single predicted N-glycosylation site, which we show bears a sugar modification in recombinantly expressed IR8a. Using the Drosophila olfactory system as an in vivo model, we find that a transgenically encoded IR8a mutant in which the CREL cannot be N-glycosylated is impaired in localisation to cilia in some, though not all, populations of sensory neurons expressing different tuning IRs. This defect can be complemented by the presence of endogenous wild-type IR8a, indicating that IR complexes contain at least two IR8a subunits and that this post-translational modification is dispensable for protein folding or complex assembly. Analysis of the subcellular distribution of the mutant protein suggests that its absence from sensory cilia is due to a failure in exit from the endoplasmic reticulum. Protein modelling and in vivo analysis of tuning IR and co-receptor subunit interactions by a fluorescent protein fragment complementation assay reveal that the CREL N-glycosylation site is likely to be located on the external face of a heterotetrameric IR complex. Conclusions Our data reveal an important role for the IR co-receptor LBD in control of intracellular transport, provide novel insights into the stoichiometry and assembly of IR complexes and uncover an unexpected heterogeneity in the trafficking regulation of this sensory receptor family. Electronic supplementary material The online version of this article (10.1186/s12915-019-0651-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liliane Abuin
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.,Present address: The Francis Crick Institute, 1 Brill Place, London, NW1 1BF, UK
| | - Haiyun Pan
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA.,Conagen, 15 DeAngelo Dr, Bedford, MA, 01730, USA
| | - Craig Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Richard Benton
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
6
|
Lv L, Huang B, Zhao Q, Zhao Z, Dong H, Zhu S, Chen T, Yan M, Han H. Identification of an interaction between calcium-dependent protein kinase 4 (EtCDPK4) and serine protease inhibitor (EtSerpin) in Eimeria tenella. Parasit Vectors 2018; 11:259. [PMID: 29688868 PMCID: PMC5913893 DOI: 10.1186/s13071-018-2848-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Eimeria tenella is an obligate intracellular apicomplexan protozoan parasite that has a complex life-cycle. Calcium ions, through various calcium-dependent protein kinases (CDPKs), regulate key events in parasite growth and development, including protein secretion, movement, differentiation, and invasion of and escape from host cells. In this study, we identified proteins that interact with EtCDPK4 to lay a foundation for clarifying the role of CDPKs in calcium channels. Methods Eimeria tenella merozoites were collected to construct a yeast two-hybrid (Y2H) cDNA library. The Y2H system was used to identify proteins that interact with EtCDPK4. One of interacting proteins was confirmed using bimolecular fluorescence complementation and co-immunoprecipitation in vivo. Co-localization of proteins was performed using immunofluorescence assays. Results Eight proteins that interact with EtCDPK4 were identified using the Y2H system. One of the proteins, E. tenella serine protease inhibitor 1 (EtSerpin), was further confirmed. Conclusion In this study, we screened for proteins that interact with EtCDPK4. An interaction between EtSerpin and EtCDPK4 was identified that may contribute to the invasion and development of E. tenella in host cells.
Collapse
Affiliation(s)
- Ling Lv
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Bing Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Zongping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Ting Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Ming Yan
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
7
|
Liu X, Yang Z, Zhou Z, Sun Y, Lin H, Wang J, Xu B. The impact of protein interaction networks’ characteristics on computational complex detection methods. J Theor Biol 2018; 439:141-151. [DOI: 10.1016/j.jtbi.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022]
|
8
|
Maddi AMA, Eslahchi C. Discovering overlapped protein complexes from weighted PPI networks by removing inter-module hubs. Sci Rep 2017; 7:3247. [PMID: 28607455 PMCID: PMC5468366 DOI: 10.1038/s41598-017-03268-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Detecting known protein complexes and predicting undiscovered protein complexes from protein-protein interaction (PPI) networks help us to understand principles of cell organization and its functions. Nevertheless, the discovery of protein complexes based on experiment still needs to be explored. Therefore, computational methods are useful approaches to overcome the experimental limitations. Nevertheless, extraction of protein complexes from PPI network is often nontrivial. Two major constraints are large amount of noise and ignorance of occurrence time of different interactions in PPI network. In this paper, an efficient algorithm, Inter Module Hub Removal Clustering (IMHRC), is developed based on inter-module hub removal in the weighted PPI network which can detect overlapped complexes. By removing some of the inter-module hubs and module hubs, IMHRC eliminates high amount of noise in dataset and implicitly considers different occurrence time of the PPI in network. The performance of the IMHRC was evaluated on several benchmark datasets and results were compared with some of the state-of-the-art models. The protein complexes discovered with the IMHRC method show significantly better agreement with the real complexes than other current methods. Our algorithm provides an accurate and scalable method for detecting and predicting protein complexes from PPI networks.
Collapse
Affiliation(s)
- A M A Maddi
- Department of Electrical and computer Engineering, Isfahan University of Technology, Isfahan, 1983963113, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 193955746, Iran
| | - Ch Eslahchi
- Department of Computer Sciences, Faculty of Mathematics, Shahid Beheshti University, Tehran, 1983963113, Iran.
