1
|
Nishiguchi H, Niide T, Toya Y, Shimizu H. Modification of intracellular metabolism by expression of a C-terminal variant of phosphoribulokinase from Synechocystis sp. PCC 6803. Biosci Biotechnol Biochem 2025; 89:720-727. [PMID: 39900468 DOI: 10.1093/bbb/zbaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Phosphoribulokinase (PRK) is a key enzyme in the Calvin cycle of cyanobacteria required for CO2 fixation and enhancing intracellular PRK activity will contribute to altering the metabolic state. In Synechocystis sp. PCC 6803, PRK activity is inhibited by the small protein CP12 and intramolecular disulfide bonds in its C-terminal loop. This study aimed to increase PRK activity by expressing a mutant PRK where inhibitory Cys residues (positions 229 and 235) in the C-terminal loop were replaced with Ser. The engineered strain showed increased PRK activity under photomixotrophic conditions. Metabolomic analysis revealed that this strain accumulates organic acids downstream of glycolysis and the tricarboxylic acid cycle, highlighting its potential for producing chemicals using these metabolites as precursors. These findings suggest that preventing disulfide bond formation in the PRK C-terminal loop enhances its activity, providing a promising approach for metabolic engineering in cyanobacteria.
Collapse
Affiliation(s)
- Hiroki Nishiguchi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Teppei Niide
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Fu S, Ma K, Song X, Sun T, Chen L, Zhang W. Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes. Int J Mol Sci 2025; 26:3116. [PMID: 40243859 PMCID: PMC11989218 DOI: 10.3390/ijms26073116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The utilization of photosynthetic microbes, such as cyanobacteria and microalgae, offers sustainable solutions to addressing global resource shortages and pollution. While these microorganisms have demonstrated significant potential in biomanufacturing, their industrial application is limited by suboptimal photosynthetic efficiency. Synthetic biology integrates molecular biology, systems biology, and engineering principles to provide a powerful tool for elucidating photosynthetic mechanisms and rationally optimizing photosynthetic platforms. This review summarizes recent advancements in regulating photosynthesis in cyanobacteria and microalgae via synthetic biology, focusing on strategies to enhance light energy absorption, optimize electron transport chains, and improve carbon assimilation. Furthermore, we discuss key challenges in translating these genetic modifications to large-scale bioproduction, highlighting specific bottlenecks in strain stability, metabolic burden, and process scalability. Finally, we propose potential solutions, such as AI-assisted metabolic engineering, synthetic microbial consortia, and next-generation photobioreactor designs, to overcome these limitations. Overall, while synthetic biology holds great promise for enhancing photosynthetic efficiency in cyanobacteria and microalgae, further research is needed to refine genetic strategies and develop scalable production systems.
Collapse
Affiliation(s)
- Shujin Fu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Kaiyu Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Xinyu Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Tao Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Pressley SR, Gonzales JN, Atsumi S. Efficient utilization of xylose requires CO 2 fixation in Synechococcus elongatus PCC 7942. Metab Eng 2024; 86:115-123. [PMID: 39313109 DOI: 10.1016/j.ymben.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Cyanobacteria show great promise as autotrophic hosts for the renewable biosynthesis of useful chemicals from CO2 and light. While they can efficiently fix CO2, cyanobacteria are generally outperformed by heterotrophic production hosts in terms of productivity and titer. Photomixotrophy, or co-utilization of sugars and CO2 as carbon feedstocks, has been implemented in cyanobacteria to greatly improve productivity and titers of several chemical products. We introduced xylose photomixotrophy to a 2,3-butanediol producing strain of Synechococcus elongatus PCC 7942 and characterized the effect of gene knockouts, changing pathway expression levels, and changing growth conditions on chemical production. Interestingly, 2,3-butanediol production was almost completely inhibited in the absence of added CO2. Untargeted metabolomics implied that RuBisCO was a significant bottleneck, especially at ambient CO2 levels, restricting the supply of lower glycolysis metabolites needed for 2,3-butanediol production. The dependence of the strain on elevated CO2 levels suggests some practical limitations on how xylose photomixotrophy can be efficiently carried out in S. elongatus.
Collapse
Affiliation(s)
- Shannon R Pressley
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Jake N Gonzales
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Gao YL, Cournoyer J, De BC, Wallace CL, Ulanov AV, La Frano MR, Mehta AP. Introducing carbon assimilation in yeasts using photosynthetic directed endosymbiosis. Nat Commun 2024; 15:5947. [PMID: 39013857 PMCID: PMC11252298 DOI: 10.1038/s41467-024-49585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
Conversion of heterotrophic organisms into partially or completely autotrophic organisms is primarily accomplished by extensive metabolic engineering and laboratory evolution efforts that channel CO2 into central carbon metabolism. Here, we develop a directed endosymbiosis approach to introduce carbon assimilation in budding yeasts. Particularly, we engineer carbon assimilating and sugar-secreting photosynthetic cyanobacterial endosymbionts within the yeast cells, which results in the generation of yeast/cyanobacteria chimeras that propagate under photosynthetic conditions in the presence of CO2 and in the absence of feedstock carbon sources like glucose or glycerol. We demonstrate that the yeast/cyanobacteria chimera can be engineered to biosynthesize natural products under the photosynthetic conditions. Additionally, we expand our directed endosymbiosis approach to standard laboratory strains of yeasts, which transforms them into photosynthetic yeast/cyanobacteria chimeras. We anticipate that our studies will have significant implications for sustainable biotechnology, synthetic biology, and experimentally studying the evolutionary adaptation of an additional organelle in yeast.
Collapse
Affiliation(s)
- Yang-le Gao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois, US
| | - Jay Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois, US
| | - Bidhan C De
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois, US
| | - Catherine L Wallace
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, US
| | - Alexander V Ulanov
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois, US
| | - Michael R La Frano
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois, US
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois, US.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois, US.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, US.
| |
Collapse
|
5
|
Ortega-Martínez P, Nikkanen L, Wey LT, Florencio FJ, Allahverdiyeva Y, Díaz-Troya S. Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2024; 243:162-179. [PMID: 38706429 DOI: 10.1111/nph.19793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.
