1
|
Schuler SMM, Jürjens G, Marker A, Hemmann U, Rey A, Yvon S, Lagrevol M, Hamiti M, Nguyen F, Hirsch R, Pöverlein C, Vilcinskas A, Hammann P, Wilson DN, Mourez M, Coyne S, Bauer A. Full Profiling of GE81112A, an Underexplored Tetrapeptide Antibiotic with Activity against Gram-Negative Pathogens. Microbiol Spectr 2023; 11:e0224722. [PMID: 37140391 PMCID: PMC10269895 DOI: 10.1128/spectrum.02247-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 05/05/2023] Open
Abstract
After the first total synthesis combined with structure revision, we performed thorough in vitro and in vivo profiling of the underexplored tetrapeptide GE81112A. From the determination of the biological activity spectrum and physicochemical and early absorption-distribution-metabolism-excretion-toxicity (eADMET) properties, as well as in vivo data regarding tolerability and pharmacokinetics (PK) in mice and efficacy in an Escherichia coli-induced septicemia model, we were able to identify the critical and limiting parameters of the original hit compound. Thus, the generated data will serve as the basis for further compound optimization programs and developability assessments to identify candidates for preclinical/clinical development derived from GE81112A as the lead structure. IMPORTANCE The spread of antimicrobial resistance (AMR) is becoming a more and more important global threat to human health. With regard to current medical needs, penetration into the site of infection represents the major challenge in the treatment of infections caused by Gram-positive bacteria. Considering infections associated with Gram-negative bacteria, resistance is a major issue. Obviously, novel scaffolds for the design of new antibacterials in this arena are urgently needed to overcome this crisis. Such a novel potential lead structure is represented by the GE81112 compounds, which inhibit protein synthesis by interacting with the small 30S ribosomal subunit using a binding site distinct from that of other known ribosome-targeting antibiotics. Therefore, the tetrapeptide antibiotic GE81112A was chosen for further exploration as a potential lead for the development of antibiotics with a new mode of action against Gram-negative bacteria.
Collapse
Affiliation(s)
- Sören M. M. Schuler
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Gerrit Jürjens
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | | | | | - Astrid Rey
- Sanofi R&D, Therapeutic Area Infectious Diseases, Marcy L’Etoile, France
| | - Stéphane Yvon
- Sanofi R&D, Therapeutic Area Infectious Diseases, Marcy L’Etoile, France
| | - Marjorie Lagrevol
- Sanofi R&D, Therapeutic Area Infectious Diseases, Marcy L’Etoile, France
| | - Mohamed Hamiti
- Sanofi R&D, Therapeutic Area Infectious Diseases, Marcy L’Etoile, France
| | - Fabian Nguyen
- Gene Center, Department for Biochemistry and Center for Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rolf Hirsch
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | | | - Andreas Vilcinskas
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| | | | - Daniel N. Wilson
- Gene Center, Department for Biochemistry and Center for Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Mourez
- Sanofi R&D, Therapeutic Area Infectious Diseases, Marcy L’Etoile, France
| | - Sebastien Coyne
- Sanofi R&D, Therapeutic Area Infectious Diseases, Marcy L’Etoile, France
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| |
Collapse
|
2
|
A bifunctional electrochemical sensor for simultaneous determination of electroactive and non-electroactive analytes: A universal yet very effective platform serving therapeutic drug monitoring. Biosens Bioelectron 2022; 208:114233. [DOI: 10.1016/j.bios.2022.114233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
|
3
|
Kuo SC, Tan MC, Huang WC, Wu HC, Chen FJ, Liao YC, Wang HY, Shiau YR, Lauderdale TL. Susceptibility of Elizabethkingia spp. to commonly tested and novel antibiotics and concordance between broth microdilution and automated testing methods. J Antimicrob Chemother 2021; 76:653-658. [PMID: 33258923 DOI: 10.1093/jac/dkaa499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/27/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES We aimed to determine susceptibilities of Elizabethkingia spp. to 25 commonly tested and 8 novel antibiotics, and to compare the performance of different susceptibility testing methods. METHODS Clinical isolates of Elizabethkingia spp., Chryseobacterium spp. and Flavobacterium spp. collected during 2002-18 (n = 210) in a nationwide surveillance programme in Taiwan were speciated by 16S rRNA sequencing. MICs were determined by broth microdilution. The broth microdilution results of 18 common antibiotics were compared with those obtained by the VITEK 2 automated system. RESULTS Among the Elizabethkingia spp. identified (n = 108), Elizabethkingia anophelis was the most prevalent (n = 90), followed by Elizabethkingia