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 193955746, Iran.
| |
Collapse
|
9
|
Yue J, Xu W, Ban R, Huang S, Miao M, Tang X, Liu G, Liu Y. PTIR: Predicted Tomato Interactome Resource. Sci Rep 2016; 6:25047. [PMID: 27121261 PMCID: PMC4848565 DOI: 10.1038/srep25047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/08/2016] [Indexed: 01/18/2023] Open
Abstract
Protein-protein interactions (PPIs) are involved in almost all biological processes and form the basis of the entire interactomics systems of living organisms. Identification and characterization of these interactions are fundamental to elucidating the molecular mechanisms of signal transduction and metabolic pathways at both the cellular and systemic levels. Although a number of experimental and computational studies have been performed on model organisms, the studies exploring and investigating PPIs in tomatoes remain lacking. Here, we developed a Predicted Tomato Interactome Resource (PTIR), based on experimentally determined orthologous interactions in six model organisms. The reliability of individual PPIs was also evaluated by shared gene ontology (GO) terms, co-evolution, co-expression, co-localization and available domain-domain interactions (DDIs). Currently, the PTIR covers 357,946 non-redundant PPIs among 10,626 proteins, including 12,291 high-confidence, 226,553 medium-confidence, and 119,102 low-confidence interactions. These interactions are expected to cover 30.6% of the entire tomato proteome and possess a reasonable distribution. In addition, ten randomly selected PPIs were verified using yeast two-hybrid (Y2H) screening or a bimolecular fluorescence complementation (BiFC) assay. The PTIR was constructed and implemented as a dedicated database and is available at http://bdg.hfut.edu.cn/ptir/index.html without registration.
Collapse
Affiliation(s)
- Junyang Yue
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rongjun Ban
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Shengxiong Huang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guoqing Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ. RNA imaging in living cells - methods and applications. RNA Biol 2015; 11:1083-95. [PMID: 25483044 PMCID: PMC4615301 DOI: 10.4161/rna.35506] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numerous types of transcripts perform multiple functions in cells, and these functions are mainly facilitated by the interactions of the RNA with various proteins and other RNAs. Insight into the dynamics of RNA biosynthesis, processing and cellular activities is highly desirable because this knowledge will deepen our understanding of cell physiology and help explain the mechanisms of RNA-mediated pathologies. In this review, we discuss the live RNA imaging systems that have been developed to date. We highlight information on the design of these systems, briefly discuss their advantages and limitations and provide examples of their numerous applications in various organisms and cell types. We present a detailed examination of one application of RNA imaging systems: this application aims to explain the role of mutant transcripts in human disease pathogenesis caused by triplet repeat expansions. Thus, this review introduces live RNA imaging systems and provides a glimpse into their various applications.
Collapse
Affiliation(s)
- Martyna O Urbanek
- a Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences ; Poznan , Poland
| | | | | | | |
Collapse
|
11
|
Srihari S, Yong CH, Patil A, Wong L. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes. FEBS Lett 2015; 589:2590-602. [PMID: 25913176 DOI: 10.1016/j.febslet.2015.04.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022]
Abstract
Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organisation of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight their limitations and challenges, in particular at detecting sparse and small or sub-complexes and discerning overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.
Collapse
Affiliation(s)
- Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia.
| | - Chern Han Yong
- Department of Computer Science, National University of Singapore, Singapore 117417, Singapore
| | - Ashwini Patil
- Human Genome Centre, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Limsoon Wong
- Department of Computer Science, National University of Singapore, Singapore 117417, Singapore
| |
Collapse
|
12
|
Jones KA, Li DJ, Hui E, Sellmyer MA, Prescher JA. Visualizing cell proximity with genetically encoded bioluminescent reporters. ACS Chem Biol 2015; 10:933-8. [PMID: 25643167 DOI: 10.1021/cb5007773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions underlie diverse physiological processes ranging from immune function to cell migration. Dysregulated cellular crosstalk also potentiates numerous pathologies, including infections and metastases. Despite their ubiquity in organismal biology, cell-cell interactions are difficult to examine in tissues and whole animals without invasive procedures. Here, we report a strategy to noninvasively image cell proximity using engineered bioluminescent probes. These tools comprise "split" fragments of Gaussia luciferase (Gluc) fused to the leucine zipper domains of Fos and Jun. When cells secreting the fragments draw near one another, Fos and Jun drive the assembly of functional, light-emitting Gluc. Photon production thus provides a readout on the distance between two cell types. We used the split fragments to visualize cell-cell interactions over time in vitro and in macroscopic models of cell migration. Further application of these tools in live organisms will refine our understanding of cell contacts relevant to basic biology and disease.