Collapse
Affiliation(s)
- Pablo Ortega-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Laura T Wey
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Sandra Díaz-Troya
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| |
Collapse
|
6
|
Li Z, Li S, Chen L, Sun T, Zhang W. Fast-growing cyanobacterial chassis for synthetic biology application. Crit Rev Biotechnol 2024; 44:414-428. [PMID: 36842999 DOI: 10.1080/07388551.2023.2166455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 12/28/2022] [Indexed: 02/28/2023]
Abstract
Carbon neutrality by 2050 has become one of the most urgent challenges the world faces today. To address the issue, it is necessary to develop and promote new technologies related with CO2 recycling. Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, capable of fixing CO2 into biomass under sunlight and serving as one of the most important primary producers on earth. Notably, recent progress on synthetic biology has led to utilizing model cyanobacteria such as Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 as chassis for "light-driven autotrophic cell factories" to produce several dozens of biofuels and various fine chemicals directly from CO2. However, due to the slow growth rate and low biomass accumulation in the current chassis, the productivity for most products is still lower than the threshold necessary for large-scale commercial application, raising the importance of developing high-efficiency cyanobacterial chassis with fast growth and/or higher biomass accumulation capabilities. In this article, we critically reviewed recent progresses on identification, systems biology analysis, and engineering of fast-growing cyanobacterial chassis. Specifically, fast-growing cyanobacteria identified in recent years, such as S. elongatus UTEX 2973, S. elongatus PCC 11801, S. elongatus PCC 11802 and Synechococcus sp. PCC 11901 was comparatively analyzed. In addition, the progresses on their recent application in converting CO2 into chemicals, and genetic toolboxes developed for these new cyanobacterial chassis were discussed. Finally, the article provides insights into future challenges and perspectives on the synthetic biology application of cyanobacterial chassis.
Collapse
Affiliation(s)
- Zhixiang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
7
|
Kugler A, Stensjö K. Optimal energy and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803. NPJ Syst Biol Appl 2023; 9:47. [PMID: 37739963 PMCID: PMC10516873 DOI: 10.1038/s41540-023-00307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/01/2023] [Indexed: 09/24/2023] Open
Abstract
Understanding energy and redox homeostasis and carbon partitioning is crucial for systems metabolic engineering of cell factories. Carbon metabolism alone cannot achieve maximal accumulation of metabolites in production hosts, since an efficient production of target molecules requires energy and redox balance, in addition to carbon flow. The interplay between cofactor regeneration and heterologous production in photosynthetic microorganisms is not fully explored. To investigate the optimality of energy and redox metabolism, while overproducing alkenes-isobutene, isoprene, ethylene and 1-undecene, in the cyanobacterium Synechocystis sp. PCC 6803, we applied stoichiometric metabolic modelling. Our network-wide analysis indicates that the rate of NAD(P)H regeneration, rather than of ATP, controls ATP/NADPH ratio, and thereby bioproduction. The simulation also implies that energy and redox balance is interconnected with carbon and nitrogen metabolism. Furthermore, we show that an auxiliary pathway, composed of serine, one-carbon and glycine metabolism, supports cellular redox homeostasis and ATP cycling. The study revealed non-intuitive metabolic pathways required to enhance alkene production, which are mainly driven by a few key reactions carrying a high flux. We envision that the presented comparative in-silico metabolic analysis will guide the rational design of Synechocystis as a photobiological production platform of target chemicals.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
8
|
Yi M, Xiong B, Li Y, Guo W, Huang Y, Lu B. Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials. Eur J Med Chem 2023; 247:115084. [PMID: 36599230 DOI: 10.1016/j.ejmech.2022.115084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Due to its low adverse effects, minimal invasiveness, and outstanding patient compliance, photodynamic therapy (PDT) has drawn a great deal of interest, which is achieved through incomplete reduction of O2 by a photosensitizer under light illumination that produces amounts of reactive oxygen species (ROS). However, tumor hypoxia significantly hinders the therapeutic effect of PDT so that tumor cells cannot be eliminated, which results in tumor cells proliferating, invading, and metastasizing. Additionally, O2 consumption during PDT exacerbates hypoxia in tumors, leading to several adverse events after PDT treatment. In recent years, various investigations have focused on conquering or using tumor hypoxia by nanomaterials to amplify PDT efficacy, which is summarized in this review. This comprehensive review's objective is to present novel viewpoints on the advancement of oxygenation nanomaterials in this promising field, which is motivated by hypoxia-associated anti-tumor therapy.
Collapse
Affiliation(s)
- Mengqi Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bei Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuyang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
9
|
Kumar A, Baldia A, Rajput D, Kateriya S, Babu V, Dubey KK. Multiomics and optobiotechnological approaches for the development of microalgal strain for production of aviation biofuel and biorefinery. BIORESOURCE TECHNOLOGY 2023; 369:128457. [PMID: 36503094 DOI: 10.1016/j.biortech.2022.128457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.
Collapse
Affiliation(s)
- Akshay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vikash Babu
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kashyap Kumar Dubey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Chen AY, Ku JT, Tsai TP, Hung JJ, Hung BC, Lan EI. Metabolic Engineering Design Strategies for Increasing Carbon Fluxes Relevant for Biosynthesis in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:105-144. [PMID: 37093259 DOI: 10.1007/10_2023_218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cyanobacteria are promising microbial cell factories for the direct production of biochemicals and biofuels from CO2. Through genetic and metabolic engineering, they can be modified to produce a variety of both natural and non-natural compounds. To enhance the yield of these products, various design strategies have been developed. In this chapter, strategies used to enhance metabolic fluxes towards common precursors used in biosynthesis, including pyruvate, acetyl-CoA, malonyl-CoA, TCA cycle intermediates, and aromatics, are discussed. Additionally, strategies related to cofactor availability and mixotrophic conditions for bioproduction are also summarize.
