1
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
2
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
3
|
Teranishi K, Goto M, Sunohara T, Koyanagi M, Takeda J, Fukumitsu R, Fukui N, Takano Y, Nakajima K, Naramoto Y, Yamamoto Y, Nishii R, Kawade S, Takamatsu T, Tokuda M, Tomita H, Yoshimoto M, Imamura H, Sakai N, Ohta T. Bacterial Meningitis Following Aneurysmal Subarachnoid Hemorrhage and Its Association with Cerebral Vasospasm. Neurol Med Chir (Tokyo) 2024; 64:339-346. [PMID: 39069482 PMCID: PMC11461185 DOI: 10.2176/jns-nmc.2024-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a critical condition with high in-hospital mortality rates. Delayed cerebral ischemia (DCI), a secondary complication associated with aSAH, can also contribute to morbidity and mortality. Although draining the hematoma from the subarachnoid space has been considered effective in preventing DCI, the placement of a drainage system could increase the risk of bacterial meningitis and ventriculitis. This study aimed to examine the association between meningitis following aSAH and the occurrence of DCI, focusing on the role of cerebral vasospasm. Patients who underwent endovascular coiling or surgical clipping for aSAH from April 2001 to March 2022 were included in this study, while those who did not undergo postoperative drainage were excluded. The patient's clinical characteristics, treatment modalities, and outcomes were then analyzed, after which logistic regression was used to assess the odds ratios (OR) for DCI. A total of 810 patients with aSAH were included in this study. Meningitis following aSAH was identified as an independent factor associated with DCI (odds ratio 5.0 [95% confidence intervals (CI) 2.3-11]). Other significant factors were female sex (odds ratio 1.5 [95% CI 0.89-2.5]) and surgical clipping (odds ratio 2.1 [95% CI 1.3-3.4]). This study demonstrated a significant association between meningitis following aSAH and the development of DCI, suggesting that the inflammatory environment associated with meningitis may contribute to cerebral vasospasm. Early recognition and treatment of meningitis in patients with aSAH could reduce the risk of DCI and improve patient outcomes.
Collapse
Affiliation(s)
| | - Masanori Goto
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Tadashi Sunohara
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Masaomi Koyanagi
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Junichi Takeda
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Ryu Fukumitsu
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Nobuyuki Fukui
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Yuki Takano
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Kota Nakajima
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Yuji Naramoto
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Yasuhiro Yamamoto
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Rikuo Nishii
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Satohiro Kawade
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | | | - Masanori Tokuda
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Hikari Tomita
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Mai Yoshimoto
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Hirotoshi Imamura
- Department of Neurosurgery, National Cerebral and Cardiovascular Center
| | - Nobuyuki Sakai
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Tsuyoshi Ohta
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| |
Collapse
|
4
|
Huang X, Huang X, Pan M, Lin J, Xie L. Effect of early endothelial function improvement on subclinical target organ damage in hypertensives. Sci Rep 2024; 14:16078. [PMID: 38992162 PMCID: PMC11239846 DOI: 10.1038/s41598-024-67143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Endothelial dysfunction is acknowledged as a marker for subclinical target organ damage (STOD) in hypertension, though its therapeutic potential has not yet been clarified. This study assessed whether early endothelial function improvement (EEFI) reduced STOD in patients with essential hypertension (EH). We conducted a retrospective cohort analysis of 456 EH patients initially free from STOD. Endothelial function was assessed using brachial artery flow-mediated dilation (FMD), with values ≤ 7.1% indicating dysfunction. Patients were initially categorized by endothelial status (dysfunction: n = 180, normal: n = 276), and further divided into improved or unimproved groups based on changes within three months post-enrollment. During a median follow-up of 25 months, 177 patients developed STOD. The incidence of STOD was significantly higher in patients with initial dysfunction compared to those with normal function. Kaplan-Meier analysis indicated that the improved group had a lower cumulative incidence of STOD compared to the unimproved group (p < 0.05). Multivariable Cox regression confirmed EEFI as an independent protective factor against STOD in EH patients (p < 0.05), regardless of their baseline endothelial status, especially in those under 65 years old, non-smokers, and with low-density lipoprotein cholesterol levels ≤ 3.4 mmol/L. In conclusion, EEFI significantly reduces STOD incidence in EH patients, particularly in specific subgroups, emphasizing the need for early intervention in endothelial function to prevent STOD.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Emergency, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xianwei Huang
- Department of Emergency, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Mandong Pan
- Department of Emergency, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jiyan Lin
- Department of Emergency, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Liangdi Xie
- Department of Geriatrics, Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
5
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
6