Collapse
Affiliation(s)
| | | | | | - Mark A. Sellmyer
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
13
|
Yu Y, Wang J, Liu J, Ling D, Xia J. Functional assembly of protein fragments induced by spatial confinement. PLoS One 2015; 10:e0122101. [PMID: 25875003 PMCID: PMC4398348 DOI: 10.1371/journal.pone.0122101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/17/2015] [Indexed: 02/05/2023] Open
Abstract
Natural proteins are often confined within their local microenvironments, such as three-dimensional confinement in organelles or two-dimensional confinement in lipid rafts on cytoplasmic membrane. Spatial confinement restricts proteins' entropic freedom, forces their lateral interaction, and induces new properties that the same proteins lack at the soluble state. So far, the phenomenon of environment-induced protein functional alteration still lacks a full illustration. We demonstrate here that engineered protein fragments, although being non-functional in solution, can be re-assembled within the nanometer space to give the full activity of the whole protein. Specific interaction between hexahistidine-tag (His-tag) and NiO surface immobilizes protein fragments on NiO nanoparticles to form a self-assembled protein "corona" on the particles inside the nanopores of mesoporous silica. Site-specific assembly forces a shoulder-by-shoulder orientation and promotes fragment-fragment interaction; this interaction together with spatial confinement of the mesopores results in functional re-assembly of the protein half fragments. To our surprise, a single half fragment of luciferase (non-catalytic in solution) exhibited luciferase activity when immobilized on NiO in the mesopores, in the absence of the complimentary half. This shows for the first time that spatial confinement can induce the folding of a half fragment, reconstitute the enzyme active site, and re-gain the catalytic capability of the whole protein. Our work thereby highlights the under-documented notion that aside from the chemical composition such as primary sequence, physical environment of a protein also determines its function.
Collapse
Affiliation(s)
- Yongsheng Yu
- Department of Chemistry, Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianpeng Wang
- Department of Chemistry, Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jiahui Liu
- Department of Chemistry, Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiang Xia
- Department of Chemistry, Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
14
|
Pham CD. Detection of protein-protein interaction using bimolecular fluorescence complementation assay. Methods Mol Biol 2015; 1278:483-495. [PMID: 25859971 DOI: 10.1007/978-1-4939-2425-7_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The bimolecular fluorescence complementation (BiFC) assay is a versatile technique for investigating protein-protein interaction (PPI) in living systems. The BiFC assay exploits the color-emitting moiety and the modular structure of fluorescent proteins to provide both temporal and spatial information of the PPI. The modular property of fluorescent proteins enables researchers to strategically partition a fluorescent protein into two nonfluorescent units, which can be independently fused to other proteins. When the fusion proteins interact with each other, the nonfluorescent fragments reconstitute to generate a fluorescence signal. PPI can then be detected by capturing the fluorescence signal with a fluorescence microscope. In this chapter, the Venus fluorescent protein is employed to demonstrate the application of the BiFC assay.
Collapse
Affiliation(s)
- Cau D Pham
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA,
| |
Collapse
|
15
|
Soste M, Hrabakova R, Wanka S, Melnik A, Boersema P, Maiolica A, Wernas T, Tognetti M, von Mering C, Picotti P. A sentinel protein assay for simultaneously quantifying cellular processes. Nat Methods 2014; 11:1045-8. [DOI: 10.1038/nmeth.3101] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/30/2014] [Indexed: 01/03/2023]
|
16
|
Rubinstein L, Ungar L, Harari Y, Babin V, Ben-Aroya S, Merenyi G, Marjavaara L, Chabes A, Kupiec M. Telomere length kinetics assay (TELKA) sorts the telomere length maintenance (tlm) mutants into functional groups. Nucleic Acids Res 2014; 42:6314-25. [PMID: 24728996 PMCID: PMC4041441 DOI: 10.1093/nar/gku267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genome-wide systematic screens in yeast have uncovered a large gene network (the telomere length maintenance network or TLM), encompassing more than 400 genes, which acts coordinatively to maintain telomere length. Identifying the genes was an important first stage; the next challenge is to decipher their mechanism of action and to organize then into functional groups or pathways. Here we present a new telomere-length measuring program, TelQuant, and a novel assay, telomere length kinetics assay, and use them to organize tlm mutants into functional classes. Our results show that a mutant defective for the relatively unknown MET7 gene has the same telomeric kinetics as mutants defective for the ribonucleotide reductase subunit Rnr1, in charge of the limiting step in dNTP synthesis, or for the Ku heterodimer, a well-established telomere complex. We confirm the epistatic relationship between the mutants and show that physical interactions exist between Rnr1 and Met7. We also show that Met7 and the Ku heterodimer affect dNTP formation, and play a role in non-homologous end joining. Thus, our telomere kinetics assay uncovers new functional groups, as well as complex genetic interactions between tlm mutants.