Collapse
Affiliation(s)
- Arvin Y Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jason T Ku
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Teresa P Tsai
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jenny J Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Billy C Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.
| |
Collapse
|
11
|
Qiao W, Xu S, Liu Z, Fu X, Zhao H, Shi S. Challenges and opportunities in C1-based biomanufacturing. BIORESOURCE TECHNOLOGY 2022; 364:128095. [PMID: 36220528 DOI: 10.1016/j.biortech.2022.128095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The intensifying impact of green-house gas (GHG) emission on environment and climate change has attracted increasing attention, and biorefinery represents one of the most effective routes for reducing GHG emissions from human activities. However, this requires a shift for microbial fermentation from the current use of sugars to the use of biomass, and even better to the primary fixation of single carbon (C1) compounds. Here how microorganisms can be engineered for fixation and conversion of C1 compounds into metabolites that can serve as fuels and platform chemicals are reviewed. Meanwhile, key factors for utilization of these different pathways are discussed, followed by challenges and barriers for the development of C1-based biorefinery.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Hao F, Li X, Wang J, Li R, Zou L, Wang K, Chen F, Shi F, Yang H, Wang W, Tian M. Separation of Bioproducts through the Integration of Cyanobacterial Metabolism and Membrane Filtration: Facilitating Cyanobacteria's Industrial Application. MEMBRANES 2022; 12:963. [PMID: 36295722 PMCID: PMC9611232 DOI: 10.3390/membranes12100963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this work, we propose the development of an efficient, economical, automated, and sustainable method for separating bioproducts from culture medium via the integration of a sucrose-secreting cyanobacteria production process and pressure-driven membrane filtration technology. Firstly, we constructed sucrose-secreting cyanobacteria with a sucrose yield of 600-700 mg/L sucrose after 7 days of salt stress, and the produced sucrose could be fully separated from the cyanobacteria cultures through an efficient and automated membrane filtration process. To determine whether this new method is also economical and sustainable, the relationship between membrane species, operating pressure, and the growth status of four cyanobacterial species was systematically investigated. The results revealed that all four cyanobacterial species could continue to grow after UF filtration. The field emission scanning electron microscopy and confocal laser scanning microscopy results indicate that the cyanobacteria did not cause severe destruction to the membrane surface structure. The good cell viability and intact membrane surface observed after filtration indicated that this innovative cyanobacteria-membrane system is economical and sustainable. This work pioneered the use of membrane separation to achieve the in situ separation of cyanobacterial culture and target products, laying the foundation for the industrialization of cyanobacterial bioproducts.
Collapse
Affiliation(s)
- Fei Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xinyi Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiameng Wang
- School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ruoyue Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Liyan Zou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Fuqing Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Feixiong Shi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hui Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Miao Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
13
|
Schulze D, Kohlstedt M, Becker J, Cahoreau E, Peyriga L, Makowka A, Hildebrandt S, Gutekunst K, Portais JC, Wittmann C. GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. Microb Cell Fact 2022; 21:69. [PMID: 35459213 PMCID: PMC9034593 DOI: 10.1186/s12934-022-01790-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cyanobacteria receive huge interest as green catalysts. While exploiting energy from sunlight, they co-utilize sugar and CO2. This photomixotrophic mode enables fast growth and high cell densities, opening perspectives for sustainable biomanufacturing. The model cyanobacterium Synechocystis sp. PCC 6803 possesses a complex architecture of glycolytic routes for glucose breakdown that are intertwined with the CO2-fixing Calvin-Benson-Bassham (CBB) cycle. To date, the contribution of these pathways to photomixotrophic metabolism has remained unclear. RESULTS Here, we developed a comprehensive approach for 13C metabolic flux analysis of Synechocystis sp. PCC 6803 during steady state photomixotrophic growth. Under these conditions, the Entner-Doudoroff (ED) and phosphoketolase (PK) pathways were found inactive but the microbe used the phosphoglucoisomerase (PGI) (63.1%) and the oxidative pentose phosphate pathway (OPP) shunts (9.3%) to fuel the CBB cycle. Mutants that lacked the ED pathway, the PK pathway, or phosphofructokinases were not affected in growth under metabolic steady-state. An ED pathway-deficient mutant (Δeda) exhibited an enhanced CBB cycle flux and increased glycogen formation, while the OPP shunt was almost inactive (1.3%). Under fluctuating light, ∆eda showed a growth defect, different to wild type and the other deletion strains. CONCLUSIONS The developed approach, based on parallel 13C tracer studies with GC-MS analysis of amino acids, sugars, and sugar derivatives, optionally adding NMR data from amino acids, is valuable to study fluxes in photomixotrophic microbes to detail. In photomixotrophic cells, PGI and OPP form glycolytic shunts that merge at switch points and result in synergistic fueling of the CBB cycle for maximized CO2 fixation. However, redirected fluxes in an ED shunt-deficient mutant and the impossibility to delete this shunt in a GAPDH2 knockout mutant, indicate that either minor fluxes (below the resolution limit of 13C flux analysis) might exist that could provide catalytic amounts of regulatory intermediates or alternatively, that EDA possesses additional so far unknown functions. These ideas require further experiments.
Collapse
Affiliation(s)
- Dennis Schulze
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Lindsay Peyriga
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | | | | | - Kirstin Gutekunst
- Institute of Botany, Christian-Albrecht University, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
14
|
Tsuzuki Y, Tsukatani Y, Yamakawa H, Itoh S, Fujita Y, Yamamoto H. Effects of Light and Oxygen on Chlorophyll d Biosynthesis in a Marine Cyanobacterium Acaryochloris marina. PLANTS (BASEL, SWITZERLAND) 2022; 11:915. [PMID: 35406896 PMCID: PMC9003380 DOI: 10.3390/plants11070915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
A marine cyanobacterium Acaryochloris marina synthesizes chlorophyll (Chl) d as a major Chl. Chl d has a formyl group at its C3 position instead of a vinyl group in Chl a. This modification allows Chl d to absorb far-red light addition to visible light, yet the enzyme catalyzing the formation of the C3-formyl group has not been identified. In this study, we focused on light and oxygen, the most important external factors in Chl biosynthesis, to investigate their effects on Chl d biosynthesis in A. marina. The amount of Chl d in heterotrophic dark-grown cells was comparable to that in light-grown cells, indicating that A. marina has a light-independent pathway for Chl d biosynthesis. Under anoxic conditions, the amount of Chl d increased with growth in light conditions; however, no growth was observed in dark conditions, indicating that A. marina synthesizes Chl d normally even under such “micro-oxic” conditions caused by endogenous oxygen production. Although the oxygen requirement for Chl d biosynthesis could not be confirmed, interestingly, accumulation of pheophorbide d was observed in anoxic and dark conditions, suggesting that Chl d degradation is induced by anaerobicity and darkness.