meningoseptica (n = 7) and Elizabethkingia miricola cluster [E. miricola (n = 6), Elizabethkingia bruuniana (n = 3) and Elizabethkingia ursingii (n = 2)]. Most isolates were recovered from respiratory or blood specimens from hospitalized, elderly patients. PFGE showed two major and several minor E. anophelis clones. All isolates were resistant to nearly all the tested β-lactams. Doxycycline, minocycline and trimethoprim/sulfamethoxazole inhibited >90% of Elizabethkingia spp. Rifampin inhibited E. meningoseptica (100%) and E. anophelis (81.1%). Fluoroquinolones and tigecycline were active against E. meningoseptica and E. miricola cluster isolates. Novel antibiotics, including imipenem/relebactam, meropenem/vaborbactam, ceftazidime/avibactam, cefepime/zidebactam, delafloxacin, eravacycline and omadacycline were ineffective but lascufloxacin inhibited half of Elizabethkingia spp. The very major discrepancy rates of VITEK 2 were >1.5% for ciprofloxacin, moxifloxacin and vancomycin. Major discrepancy rates were >3% for amikacin, tigecycline, piperacillin/tazobactam and trimethoprim/sulfamethoxazole. CONCLUSIONS MDR, absence of standard interpretation criteria and poor intermethod concordance necessitate working guidelines to facilitate future research of emerging Elizabethkingia spp.
Collapse
Affiliation(s)
- Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Chen Tan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Wei-Cheng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hui-Ying Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yih-Ru Shiau
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
4
|
Gomes NGM, Madureira-Carvalho Á, Dias-da-Silva D, Valentão P, Andrade PB. Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomed Pharmacother 2021; 140:111756. [PMID: 34051618 DOI: 10.1016/j.biopha.2021.111756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the increasing number of novel marine natural products being reported from fungi in the last three decades, to date only the broad-spectrum cephalosporin C can be tracked back as marine fungal-derived drug. Cephalosporins were isolated in the early 1940s from a strain of Acremonium chrysogenum obtained in a sample collected in sewage water in the Sardinian coast, preliminary findings allowing the discovery of cephalosporin C. Since then, bioprospection of marine fungi has been enabling the identification of several metabolites with antibacterial effects, many of which proving to be active against multi-drug resistant strains, available data suggesting also that some might fuel the pharmaceutical firepower towards some of the bacterial pathogens classified as a priority by the World Health Organization. Considering the success of their terrestrial counterparts on the discovery and development of several antibiotics that are nowadays used in the clinical setting, marine fungi obviously come into mind as producers of new prototypes to counteract antibiotic-resistant bacteria that are no longer responding to available treatments. We mainly aim to provide a snapshot on those metabolites that are likely to proceed to advanced preclinical development, not only based on their antibacterial potency, but also considering their targets and modes of action, and activity against priority pathogens.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Áurea Madureira-Carvalho
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.
| | - Diana Dias-da-Silva
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Zeb M, Lee CH. Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America. Molecules 2021; 26:E251. [PMID: 33419035 PMCID: PMC7825331 DOI: 10.3390/molecules26020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023] Open
Abstract
Mushrooms, the fruiting bodies of fungi, are known for a long time in different cultures around the world to possess medicinal properties and are used to treat various human diseases. Mushrooms that are parts of traditional medicine in Asia had been extensively studied and this has led to identification of their bioactive ingredients. North America, while home to one of the world's largest and diverse ecological systems, has not subjected its natural resources especially its diverse array of mushroom species for bioprospecting purposes: Are mushrooms native to North America a good source for drug discovery? In this review, we compile all the published studies up to September 2020 on the bioprospecting of North American mushrooms. Out of the 79 species that have been investigated for medicinal properties, 48 species (60%) have bioactivities that have not been previously reported. For a mere 16 selected species, 17 new bioactive compounds (10 small molecules, six polysaccharides and one protein) have already been isolated. The results from our literature search suggest that mushrooms native to North America are indeed a good source for drug discovery.