Collapse
Affiliation(s)
- Linda Rubinstein
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Lior Ungar
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Vera Babin
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | - Gabor Merenyi
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
17
|
Góngora-Benítez M, Tulla-Puche J, Albericio F. Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chem Rev 2013; 114:901-26. [DOI: 10.1021/cr400031z] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Miriam Góngora-Benítez
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Judit Tulla-Puche
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
- Department
of Organic Chemistry, University of Barcelona, Barcelona, 08028 Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001 Durban, South Africa
| |
Collapse
|
18
|
Xie W, Pao C, Graham T, Dul E, Lu Q, Sweitzer TD, Ames RS, Li H. Development of a Cell-Based High Throughput Luciferase Enzyme Fragment Complementation Assay to Identify Nuclear-Factor-E2-Related Transcription Factor 2 Activators. Assay Drug Dev Technol 2012; 10:514-24. [DOI: 10.1089/adt.2011.436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Wensheng Xie
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Christina Pao
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Taylor Graham
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Ed Dul
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Quinn Lu
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Thomas D. Sweitzer
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Robert S. Ames
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Hu Li
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| |
Collapse
|
19
|
Srihari S, Leong HW. A survey of computational methods for protein complex prediction from protein interaction networks. J Bioinform Comput Biol 2012; 11:1230002. [PMID: 23600810 DOI: 10.1142/s021972001230002x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Complexes of physically interacting proteins are one of the fundamental functional units responsible for driving key biological mechanisms within the cell. Their identification is therefore necessary to understand not only complex formation but also the higher level organization of the cell. With the advent of "high-throughput" techniques in molecular biology, significant amount of physical interaction data has been cataloged from organisms such as yeast, which has in turn fueled computational approaches to systematically mine complexes from the network of physical interactions among proteins (PPI network). In this survey, we review, classify and evaluate some of the key computational methods developed till date for the identification of protein complexes from PPI networks. We present two insightful taxonomies that reflect how these methods have evolved over the years toward improving automated complex prediction. We also discuss some open challenges facing accurate reconstruction of complexes, the crucial ones being the presence of high proportion of errors and noise in current high-throughput datasets and some key aspects overlooked by current complex detection methods. We hope this review will not only help to condense the history of computational complex detection for easy reference but also provide valuable insights to drive further research in this area.
Collapse
Affiliation(s)
- Sriganesh Srihari
- Department of Computer Science, National University of Singapore, Singapore 117417, Singapore.
| | | |
Collapse
|
20
|
Govindarajan S, Nevo-Dinur K, Amster-Choder O. Compartmentalization and spatiotemporal organization of macromolecules in bacteria. FEMS Microbiol Rev 2012; 36:1005-22. [DOI: 10.1111/j.1574-6976.2012.00348.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/18/2022] Open
|
21
|
Suter B. The Cross-and-Capture system: a versatile tool in yeast proteomics. Methods 2012; 58:360-6. [PMID: 22836129 DOI: 10.1016/j.ymeth.2012.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 04/04/2012] [Accepted: 07/13/2012] [Indexed: 11/18/2022] Open
Abstract
High-throughput technologies such as affinity purification and yeast two-hybrid (Y2H) screening have been applied to explore protein-protein interactions (PPIs) in the model organism Saccharomyces cerevisiae. The "Cross-and-Capture" system is an alternative approach for an assessment of PPIs using two arrayed collections of differentially tagged yeast strains. In its current implementation, Cross-and-Capture encompasses ∼500 endogenously tagged yeast proteins, predominantly with roles in DNA metabolism and maintenance. The tagged arrays can also serve other purposes in yeast proteomics, such as monitoring of protein expression and the detection of posttranslational protein modifications. In this article, I summarize the development of this tool and describe its application to detect protein complexes and to screen for novel PPIs.
Collapse
|
22
|
Lee S, Ha JS, Lee SG, Kim TK. Inducible Biosynthetic Nanoscaffolds as Recruitment Platforms for Detecting Molecular Target Interactions inside Living Cells. J Am Chem Soc 2012; 134:11346-9. [DOI: 10.1021/ja303518d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sangkyu Lee
- Department of Biological
Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, Korea
| | - Jae-Seok Ha
- Reons Innovative Medicines Institute, Anyang, Gyeonggi-do, Korea
| | - Seung-Goo Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| | - Tae K. Kim
- Reons Innovative Medicines Institute, Anyang, Gyeonggi-do, Korea
- Unist-Olympus Biomed Imaging
Center, School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology,
Ulsan, Korea
| |
Collapse
|
23
|
Nevo-Dinur K, Govindarajan S, Amster-Choder O. Subcellular localization of RNA and proteins in prokaryotes. Trends Genet 2012; 28:314-22. [DOI: 10.1016/j.tig.2012.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
24
|
A split luciferase complementation assay for studying in vivo protein-protein interactions in filamentous ascomycetes. Curr Genet 2012; 58:179-89. [PMID: 22531843 DOI: 10.1007/s00294-012-0375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Protein-protein interactions play important roles in controlling many cellular events. To date, several techniques have been developed for detection of protein-protein interactions in living cells, among which split luciferase complementation has been applied in animal and plant cells. Here, we examined whether the split luciferase assay could be used in filamentous ascomycetes, such as Gibberella zeae and Cochliobolus heterostrophus. The coding sequences of two strongly interacting proteins (the F-box protein, FBP1, and its partner SKP1) in G. zeae, under the control of the cryparin promoter from Cryphonectria parasitica, were translationally fused to the C- and N-terminal fragments of firefly luciferase (luc), respectively. Each fusion product inserted into a fungal transforming vector carrying the gene for resistance to either geneticin or hygromycin B, was transformed into both fungi. We detected complementation of split luciferase proteins driven by interaction of the two fungal proteins with a high luminescence intensity-to-background ratio only in the fungal transformants expressing both N-luc and C-luc fusion constructs. Using this system, we also confirmed a novel protein interaction between transcription factors, GzMCM1 and FST12 in G. zeae, which could hardly be proven by the yeast two-hybrid method. This is the first study demonstrating that monitoring of split luciferase complementation is a sensitive and efficient method of studying in vivo protein-protein interactions in filamentous ascomycetes.