Collapse
Affiliation(s)
- Yuki Tsuzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Yusuke Tsukatani
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan;
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Shigeru Itoh
- Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan;
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| |
Collapse
|
15
|
Tan LR, Cao YQ, Li JW, Xia PF, Wang SG. Transcriptomics and metabolomics of engineered Synechococcus elongatus during photomixotrophic growth. Microb Cell Fact 2022; 21:31. [PMID: 35248031 PMCID: PMC8897908 DOI: 10.1186/s12934-022-01760-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background Converting carbon dioxide (CO2) into value-added chemicals using engineered cyanobacteria is a promising strategy to tackle the global warming and energy shortage issues. However, most cyanobacteria are autotrophic and use CO2 as a sole carbon source, which makes it hard to compete with heterotrophic hosts in either growth or productivity. One strategy to overcome this bottleneck is to introduce sugar utilization pathways to enable photomixotrophic growth with CO2 and sugar (e.g., glucose and xylose). Advances in engineering mixotrophic cyanobacteria have been obtained, while a systematic interrogation of these engineered strains is missing. This work aimed to fill the gap at omics level. Results We first constructed two engineered Synechococcus elongatus YQ2-gal and YQ3-xyl capable of utilizing glucose and xylose, respectively. To investigate the metabolic mechanism, transcriptomic and metabolomic analysis were then performed in the engineered photomixotrophic strains YQ2-gal and YQ3-xyl. Transcriptome and metabolome of wild-type S. elongatus were set as baselines. Increased abundance of metabolites in glycolysis or pentose phosphate pathway indicated that efficient sugar utilization significantly enhanced carbon flux in S. elongatus as expected. However, carbon flux was redirected in strain YQ2-gal as more flowed into fatty acids biosynthesis but less into amino acids. In strain YQ3-xyl, more carbon flux was directed into synthesis of sucrose, glucosamine and acetaldehyde, while less into fatty acids and amino acids. Moreover, photosynthesis and bicarbonate transport could be affected by upregulated genes, while nitrogen transport and assimilation were regulated by less transcript abundance of related genes in strain YQ3-xyl with utilization of xylose. Conclusions Our work identified metabolic mechanism in engineered S. elongatus during photomixotrophic growth, where regulations of fatty acids metabolism, photosynthesis, bicarbonate transport, nitrogen assimilation and transport are dependent on different sugar utilization. Since photomixotrophic cyanobacteria is regarded as a promising cell factory for bioproduction, this comprehensive understanding of metabolic mechanism of engineered S. elongatus during photomixotrophic growth would shed light on the engineering of more efficient and controllable bioproduction systems based on this potential chassis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01760-1.
Collapse
|
16
|
Yao J, Wang J, Ju Y, Dong Z, Song X, Chen L, Zhang W. Engineering a Xylose-Utilizing Synechococcus elongatus UTEX 2973 Chassis for 3-Hydroxypropionic Acid Biosynthesis under Photomixotrophic Conditions. ACS Synth Biol 2022; 11:678-688. [PMID: 35119824 DOI: 10.1021/acssynbio.1c00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photomixotrophic cultivation of cyanobacteria is considered a promising strategy to achieve both high cell density and product accumulation, since cyanobacteria can obtain carbon and energy sources from organic matter in addition to those obtained from CO2 and sunlight. Acetyl coenzyme A (acetyl-CoA) is a key precursor used for the biosynthesis of a wide variety of important value-added chemicals. However, the acetyl-CoA content in cyanobacteria is typically low under photomixotrophic conditions, which limits the productivity of the derived chemicals. In this study, a xylose utilization pathway from Escherichia coli was first engineered into fast-growing Synechococcus elongatus UTEX 2973 (hereafter Synechococcus 2973), enabling the xylose based photomixotrophy. Metabolomics analysis of the engineered strain showed that the utilization of xylose enhanced the carbon flow to the oxidative pentose phosphate (OPP) pathway, along with an increase in the intracellular abundance of metabolites such as fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (FBP), ribose-5-phosphate (R5P), erythrose-4-phosphate (E4P), and glyceraldehyde-3-phosphate (G3P). Then, the native glycolytic pathway was rewired via heterologous phosphoketolase (Pkt) gene expression, combined with phosphofructokinase (Pfk) gene knockout and fructose-1,6-bisphosphatase (Fbp) gene overexpression, to drive more carbon flux from xylose to acetyl-CoA. Finally, a heterologous 3-hydroxypropionic acid (3-HP) biosynthetic pathway was introduced. The results showed that 3-HP biosynthesis was improved by up to approximately 4.1-fold (from 22.5 mg/L to 91.3 mg/L) compared with the engineered strain without a rewired metabolism under photomixotrophic conditions and up to approximately 14-fold compared with the strain under photoautotrophic conditions. Using 3-HP as a "proof-of-molecule", our results demonstrated that this strategy could be applied to improve the intracellular pool of acetyl-CoA for the photomixotrophic production of value-added chemicals that require acetyl-CoA as a precursor in a cyanobacterial chassis.
Collapse
Affiliation(s)
- Jiaqi Yao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Jin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yue Ju
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
17
|
Sirohi R, Lee JS, Yu BS, Roh H, Sim SJ. Sustainable production of polyhydroxybutyrate from autotrophs using CO 2 as feedstock: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2021; 341:125751. [PMID: 34416655 DOI: 10.1016/j.biortech.2021.125751] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Due to industrialization and rapid increase in world population, the global energy consumption has increased dramatically. As a consequence, there is increased consumption of fossil fuels, leading to a rapid increase in CO2 concentration in the atmosphere. This accumulated CO2 can be efficiently used by autotrophs as a carbon source to produce chemicals and biopolymers. There has been increasing attention on the production of polyhydroxybutyrate (PHB), a biopolymer, with focus on reducing the production cost. For this, cheaper renewable feedstocks, molecular tools, including metabolic and genetic engineering have been explored to improve microbial strains along with process engineering aspects for scale-up of PHB production. This review discusses the recent advents on the utilization of CO2 as feedstock especially by engineered autotrophs, for sustainable production of PHB. The review also discusses the innovations in cultivation technology and process monitoring while understanding the underlying mechanisms for CO2 to biopolymer conversion.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Jeong Seop Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Hyejin Roh
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea.