Collapse
Affiliation(s)
| | - Chow H. Lee
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| |
Collapse
|
6
|
Stefanello ST, Mizdal CR, Gonçalves DF, Hartmann DD, Dobrachinski F, de Carvalho NR, Salman SM, Sauer AC, Dornelles L, de Campos MMA, Soares FAA. The insertion of functional groups in organic selenium compounds promote changes in mitochondrial parameters and raise the antibacterial activity. Bioorg Chem 2020; 98:103727. [DOI: 10.1016/j.bioorg.2020.103727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023]
|
7
|
Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo) 2020; 73:329-364. [PMID: 32152527 PMCID: PMC7223789 DOI: 10.1038/s41429-020-0291-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022]
Abstract
The development of new and effective antibacterial drugs to treat multi-drug resistant (MDR) bacteria, especially Gram-negative (G−ve) pathogens, is acknowledged as one of the world’s most pressing health issues; however, the discovery and development of new, nontoxic antibacterials is not a straightforward scientific task, which is compounded by a challenging economic model. This review lists the antibacterials, β-lactamase/β-lactam inhibitor (BLI) combinations, and monoclonal antibodies (mAbs) first launched around the world since 2009 and details the seven new antibiotics and two new β-lactam/BLI combinations launched since 2016. The development status, mode of action, spectra of activity, lead source, and administration route for the 44 small molecule antibacterials, eight β-lactamase/BLI combinations, and one antibody drug conjugate (ADC) being evaluated in worldwide clinical trials at the end of October 2019 are described. Compounds discontinued from clinical development since 2016 and new antibacterial pharmacophores are also reviewed. There has been an increase in the number of early stage clinical candidates, which has been fueled by antibiotic-focused funding agencies; however, there is still a significant gap in the pipeline for the development of new antibacterials with activity against β-metallolactamases, orally administered with broad spectrum G−ve activity, and new treatments for MDR Acinetobacter and gonorrhea.
Collapse
|
8
|
Alfei S, Signorello MG, Schito A, Catena S, Turrini F. Reshaped as polyester-based nanoparticles, gallic acid inhibits platelet aggregation, reactive oxygen species production and multi-resistant Gram-positive bacteria with an efficiency never obtained. NANOSCALE ADVANCES 2019; 1:4148-4157. [PMID: 36132112 PMCID: PMC9419547 DOI: 10.1039/c9na00441f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/12/2019] [Indexed: 05/14/2023]
Abstract
Natural polyphenols such as Gallic Acid (GA) form an important class of bioactive chemical entities that, having innumerable biological properties, could represent a safer alternative to common drugs against several disorders, including platelet aggregation, radical oxygen species (ROS) hyperproduction, oxidative stress (OS) and bacterial infections. Unfortunately, their clinical uses are limited by pharmacokinetics drawbacks and high sensitivity to environmental factors. In order to overcome these problems and to exploit the GA curative potentials, it has been linked to a biodegradable nanospherical dendrimer matrix, capable of protecting it, thus obtaining a GA-enriched nanosized dendrimer (GAD) endowed with a strong antioxidant capacity. GAD activity as an inhibitor of platelet aggregation and ROS accumulation and its antibacterial efficiency are evaluated here and compared to those of free GA, obtaining outcomes never achieved. Regarding platelet aggregation induced by thrombin and collagen, the GAD proved to be stronger by 7.1 and 7.3 times, respectively. Furthermore, the GAD showed a ROS inhibitory activity higher than that of GA by 8.1 (thrombin) and 6.9 (collagen) times. Concerning the antibacterial activities, evaluated on eleven multi-resistant Gram-positive strains of clinical relevance, the GAD is far more potent than GA, by exerting a growth inhibitory activity at MIC (μM) concentrations lower by factors in the range 12-50.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa Viale Cembrano 4 I-16148 Genova Italy
| | | | - Anna Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa Viale Benedetto XV, 6 I-16132 Genova Italy
| | - Silvia Catena
- Department of Pharmacy (DiFAR), University of Genoa Viale Cembrano 4 I-16148 Genova Italy
| | - Federica Turrini
- Department of Pharmacy (DiFAR), University of Genoa Viale Cembrano 4 I-16148 Genova Italy
| |
Collapse
|
9
|
Sánchez S, Demain AL. Editorial overview: Anti-infectives 2019 volume. Curr Opin Pharmacol 2019; 48:iii-vi. [PMID: 31540784 DOI: 10.1016/j.coph.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sergio Sánchez
- Charles A. Dana Research Institute for Scientists Emeriti of Drew University, Madison, NJ, United States.
| | | |
Collapse
|