Collapse
|
25
|
Hallinan JS, James K, Wipat A. Network approaches to the functional analysis of microbial proteins. Adv Microb Physiol 2011; 59:101-33. [PMID: 22114841 DOI: 10.1016/b978-0-12-387661-4.00005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Large amounts of detailed biological data have been generated over the past few decades. Much of these data is freely available in over 1000 online databases; an enticing, but frustrating resource for microbiologists interested in a systems-level view of the structure and function of microbial cells. The frustration engendered by the need to trawl manually through hundreds of databases in order to accumulate information about a gene, protein, pathway, or organism of interest can be alleviated by the use of computational data integration to generated network views of the system of interest. Biological networks can be constructed from a single type of data, such as protein-protein binding information, or from data generated by multiple experimental approaches. In an integrated network, nodes usually represent genes or gene products, while edges represent some form of interaction between the nodes. Edges between nodes may be weighted to represent the probability that the edge exists in vivo. Networks may also be enriched with ontological annotations, facilitating both visual browsing and computational analysis via web service interfaces. In this review, we describe the construction, analysis of both single-data source and integrated networks, and their application to the inference of protein function in microbes.
Collapse
Affiliation(s)
- J S Hallinan
- School of Computing Science, Newcastle University, Newcastle, UK
| | | | | |
Collapse
|
26
|
Lee S, Lee KH, Ha JS, Lee SG, Kim TK. Small-molecule-based nanoassemblies as inducible nanoprobes for monitoring dynamic molecular interactions inside live cells. Angew Chem Int Ed Engl 2011; 50:8709-13. [PMID: 21796746 PMCID: PMC3229982 DOI: 10.1002/anie.201101467] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/01/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Sangkyu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
27
|
Lee S, Lee KH, Ha JS, Lee SG, Kim TK. Small-Molecule-Based Nanoassemblies as Inducible Nanoprobes for Monitoring Dynamic Molecular Interactions Inside Live Cells. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Broude NE. Analysis of RNA localization and metabolism in single live bacterial cells: achievements and challenges. Mol Microbiol 2011; 80:1137-47. [DOI: 10.1111/j.1365-2958.2011.07652.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Lee YR, Park JH, Hahm SH, Kang LW, Chung JH, Nam KH, Hwang KY, Kwon IC, Han YS. Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells. Mol Imaging Biol 2011; 12:468-78. [PMID: 20373040 DOI: 10.1007/s11307-010-0312-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE We developed a bimolecular fluorescence complementation (BiFC) strategy using Dronpa, a new fluorescent protein with reversible photoswitching activity and fast responsibility to light, to monitor protein-protein interactions in cells. PROCEDURES Dronpa was split at residue Glu164 in order to generate two Dronpa fragments [Dronpa N-terminal: DN (Met1-Glu164), Dronpa C-terminal: DC (Gly165-Lys224)]. DN or DC was separately fused with C terminus of hHus1 or N terminus of hRad1. Flexible linker [(GGGGS)×2] was introduced to enhance Dronpa complementation by hHus1-hRad1 interaction. Furthermore, we developed expression vectors to visualize the interaction between hMYH and hHus1. Gene fragments corresponding to the coding regions of hMYH and hHus1 were N-terminally or C-terminally fused with DN and DC coding region. RESULTS Complemented Dronpa fluorescence was only observed in HEK293 cells cotransfected with hHus1-LDN and DCL-hRad1 expression vectors, but not with hHus1-LDN or DCL-hRad1 expression vector alone. Western blot analysis of immunoprecipitated samples using anti-c-myc or anti-flag showed that DN-fused hHus1 interacted with DC-fused hRad1. Complemented Dronpa fluorescence was also observed in cells cotransfected with hMYH-LDN and DCL-hHus1 expression vectors or hMYH-LDN and hHus1-LDC expression vectors. Furthermore, complemented Dronpa, induced by the interaction between hMYH-LDN and DCL-hHus1, showed almost identical photoswitching activity as that of native Dronpa. CONCLUSION These results demonstrate that BiFC using Dronpa can be successfully used to investigate protein-protein interaction in live cells. Furthermore, the fact that complemented Dronpa has a reversible photoswitching activity suggests that it can be used as a tool for tracking protein-protein interaction.
Collapse
Affiliation(s)
- You Ri Lee
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Joshi S, Tiwari A, Mondal B, Sharma A. Oncoproteomics. Clin Chim Acta 2011; 412:217-26. [DOI: 10.1016/j.cca.2010.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/03/2010] [Accepted: 10/03/2010] [Indexed: 11/29/2022]
|
31
|
Sonntag T, Mootz HD. An intein-cassette integration approach used for the generation of a split TEV protease activated by conditional protein splicing. MOLECULAR BIOSYSTEMS 2011; 7:2031-9. [DOI: 10.1039/c1mb05025g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Alberghina L, Cirulli C. Proteomics and systems biology to tackle biological complexity: Yeast as a case study. Proteomics 2010; 10:4337-41. [DOI: 10.1002/pmic.201000114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Uhlén M, Hober S. Generation and validation of affinity reagents on a proteome-wide level. J Mol Recognit 2009; 22:57-64. [PMID: 18546091 DOI: 10.1002/jmr.891] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a need for protein-specific affinity reagents to explore the gene products encoded by the genome. Recently, systematic efforts to generate validated affinity reagents on a whole human proteome level have been initiated. There are several issues for such efforts, including choice of antigen, type of affinity reagent, and the subsequent validation of the generated protein-specific binders. The advantages and disadvantages with the different approaches are discussed and the problems related to quality assessment of antibodies to be used in multi-platform applications are addressed. This review also describes the efforts to create a virtual resource of validated antibodies using a community-based portal and summarizes the status and visions for the publicly available human protein atlas (http://www.proteinatlas.org) showing the human protein profiles in a large number of normal and cancer tissues as well as a large set of human cell lines.