| |
Collapse
|
18
|
Cui J, Sun T, Chen L, Zhang W. Salt-Tolerant Synechococcus elongatus UTEX 2973 Obtained via Engineering of Heterologous Synthesis of Compatible Solute Glucosylglycerol. Front Microbiol 2021; 12:650217. [PMID: 34084156 PMCID: PMC8168540 DOI: 10.3389/fmicb.2021.650217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
The recently isolated cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) is characterized by a faster growth rate and greater tolerance to high temperature and high light, making it a good candidate chassis for autotrophic photosynthetic microbial cell factories. However, Syn2973 is sensitive to salt stress, making it urgently important to improve the salt tolerance of Syn2973 for future biotechnological applications. Glucosylglycerol, a compatible solute, plays an important role in resisting salt stress in moderate and marine halotolerant cyanobacteria. In this study, the salt tolerance of Syn2973 was successfully improved by introducing the glucosylglycerol (GG) biosynthetic pathway (OD750 improved by 24% at 60 h). In addition, the salt tolerance of Syn2973 was further enhanced by overexpressing the rate-limiting step of glycerol-3-phosphate dehydrogenase and downregulating the gene rfbA, which encodes UDP glucose pyrophosphorylase. Taken together, these results indicate that the growth of the end-point strain M-2522-GgpPS-drfbA was improved by 62% compared with the control strain M-pSI-pSII at 60 h under treatment with 0.5 M NaCl. Finally, a comparative metabolomic analysis between strains M-pSI-pSII and M-2522-GgpPS-drfbA was performed to characterize the carbon flux in the engineered M-2522-GgpPS-drfbA strain, and the results showed that more carbon flux was redirected from ADP-GLC to GG synthesis. This study provides important engineering strategies to improve salt tolerance and GG production in Syn2973 in the future.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Hu G, Li Z, Ma D, Ye C, Zhang L, Gao C, Liu L, Chen X. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal 2021. [DOI: 10.1038/s41929-021-00606-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Song X, Diao J, Yao J, Cui J, Sun T, Chen L, Zhang W. Engineering a Central Carbon Metabolism Pathway to Increase the Intracellular Acetyl-CoA Pool in Synechocystis sp. PCC 6803 Grown under Photomixotrophic Conditions. ACS Synth Biol 2021; 10:836-846. [PMID: 33779148 DOI: 10.1021/acssynbio.0c00629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In cyanobacteria, photomixotrophic growth is considered as a promising strategy to achieve both high cell density and product accumulation. However, the conversion of glucose to acetyl coenzyme A (acetyl-CoA) in the native glycolytic pathway is insufficient, which decreases the carbon utilization and productivity of engineered cyanobacteria under photomixotrophic conditions. To increase the carbon flux from glucose to key intracellular precursor acetyl-CoA in Synechocystis sp. PCC 6803 (hereafter, Synechocystis 6803) under photomixotrophic conditions, a synthetic nonoxidative cyclic glycolysis (NOG) pathway was introduced into the wild type strain, which successfully increased the intracellular pool of acetyl-CoA by approximately 1-fold. To minimize the competition for glucose, the native Embden-Meyerhof-Parnas (EMP) and Entner-Doudoroff (ED) pathways were knocked out, respectively. Notably, eliminating the native ED pathway in the engineered strain carrying the NOG pathway further increased the intracellular pool of acetyl-CoA up to 2.8-fold. Another carbon consuming pathway in Synechocystis 6803, the glycogen biosynthesis pathway, was additionally knocked out in the above-mentioned engineered strain, which enabled an increase of the intracellular acetyl-CoA pool by up to 3.5-fold when compared with the wild type strain. Finally, the content of intracellular lipids was analyzed as an index of the productive capacity of the engineered Synechocystis 6803 cell factory under photomixotrophic conditions. The results showed the total lipids yield increased about 26% compared to the wild type (from 15.71% to 34.12%, g/g glucose), demonstrating that this integrated approach could represent a general strategy not only for the improvement of the intracellular concentration of acetyl-CoA, but also for the production of value-added chemicals that require acetyl-CoA as a key precursor in cyanobacteria.
Collapse
Affiliation(s)
- Xinyu Song
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, P.R. China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Jiaqi Yao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Tao Sun
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Weiwen Zhang
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, P.R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| |
Collapse
|
21
|
Noh Y, Lee H, Kim M, Hong SJ, Lee H, Kim DM, Cho BK, Lee CG, Choi HK. Enhanced Production of Photosynthetic Pigments and Various Metabolites and Lipids in the Cyanobacteria Synechocystis sp. PCC 7338 Culture in the Presence of Exogenous Glucose. Biomolecules 2021; 11:biom11020214. [PMID: 33546462 PMCID: PMC7913732 DOI: 10.3390/biom11020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Synechocystis strains are cyanobacteria that can produce useful biomaterials for biofuel and pharmaceutical resources. In this study, the effects of exogenous glucose (5-mM) on cell growth, photosynthetic pigments, metabolites, and lipids in Synechocystis sp. PCC 7338 (referred to as Synechocystis 7338) were investigated. Exogenous glucose increased cell growth on days 9 and 18. The highest production (mg/L) of chlorophyll a (34.66), phycocyanin (84.94), allophycocyanin (34.28), and phycoerythrin (6.90) was observed on day 18 in Synechocystis 7338 culture under 5-mM glucose. Alterations in metabolic and lipidomic profiles under 5-mM glucose were investigated using gas chromatography-mass spectrometry (MS) and nanoelectrospray ionization-MS. The highest production (relative intensity/L) of aspartic acid, glutamic acid, glycerol-3-phosphate, linolenic acid, monogalactosyldiacylglycerol (MGDG) 16:0/18:1, MGDG 16:0/20:2, MGDG 18:1/18:2, neophytadiene, oleic acid, phosphatidylglycerol (PG) 16:0/16:0, and PG 16:0/17:2 was achieved on day 9. The highest production of pyroglutamic acid and sucrose was observed on day 18. We suggest that the addition of exogenous glucose to Synechocystis 7338 culture could be an efficient strategy for improving growth of cells and production of photosynthetic pigments, metabolites, and intact lipid species for industrial applications.
Collapse
Affiliation(s)
- YuJin Noh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.N.); (H.L.); (M.K.)
| | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.N.); (H.L.); (M.K.)
| | - Myeongsun Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.N.); (H.L.); (M.K.)
| | - Seong-Joo Hong
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.-J.H.); (C.-G.L.)