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Ye H, Wu J, Liang Z, Zhang Y, Huang Z. Protein S-Nitrosation: Biochemistry, Identification, Molecular Mechanisms, and Therapeutic Applications. J Med Chem 2022; 65:5902-5925. [PMID: 35412827 DOI: 10.1021/acs.jmedchem.1c02194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein S-nitrosation (SNO), a posttranslational modification (PTM) of cysteine (Cys) residues elicited by nitric oxide (NO), regulates a wide range of protein functions. As a crucial form of redox-based signaling by NO, SNO contributes significantly to the modulation of physiological functions, and SNO imbalance is closely linked to pathophysiological processes. Site-specific identification of the SNO protein is critical for understanding the underlying molecular mechanisms of protein function regulation. Although careful verification is needed, SNO modification data containing numerous functional proteins are a potential research direction for druggable target identification and drug discovery. Undoubtedly, SNO-related research is meaningful not only for the development of NO donor drugs but also for classic target-based drug design. Herein, we provide a comprehensive summary of SNO, including its origin and transport, identification, function, and potential contribution to drug discovery. Importantly, we propose new views to develop novel therapies based on potential protein SNO-sourced targets.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
8
|
Avagimyan A, Sukiasyan L, Kakturskiy L, Mkrtchyan L, Chavushyan V, Chelidze K, Ionov A, Pavluchenko I. Diabefit as a Modifier of Fructose-induced Impairment of Cardio-vascular System. Curr Probl Cardiol 2021; 47:100943. [PMID: 34313227 DOI: 10.1016/j.cpcardiol.2021.100943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/26/2022]
Abstract
Today, cardiovascular diseases, due to their widespread prevalence, are among the most relevant biomedical problems in the modern world. The development of cardiovascular comorbidity among patients with diabetes mellitus is of high clinical urgency. Therefore, the study of cardiovascular risk modification among patients with diabetes mellitus is of paramount importance. In the context of the above, the data on the cardiotoxicity of fructose look very alarming since these patients usually use fructose as an affordable alternative to glucose. At the same time, it is an independent inducer of destabilization of cardiovascular homeostasis. Sixty rats were used in the experiment to study this problem. Modeling of fructose-induced overload was performed using a diabetic fructose supplement in an aqueous solution. The collection of herbs "Diabefit" was used as an infusion in addition to feeding highly enriched with fructose. The used markers which reflect the state of the heart and the blood vessels were: MDA, SOD, NO, and ET-1. MDA, ET-1, and NO concentrations demonstrated a significant increase in the fructose overload group and a significant decrease in the Diabefit group. At the same time, changes in SOD level as an indicator of the antioxidant reserve, on the contrary, implied a decrease in the group with a high fructose content and increased in the Diabefit group. All detected changes were associated with fructose-induced inhibition of SOD activity and its restoration using the Diabefit phyto-collection.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Yerevan State Medical University after M. Heratsi, Yerevan, Republic of Armenia.
| | - Lilit Sukiasyan
- Yerevan State Medical University after M. Heratsi, Yerevan, Republic of Armenia; L.A. Orbeli Institute of Physiology NAS RA, Yerevan, Republic of Armenia
| | - Lev Kakturskiy
- Research Institute of Human Morphology, Moscow, Russian Federation
| | - Lusine Mkrtchyan
- Cardiology Department, Yerevan Sate Medical University after M. Heratsi, Yerevan, Republic of Armenia
| | - Vergine Chavushyan
- L.A. Orbeli Institute of Physiology NAS RA, Yerevan, Republic of Armenia
| | - Kakhaber Chelidze
- Internal Medicine Department, Tbilisi State Medical University, Tbilisi, Georgia
| | - Alexey Ionov
- Internal Diseases Propaedeutic Department, Kuban State Medical University, Krasnodar, Russian Federation
| | - Ivan Pavluchenko
- Molecular Biology Department, Kuban State Medical University, Krasnodar, Russian Federation
| |
Collapse
|
9
|
Shestakova KM, Moskaleva NE, Mesonzhnik NV, Kukharenko AV, Serkov IV, Lyubimov II, Fomina-Ageeva EV, Bezuglov VV, Akimov MG, Appolonova SA. In Vivo Targeted Metabolomic Profiling of Prostanit, a Novel Anti-PAD NO-Donating Alprostadil-Based Drug. Molecules 2020; 25:E5896. [PMID: 33322104 PMCID: PMC7764275 DOI: 10.3390/molecules25245896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Prostanit is a novel drug developed for the treatment of peripheral arterial diseases. It consists of a prostaglandin E1 (PGE1) moiety with two nitric oxide (NO) donor fragments, which provide a combined vasodilation effect on smooth muscles and vascular spastic reaction. Prostanit pharmacokinetics, however, remains poorly investigated. Thus, the object of this study was to investigate the pharmacokinetics of Prostanit-related and -affected metabolites in rabbit plasma using the liquid chromatography-mass spectrometry (LC-MS) approach. Besides, NO generation from Prostanit in isolated rat aorta and human smooth muscle cells was studied using the Griess method. In plasma, Prostanit was rapidly metabolized to 1,3-dinitroglycerol (1,3-DNG), PGE1, and 13,14-dihydro-15-keto-PGE1. Simultaneously, the constant growth of amino acid (proline, 4-hydroxyproline, alanine, phenylalanine, etc.), steroid (androsterone and corticosterone), and purine (adenosine, adenosine-5 monophosphate, and guanosine) levels was observed. Glycine, aspartate, cortisol, and testosterone levels were decreased. Ex vivo Prostanit induced both NO synthase-dependent and -independent NO generation. The observed pharmacokinetic properties suggested some novel beneficial activities (i.e., effect prolongation and anti-inflammation). These properties may provide a basis for future research of the effectiveness and safety of Prostanit, as well as for its characterization from a clinical perspective.