Collapse
Affiliation(s)
- Mathias Uhlén
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm, Sweden.
| | | |
Collapse
|
34
|
Schaerli Y, Hollfelder F. The potential of microfluidic water-in-oil droplets in experimental biology. MOLECULAR BIOSYSTEMS 2009; 5:1392-404. [DOI: 10.1039/b907578j] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Zhang N, Kuznetsov SG, Sharan SK, Li K, Rao PH, Pati D. A handcuff model for the cohesin complex. J Cell Biol 2008; 183:1019-31. [PMID: 19075111 PMCID: PMC2600748 DOI: 10.1083/jcb.200801157] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 11/14/2008] [Indexed: 12/30/2022] Open
Abstract
The cohesin complex is responsible for the accurate separation of sister chromatids into two daughter cells. Several models for the cohesin complex have been proposed, but the one-ring embrace model currently predominates the field. However, the static configuration of the embrace model is not flexible enough for cohesins to perform their functions during DNA replication, transcription, and DNA repair. We used coimmunoprecipitation, a protein fragment complement assay, and a yeast two-hybrid assay to analyze the protein-protein interactions among cohesin subunits. The results show that three of the four human cohesin core subunits (Smc1, Smc3, and Rad21) interact with themselves in an Scc3 (SA1/SA2)-dependent manner. These data support a two-ring handcuff model for the cohesin complex, which is flexible enough to establish and maintain sister chromatid cohesion as well as ensure the fidelity of chromosome segregation in higher eukaryotes.
Collapse
Affiliation(s)
- Nenggang Zhang
- Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
36
|
Granneman JG, Moore HPH, Mottillo EP, Zhu Z. Functional interactions between Mldp (LSDP5) and Abhd5 in the control of intracellular lipid accumulation. J Biol Chem 2008; 284:3049-3057. [PMID: 19064991 DOI: 10.1074/jbc.m808251200] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular lipid metabolism is regulated in part by protein-protein interactions near the surface of intracellular lipid droplets. This work investigated functional interactions between Abhd5, a protein activator of the lipase Atgl, and Mldp, a lipid droplet scaffold protein that is highly expressed in oxidative tissues. Abhd5 was highly targeted to individual lipid droplets containing Mldp in microdissected cardiac muscle fibers. Mldp bound Abhd5 in transfected fibroblasts and directed it to lipid droplets in proportion to Mldp concentration. Analysis of protein-protein interactions in situ demonstrated that the interaction of Abhd5 and Mldp occurs mainly, if not exclusively, on the surface of lipid droplets. Oleic acid treatment rapidly increased the interaction between Abhd5 and Mldp, and this effect was suppressed by pharmacological inhibition of triglyceride synthesis. The functional role of the Abhd5-Mldp interaction was explored using a mutant of mouse Abhd5 (E262K) that has greatly reduced binding to Mldp. Mldp promoted the subcellular colocalization and interaction of Atgl with wild type, but not mutant, Abhd5. This differential interaction was reflected in cellular assays of Atgl activity. In the absence of Mldp, wild type and mutant Abhd5 were equally effective in reducing lipid droplet formation. In contrast, mutant Abhd5 was unable to prevent lipid droplet accumulation in cells expressing Mldp despite considerable targeting of Atgl to lipid droplets containing Mldp. These results indicate that the interaction between Abhd5 and Mldp is dynamic and essential for regulating the activity of Atgl at lipid droplets containing Mldp.
Collapse
Affiliation(s)
- James G Granneman
- Center for Integrative Metabolic and Endocrine Research, the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201.
| | - Hsiao-Ping H Moore
- Center for Integrative Metabolic and Endocrine Research, the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Emilio P Mottillo
- Center for Integrative Metabolic and Endocrine Research, the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Zhengxian Zhu
- Center for Integrative Metabolic and Endocrine Research, the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
37
|
Guan H, Kiss-Toth E. Advanced technologies for studies on protein interactomes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 110:1-24. [PMID: 18219467 DOI: 10.1007/10_2007_092] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One of the key challenges of biology in the post-genomic era is to assign function to the many genes revealed by large-scale sequencing programmes, since only a small fraction of gene function can be directly inferred from the coding sequence. Identifying interactions between proteins is a substantial part in understanding their function. The main technologies for investigating protein-protein interactions and assigning functions to proteins include direct detection intermolecular interactions through protein microarray, yeast two-hybrid system, mass spectrometry fluorescent techniques to visualize protein complexes or pull-down assays, as well as technologies detecting functional interactions between genes, such as RNAi knock down or functional screening of cDNA libraries. Over recent years, considerable advances have been made in the above techniques. In this review, we discuss some recent developments and their impact on the gene function annotation.