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon 13120, Korea;
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.-J.H.); (C.-G.L.)
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.N.); (H.L.); (M.K.)
- Correspondence: ; Tel.: +82-2-820-5605
| |
Collapse
|
22
|
Current processes and future challenges of photoautotrophic production of acetyl-CoA-derived solar fuels and chemicals in cyanobacteria. Curr Opin Chem Biol 2020; 59:69-76. [DOI: 10.1016/j.cbpa.2020.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
|
23
|
Effect of Glycerol Concentration and Light Intensity on Growth and Biochemical Composition of Arthrospira (Spirulina) Platensis: A Study in Semi-Continuous Mode with Non-Aseptic Conditions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, Arthrospira platensis was grown in the presence of different glycerol concentrations (0.5–9 g/L) under three light intensities (5, 10 and 15 Klux) in semi-continuous mode and under non-axenic conditions. The aim of this study was to investigate the growth performance, the biomass biochemical composition and any interactions between A. platensis and bacteria that would potentially grow as well on glycerol. The results here show that glycerol did not have any positive effect on biomass production of A. platensis. In contrast, it was observed that by increasing glycerol concentration the growth performance of A. platensis was restricted, while a gradual increase of bacteria population was observed, which apparently outcompeted and repressed A. platensis growth. Chlorophyll fluorescence measurements (Quantum Yields) revealed that glycerol was not an inhibiting factor per se of photosynthesis. On the other hand, cyanobacterial biomass grown on glycerol displayed a higher content in proteins and lipids. Especially, protein productivity was enhanced around 15–35% with the addition of glycerol compared to the control. In distinction, carbohydrate and photosynthetic pigments (phycocyanin and chlorophyll-α) content decreased with the increase of glycerol concentration. The results here suggest that A. platensis did not utilize glycerol for biomass production but most probably as metabolic energy carrier towards synthesis of proteins and lipids, which are more energy consuming metabolites compared to carbohydrates. The study revealed that the addition of glycerol at amounts of 0.5–1.5 g/L could be a strategy to improve protein productivity by A. platensis.
Collapse
|
24
|
Luan G, Zhang S, Wang M, Lu X. Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnol Adv 2019; 37:771-786. [DOI: 10.1016/j.biotechadv.2019.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/09/2019] [Accepted: 04/07/2019] [Indexed: 12/20/2022]
|
25
|
Katayama N, Takeya M, Osanai T. Biochemical characterisation of fumarase C from a unicellular cyanobacterium demonstrating its substrate affinity, altered by an amino acid substitution. Sci Rep 2019; 9:10629. [PMID: 31337820 PMCID: PMC6650407 DOI: 10.1038/s41598-019-47025-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/09/2019] [Indexed: 01/14/2023] Open
Abstract
The tricarboxylic acid cycle produces NADH for oxidative phosphorylation and fumarase [EC 4.2.1.2] is a critical enzyme in this cycle, catalysing the reversible conversion of fumarate and L-malate. Fumarase is applied to industrial L-malate production as a biocatalyst. L-malate is used in a wide range of industries such as food and beverage, pharmacy chemistry. Although the biochemical properties of fumarases have been studied in many organisms, they have not been investigated in cyanobacteria. In this study, the optimum pH and temperature of Synechocystis 6803 fumarase C (SyFumC) were 7.5 and 30 °C, respectively. The Km of SyFumC for L-malate was higher than for fumarate. Furthermore, SyFumC activity was strongly inhibited by citrate and succinate, consistent with fumarases in other organisms. Substitution of alanine by glutamate at position 314 of SyFumC changed the kcat for fumarate and L-malate. In addition, the inhibitory effects of citrate and succinate on SyFumC activity were alleviated. Phylogenetic analysis revealed cyanobacterial fumarase clades divided in non-nitrogen-fixing cyanobacteria and nitrogen-fixing cyanobacteria. SyFumC was thus biochemically characterised, including identification of an amino acid residue important for substrate affinity and enzymatic activity.
Collapse
Affiliation(s)
- Noriaki Katayama
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Masahiro Takeya
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
26
|
Xia P, Ling H, Foo JL, Chang MW. Synthetic Biology Toolkits for Metabolic Engineering of Cyanobacteria. Biotechnol J 2019; 14:e1800496. [DOI: 10.1002/biot.201800496] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Peng‐Fei Xia
- Department of Biochemistry Yong Loo Lin School of MedicineNational University of Singapore8 Medical Drive Singapore 117597 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of Singapore28 Medical Drive Singapore 117456 Singapore
| | - Hua Ling
- Department of Biochemistry Yong Loo Lin School of MedicineNational University of Singapore8 Medical Drive Singapore 117597 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of Singapore28 Medical Drive Singapore 117456 Singapore
| | - Jee Loon Foo
- Department of Biochemistry Yong Loo Lin School of MedicineNational University of Singapore8 Medical Drive Singapore 117597 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of Singapore28 Medical Drive Singapore 117456 Singapore
| | - Matthew Wook Chang
- Department of Biochemistry Yong Loo Lin School of MedicineNational University of Singapore8 Medical Drive Singapore 117597 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of Singapore28 Medical Drive Singapore 117456 Singapore
| |
Collapse
|
27
|
Pérez AA, Chen Q, Hernández HP, Branco dos Santos F, Hellingwerf KJ. On the use of oxygenic photosynthesis for the sustainable production of commodity chemicals. PHYSIOLOGIA PLANTARUM 2019; 166:413-427. [PMID: 30829400 PMCID: PMC6850307 DOI: 10.1111/ppl.12946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 05/13/2023]
Abstract
A sustainable society will have to largely refrain from the use of fossil carbon deposits. In such a regime, renewable electricity can be harvested as a primary source of energy. However, as for the synthesis of carbon-based materials from bulk chemicals, an alternative is required. A sustainable approach towards this is the synthesis of commodity chemicals from CO2 , water and sunlight. Multiple paths to achieve this have been designed and tested in the domains of chemistry and biology. In the latter, the use of both chemotrophic and phototrophic organisms has been advocated. 'Direct conversion' of CO2 and H2 O, catalyzed by an oxyphototroph, has excellent prospects to become the most economically competitive of these transformations, because of the relative ease of scale-up of this process. Significantly, for a wide range of energy and commodity products, a proof of principle via engineering of the corresponding production organism has been provided. In the optimization of a cyanobacterial production organism, a wide range of aspects has to be addressed. Of these, here we will put our focus on: (1) optimizing the (carbon) flux to the desired product; (2) increasing the genetic stability of the producing organism and (3) maximizing its energy conversion efficiency. Significant advances have been made on all these three aspects during the past 2 years and these will be discussed: (1) increasing the carbon partitioning to >50%; (2) aligning product formation with the growth of the cells and (3) expanding the photosynthetically active radiation region for oxygenic photosynthesis.