Collapse
Affiliation(s)
- Ksenia M. Shestakova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| | - Natalia E. Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| | - Natalia V. Mesonzhnik
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| | - Alexey V. Kukharenko
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds RAS, Severniy pr., 1, 142432 Chernogolovka, Russia;
| | - Igor I. Lyubimov
- Territory of Skolkovo Innovation Center, LLC “Gurus BioPharm”, Bolshoy Boulevard, 42 Building 1, 143026 Moscow, Russia;
| | - Elena V. Fomina-Ageeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (V.V.B.)
| | - Vladimir V. Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (V.V.B.)
| | - Mikhail G. Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (V.V.B.)
| | - Svetlana A. Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| |
Collapse
|
10
|
Hsiao HY, Chung CW, Santos JH, Villaflores OB, Lu TT. Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Trans 2019; 48:9431-9453. [DOI: 10.1039/c9dt00777f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ubiquitous physiology of nitric oxide enables the bioinorganic engineering of [Fe(NO)2]-containing and NO-delivery scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering
- Chang Gung Memorial Hospital
- Taoyuan
- Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | | | - Oliver B. Villaflores
- Department of Biochemistry
- Faculty of Pharmacy
- University of Santo Tomas
- Manila
- Philippines
| | - Tsai-Te Lu
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| |
Collapse
|
11
|
Chiesa JJ, Baidanoff FM, Golombek DA. Don't just say no: Differential pathways and pharmacological responses to diverse nitric oxide donors. Biochem Pharmacol 2018; 156:1-9. [PMID: 30080991 DOI: 10.1016/j.bcp.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a gaseous free radical molecule with a short half-life (∼1 s), which can gain or lose an electron into three interchangeable redox-dependent forms, the radical (NO), the nitrosonium cation (NO+), and nitroxyl anion (HNO). NO acts as an intra and extracellular signaling molecule regulating a wide range of functions in the cardiovascular, immune, and nervous system. NO donors are collectively known by their ability to release NOin vitro and in vivo, being proposed as therapeutic pharmacological tools for the treatment of several pathologies, such as cardiovascular disease. The highly reactive NO molecule is easily oxidized under physiological conditions to N-oxides, nitrate/nitrite and nitrogen dioxide. Different cellular responses are triggered depending on: 1) NO concentration [e.g., nanomolar for heme coordination in the allosteric site of guanylate cyclase (sGC) enzyme]; 2) the type of chemical bound to the nitrosated group (i.e., bound to nitrogen, N-nitro, or bound to sulphur atom, S-nitro) determining post-translational cysteine nitrosation; 3) the time-dependent availability of molecular targets. Classic NO donors are: organic nitrates (e.g., nitroglycerin, or glyceryl trinitrate, GTN; isosorbide mononitrate, ISMN), diazeniumdiolates having a diolate group [or NONOates, e.g., 2-(N,N-diethylamino)-diazenolate-2-oxide], S-nitrosothiols (e.g., S-nitroso glutathione, GSNO; S-nitroso-N-acetylpenicillamine, SNAP) or the organic salt sodium nitroprusside (SNP). In addition, nitroxyl (HNO) donors such as Piloty's acid and Angeli's salt can also be considered. The specific NO form released, as well as its differential reactivity to thiols, could act on different molecular targets and should be discussed in the context of: a) the type and amount of NO species determining the sensitivity of molecular targets (e.g., heme coordination, or S-nitrosation); b) the cellular redox state that could gate different effects. Experimental designs should take special care when choosing which NO donors to use, since different outcomes are to be expected. This article will comment recent findings regarding physiological responses involving NO species and their pharmacological modulation with donor drugs, especially in the context of the photic transduction pathways at the hypothalamic circadian clock.
Collapse
Affiliation(s)
- Juan J Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/CONICET, Argentina
| | - Fernando M Baidanoff
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/CONICET, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/CONICET, Argentina.
| |
Collapse
|
12
|
Oikonomou E, Tousoulis D. Editorial overview: Cardiovascular and renal: Novel therapies in peripheral artery disease. Curr Opin Pharmacol 2018; 39:iv-vi. [PMID: 29941177 DOI: 10.1016/j.coph.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Evangelos Oikonomou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Dimitris Tousoulis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|