Collapse
Affiliation(s)
- Hongtao Guan
- Cardiovascular Research Unit, University of Sheffield, Royal Hallamshire Hospital, Glossop road, S10 2JF, Sheffield, UK
| | | |
Collapse
|
38
|
Secco P, D'Agostini E, Marzari R, Licciulli M, Di Niro R, D'Angelo S, Bradbury AR, Dianzani U, Santoro C, Sblattero D. Antibody library selection by the β-lactamase protein fragment complementation assay. Protein Eng Des Sel 2008; 22:149-58. [DOI: 10.1093/protein/gzn053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Development of a yeast protein fragment complementation assay (PCA) system using dihydrofolate reductase (DHFR) with specific additives. Appl Microbiol Biotechnol 2008; 80:735-43. [DOI: 10.1007/s00253-008-1624-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 11/25/2022]
|
40
|
Abstract
Genetic screens have been proven powerful for the identification of components of various signaling pathways. For mammalian cells, methods for genetic screens are limited. We have developed the ERM (enhanced retroviral mutagen) mutagenesis approach that has been shown to be efficient and amenable to genomewide genetic screens in mammalian cells without the need of cDNA library construction. The ERM method offers several advantages, including conditional gene expression and the flexibility to tag endogenous genes with different epitope-tag and marker sequences. This chapter will discuss general design, procedures, and applications of the ERM strategy.
Collapse
|
41
|
Fernández-Suárez M, Chen TS, Ting AY. Protein-protein interaction detection in vitro and in cells by proximity biotinylation. J Am Chem Soc 2008; 130:9251-3. [PMID: 18582056 PMCID: PMC2635094 DOI: 10.1021/ja801445p] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new method for detection of protein-protein interactions in vitro and in cells. One protein partner is fused to Escherichia coli biotin ligase (BirA), while the other protein partner is fused to BirA's "acceptor peptide" (AP) substrate. If the two proteins interact, BirA will catalyze site-specific biotinylation of AP, which can be detected by streptavidin staining. To minimize nonspecific signals, we engineered the AP sequence to reduce its intrinsic affinity for BirA. The rapamycin-controlled interaction between FKBP and FRB proteins could be detected in vitro and in cells with a signal to background ratio as high as 28. We also extended the method to imaging of the phosphorylation-dependent interaction between Cdc25C phosphatase and 14-3-3epsilon phosphoserine/threonine binding protein. Protein-protein interaction detection by proximity biotinylation has the advantages of low background, high sensitivity, small AP tag size, and good spatial resolution in cells.
Collapse
Affiliation(s)
- Marta Fernández-Suárez
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
42
|
Abstract
The use of affinity-based tools has become invaluable as a platform for basic research and in the development of drugs and diagnostics. Applications include affinity chromatography and affinity tag fusions for efficient purification of proteins as well as methods to probe the protein network interactions on a whole-proteome level. A variety of selection systems has been described for in vitro evolution of affinity reagents using combinatorial libraries, which make it possible to create high-affinity reagents to virtually all biomolecules, as exemplified by generation of therapeutic antibodies and new protein scaffold binders. The strategies for high-throughput generation of affinity reagents have also opened up the possibility of generating specific protein probes on a whole-proteome level. Recently, such affinity proteomics have allowed the detailed analysis of human protein expression in a comprehensive manner both in normal and disease tissue using tissue microarrays and confocal microscopy.
Collapse
Affiliation(s)
- Mathias Uhlén
- School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
43
|
Detection and localisation of protein–protein interactions in Saccharomyces cerevisiae using a split-GFP method. Fungal Genet Biol 2008; 45:597-604. [DOI: 10.1016/j.fgb.2008.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/23/2007] [Accepted: 01/07/2008] [Indexed: 11/23/2022]
|
44
|
Morsy M, Gouthu S, Orchard S, Thorneycroft D, Harper JF, Mittler R, Cushman JC. Charting plant interactomes: possibilities and challenges. TRENDS IN PLANT SCIENCE 2008; 13:183-91. [PMID: 18329319 DOI: 10.1016/j.tplants.2008.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/17/2008] [Accepted: 01/25/2008] [Indexed: 05/22/2023]
Abstract
Protein-protein interactions are essential for nearly all cellular processes. Therefore, an important goal of post-genomic research for defining gene function and understanding the function of macromolecular complexes involves creating 'interactome' maps from empirical or inferred datasets. Systematic efforts to conduct high-throughput surveys of protein-protein interactions in plants are needed to chart the complex and dynamic interaction networks that occur throughout plant development. However, no single approach can build a complete map of the interactome. Here, we review the utility and potential of various experimental approaches for creating large-scale protein-protein interaction maps in plants. Bioinformatics approaches for curating and assessing the confidence of these datasets through inter-species comparisons will be crucial in achieving a complete understanding of protein interaction networks in plants.