Collapse
Affiliation(s)
- Adam A. Pérez
- Molecular Microbial Physiology GroupSwammerdam Institute for Life Sciences, University of Amsterdam1098 XH AmsterdamThe Netherlands
- Photanol BVMatrix VAmsterdam, 1098 XHThe Netherlands
| | - Que Chen
- Molecular Microbial Physiology GroupSwammerdam Institute for Life Sciences, University of Amsterdam1098 XH AmsterdamThe Netherlands
| | - Hugo Pineda Hernández
- Molecular Microbial Physiology GroupSwammerdam Institute for Life Sciences, University of Amsterdam1098 XH AmsterdamThe Netherlands
| | - Filipe Branco dos Santos
- Molecular Microbial Physiology GroupSwammerdam Institute for Life Sciences, University of Amsterdam1098 XH AmsterdamThe Netherlands
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology GroupSwammerdam Institute for Life Sciences, University of Amsterdam1098 XH AmsterdamThe Netherlands
- Photanol BVMatrix VAmsterdam, 1098 XHThe Netherlands
| |
Collapse
|
28
|
van den Berg C, Eppink MHM, Wijffels RH. Integrated Product Recovery Will Boost Industrial Cyanobacterial Processes. Trends Biotechnol 2018; 37:454-463. [PMID: 30528220 DOI: 10.1016/j.tibtech.2018.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023]
Abstract
Cyanobacteria promise to be an important industrial platform for the production of a variety of biobased products such as fuels, plastics, and isoprenoids. Recent advances in synthetic biology have resulted in various cyanobacterial strain improvements. Nevertheless, these new strains are still hampered by product inhibition, resulting in low volumetric productivities, product concentrations, and yields on light. To circumvent these issues, continuous product recovery will need to be applied, resulting in economically viable industrial processes. Optimal product recovery strategies can be developed by considering biological and separation process constraints as well as photobioreactor design. Integrated product recovery will be indispensable to bring the cyanobacterial cell factory to industrial scale.
Collapse
Affiliation(s)
- Corjan van den Berg
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands; https://www.wur.nl/en/Research-Results/Chair-groups/Agrotechnology-and-Food-Sciences/Bioprocess-Engineering.htm.
| | - Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands; https://www.wur.nl/en/Research-Results/Chair-groups/Agrotechnology-and-Food-Sciences/Bioprocess-Engineering.htm
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049 Bodø, Norway; https://www.wur.nl/en/Research-Results/Chair-groups/Agrotechnology-and-Food-Sciences/Bioprocess-Engineering.htm. https://twitter.com/@ReneWijffels
| |
Collapse
|
29
|
Hu G, Li Y, Ye C, Liu L, Chen X. Engineering Microorganisms for Enhanced CO 2 Sequestration. Trends Biotechnol 2018; 37:532-547. [PMID: 30447878 DOI: 10.1016/j.tibtech.2018.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Microbial CO2 sequestration not only provides a green and sustainable approach for ameliorating global warming but also simultaneously produces biofuels and chemicals. However, the efficiency of microbial CO2 fixation is still very low. In addition, concomitant microbial CO2 emission decreases the carbon yield of desired chemicals. To address these issues, strategies including engineering CO2-fixing pathways and energy-harvesting systems have been developed to improve the efficiency of CO2 fixation in autotrophic and heterotrophic microorganisms. Furthermore, metabolic pathways and energy metabolism can be rewired to reduce microbial CO2 emissions and increase the carbon yield of value-added products. This review highlights the potential of biotechnology to promote microbial CO2 sequestration and provides guidance for the broader use of microorganisms as attractive carbon sinks.
Collapse
Affiliation(s)
- Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; http://www.fmme.cn/
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; http://www.fmme.cn/
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; http://www.fmme.cn/
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; http://www.fmme.cn/.
| |
Collapse
|
30
|
Metabolic engineering tools in model cyanobacteria. Metab Eng 2018; 50:47-56. [DOI: 10.1016/j.ymben.2018.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/27/2022]
|
31
|
Vavitsas K, Fabris M, Vickers CE. Terpenoid Metabolic Engineering in Photosynthetic Microorganisms. Genes (Basel) 2018; 9:E520. [PMID: 30360565 PMCID: PMC6266707 DOI: 10.3390/genes9110520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
Terpenoids are a group of natural products that have a variety of roles, both essential and non-essential, in metabolism and in biotic and abiotic interactions, as well as commercial applications such as pharmaceuticals, food additives, and chemical feedstocks. Economic viability for commercial applications is commonly not achievable by using natural source organisms or chemical synthesis. Engineered bio-production in suitable heterologous hosts is often required to achieve commercial viability. However, our poor understanding of regulatory mechanisms and other biochemical processes makes obtaining efficient conversion yields from feedstocks challenging. Moreover, production from carbon dioxide via photosynthesis would significantly increase the environmental and potentially the economic credentials of these processes by disintermediating biomass feedstocks. In this paper, we briefly review terpenoid metabolism, outline some recent advances in terpenoid metabolic engineering, and discuss why photosynthetic unicellular organisms-such as algae and cyanobacteria-might be preferred production platforms for the expression of some of the more challenging terpenoid pathways.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Claudia E Vickers
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| |
Collapse
|
32
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
33
|
Genome-wide fitness assessment during diurnal growth reveals an expanded role of the cyanobacterial circadian clock protein KaiA. Proc Natl Acad Sci U S A 2018; 115:E7174-E7183. [PMID: 29991601 DOI: 10.1073/pnas.1802940115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recurrent pattern of light and darkness generated by Earth's axial rotation has profoundly influenced the evolution of organisms, selecting for both biological mechanisms that respond acutely to environmental changes and circadian clocks that program physiology in anticipation of daily variations. The necessity to integrate environmental responsiveness and circadian programming is exemplified in photosynthetic organisms such as cyanobacteria, which depend on light-driven photochemical processes. The cyanobacterium Synechococcus elongatus PCC 7942 is an excellent model system for dissecting these entwined mechanisms. Its core circadian oscillator, consisting of three proteins, KaiA, KaiB, and KaiC, transmits time-of-day signals to clock-output proteins, which reciprocally regulate global transcription. Research performed under constant light facilitates analysis of intrinsic cycles separately from direct environmental responses but does not provide insight into how these regulatory systems are integrated during light-dark cycles. Thus, we sought to identify genes that are specifically necessary in a day-night environment. We screened a dense bar-coded transposon library in both continuous light and daily cycling conditions and compared the fitness consequences of loss of each nonessential gene in the genome. Although the clock itself is not essential for viability in light-dark cycles, the most detrimental mutations revealed by the screen were those that disrupt KaiA. The screen broadened our understanding of light-dark survival in photosynthetic organisms, identified unforeseen clock-protein interaction dynamics, and reinforced the role of the clock as a negative regulator of a nighttime metabolic program that is essential for S. elongatus to survive in the dark.