Collapse
Affiliation(s)
- Mustafa Morsy
- Department of Biochemistry and Molecular Biology, MS200, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Valencia-Burton M, Broude NE. Visualization of RNA using fluorescence complementation triggered by aptamer-protein interactions (RFAP) in live bacterial cells. ACTA ACUST UNITED AC 2008; Chapter 17:Unit 17.11. [PMID: 18228500 DOI: 10.1002/0471143030.cb1711s37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This unit describes a method allowing RNA visualization in live cells. The method is based on fluorescent protein complementation regulated by RNA-aptamer/RNA-binding protein interactions. Based on these two principles, a fluorescent ribonucleoprotein complex is assembled inside the cell only in response to the presence of the aptamer sequence on the target RNA.
Collapse
Affiliation(s)
- Maria Valencia-Burton
- Center for Advanced Biotechnology, College of Engineering, Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
46
|
Park HR, Cockrell LM, Du Y, Kasinski A, Havel J, Zhao J, Reyes-Turcu F, Wilkinson KD, Fu H. Protein–Protein Interactions. SPRINGER PROTOCOLS HANDBOOKS 2008. [DOI: 10.1007/978-1-60327-375-6_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Detection of protein interactions based on GFP fragment complementation by fluorescence microscopy and spectrofluorometry. Biotechniques 2008; 44:70, 72, 74. [DOI: 10.2144/000112685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a set of simple modifications of the green fluorescent protein (GFP) fragment reassembly assay in bacteria that permits: (i) fluorescent microscopy visualization of GFP reassembly only 1-2 h after induction of protein expression, thus approximating the detection of GFP reassembly to the real-time dynamics of protein complex formation in living cells; (ii) spectrofluorometric detection of reassembled GFP fluorescent signals directly in lysates from cell suspension thereby avoiding, in many cases, the need for tag-affinity isolation of protein complexes; and (iii) comparative quantification of signal intensity in numerous cell-sample lysates using a Bio-Rad IQ5 spectrofluorometric detection system (Bio-Rad Laboratories, Madrid, Spain). Collectively, the results demonstrate that the combination of microscopic and spectrofluorometric detection provides a time-saving and sensitive alternative to existing methods of fluorescence complementation analysis.
Collapse
|
48
|
Villalobos V, Naik S, Piwnica-Worms D. Current State of Imaging Protein-Protein Interactions In Vivo with Genetically Encoded Reporters. Annu Rev Biomed Eng 2007; 9:321-49. [PMID: 17461729 DOI: 10.1146/annurev.bioeng.9.060906.152044] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling pathways regulating proliferation, differentiation, and inflammation are commonly mediated through protein-protein interactions as well as reversible modification (e.g., phosphorylation) of proteins. To facilitate the study of regulated protein-protein interactions in cells and living animals, new imaging tools, many based on optical signals and capable of quantifying protein interactions in vivo, have advanced the study of induced protein interactions and their modification, as well as accelerated the rate of acquisition of these data. In particular, use of protein fragment complementation as a reporter strategy can accurately and rapidly dissect protein interactions with a variety of readouts, including absorbance, fluorescence, and bioluminescence. This review focuses on the development and validation of bioluminescent protein fragment complementation reporters that use either Renilla luciferase or firefly luciferase in vivo. Enhanced luciferase complementation provides a platform for near real-time detection and characterization of regulated and small-molecule-induced protein-protein interactions in intact cells and living animals and enables a wide range of novel applications in drug discovery, chemical genetics, and proteomics research.
Collapse
Affiliation(s)
- Victor Villalobos
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
49
|
Olson KR, Eglen RM. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol 2007; 5:137-44. [PMID: 17355206 DOI: 10.1089/adt.2006.052] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many cell-based assays interrogating cell pathway activation employ protocols that require microscopic imaging techniques. However, such assays are not in general widely adopted for primary screening. Protein complementation, particularly of enzymes, provides an alternative approach for cell pathway analysis, with a principal advantage that is amenable to high throughput screening using microtiter plate protocols. Notably, alpha complementation of the enzyme beta-galactosidase has been exploited as a technology in this regard, using substrates that generates luminescent signals. This review describes the various uses of this flexible technology to cell-based assay development.
Collapse
|
50
|
Valencia-Burton M, McCullough RM, Cantor CR, Broude NE. RNA visualization in live bacterial cells using fluorescent protein complementation. Nat Methods 2007; 4:421-7. [PMID: 17401371 DOI: 10.1038/nmeth1023] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 02/01/2007] [Indexed: 01/12/2023]
Abstract
We describe a technique for the detection and localization of RNA transcripts in living cells. The method is based on fluorescent-protein complementation regulated by the interaction of a split RNA-binding protein with its corresponding RNA aptamer. In our design, the RNA-binding protein is the eukaryotic initiation factor 4A (eIF4A). eIF4A is dissected into two fragments, and each fragment is fused to split fragments of the enhanced green fluorescent protein (EGFP). Coexpression of the two protein fusions in the presence of a transcript containing eIF4A-interacting RNA aptamer resulted in the restoration of EGFP fluorescence in Escherichia coli cells. We also applied this technique to the visualization of an aptamer-tagged mRNA and 5S ribosomal RNA (rRNA). We observed distinct spatial and temporal changes in fluorescence within single cells, reflecting the nature of the transcript.
Collapse
Affiliation(s)
- Maria Valencia-Burton
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington St., Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|