Collapse
|
34
|
Xiao Y, Wang S, Rommelfanger S, Balassy A, Barba-Ostria C, Gu P, Galazka JM, Zhang F. Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol Bioeng 2018; 115:2305-2314. [PMID: 29896914 DOI: 10.1002/bit.26747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/06/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023]
Abstract
The oxygenic photosynthetic bacterium Synechocystis sp. PCC 6803 (S6803) is a model cyanobacterium widely used for fundamental research and biotechnology applications. Due to its polyploidy, existing methods for genome engineering of S6803 require multiple rounds of selection to modify all genome copies, which is time-consuming and inefficient. In this study, we engineered the Cas9 tool for one-step, segregation-free genome engineering. We further used our Cas9 tool to delete three of seven S6803 native plasmids. Our results show that all three small-size native plasmids, but not the large-size native plasmids, can be deleted with this tool. To further facilitate heterologous gene expression in S6803, a shuttle vector based on the native plasmid pCC5.2 was created. The shuttle vector can be introduced into Cas9-containing S6803 in one step without requiring segregation and can be stably maintained without antibiotic pressure for at least 30 days. Moreover, genes encoded on the shuttle vector remain functional after 30 days of continuous cultivation without selective pressure. Thus, this study provides a set of new tools for rapid modification of the S6803 genome and for stable expression of heterologous genes, potentially facilitating both fundamental research and biotechnology applications using S6803.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
- Present address: State Key Laboratory for Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaojie Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
| | - Sarah Rommelfanger
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missori
| | - Andrea Balassy
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
| | - Carlos Barba-Ostria
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
- Present address: Department of Health Sciences, Ambato Technical University, Ambato, Ecuador
| | - Pengfei Gu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
| | - Jonathan M Galazka
- Space Biosciences Division, Ames Research Center, National Aeronautics and Space Administration, Mountain View, California
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missori
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missori
- Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, Misssori
| |
Collapse
|
35
|
Tan LR, Xia PF, Zeng RJ, Li Q, Sun XF, Wang SG. Low-level concentrations of aminoglycoside antibiotics induce the aggregation of cyanobacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17128-17136. [PMID: 29644613 DOI: 10.1007/s11356-018-1894-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The interactions between antibiotics and microorganisms have attracted enormous research attentions. In this study, we investigated the effects of two typical aminoglycoside antibiotics on the aggregation of the model cyanobacterium, Synechococcus elongatus, and the dominating strain in algal blooms, Microcystis aeruginosa, via the analysis of zeta potentials, hydrophobicity, and extracellular polymeric substances (EPS) secretion. The results showed that low-level antibiotics promoted the aggregation of S. elongatus and M. aeruginosa by 40 and 18% under 0.10 and 0.02 μg/mL of kanamycin, respectively, which was mainly attributed to the combined effects of increased zeta potentials and the ratio between extracellular proteins and polysaccharides. Tobramycin exerted similar effects. Additionally, we discovered that at low pH (pH 5) and ionic strength (1 mM Na+ and 2 mM Mg2+), the inducing effects of antibiotics would be even larger than those with higher pH and ionic strength. As aggregation is important to cyanobacteria in either the basic physiology of biofilm formation or the algal bloom, our study demonstrated that low-level antibiotics exert ecological impacts via interfered aggregation. We believe this study will shed light on the mechanisms underlying antibiotic-induced biofilm formation and help with the evaluation of the environmental and ecological risks of antibiotics and other emerging pollutants.
Collapse
Affiliation(s)
- Lin-Rui Tan
- School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Raymond J Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Xue-Fei Sun
- School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China.
| |
Collapse
|
36
|
Hu G, Zhou J, Chen X, Qian Y, Gao C, Guo L, Xu P, Chen W, Chen J, Li Y, Liu L. Engineering synergetic CO2-fixing pathways for malate production. Metab Eng 2018; 47:496-504. [DOI: 10.1016/j.ymben.2018.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
|
37
|
Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol Adv 2018; 36:430-442. [DOI: 10.1016/j.biotechadv.2018.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 11/20/2022]
|
38
|
Künzle M, Lach M, Beck T. Crystalline protein scaffolds as a defined environment for the synthesis of bioinorganic materials. Dalton Trans 2018; 47:10382-10387. [DOI: 10.1039/c8dt01192c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We discuss synthetic strategies and applications of highly ordered bioinorganic materials based on crystalline protein scaffolds.
Collapse
Affiliation(s)
- Matthias Künzle
- RWTH Aachen University
- Institute of Inorganic Chemistry
- JARA-SOFT (Researching Soft Matter)
- and I3TM
- 52074 Aachen
| | - Marcel Lach
- RWTH Aachen University
- Institute of Inorganic Chemistry
- JARA-SOFT (Researching Soft Matter)
- and I3TM
- 52074 Aachen
| | - Tobias Beck
- RWTH Aachen University
- Institute of Inorganic Chemistry
- JARA-SOFT (Researching Soft Matter)
- and I3TM
- 52074 Aachen
| |
Collapse
|