1
|
Khan A, Sayaf AM, Mohammad A, Alshabrmi FM, Benameur T, Wei DQ, Yeoh KK, Agouni A. Discovery of anti-Ebola virus multi-target inhibitors from traditional Chinese medicine database using molecular screening, biophysical investigation, and binding free energy calculations. J Infect Public Health 2025; 18:102636. [PMID: 39798213 DOI: 10.1016/j.jiph.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025] Open
Abstract
INTRODUCTION Ebola virus (EBOV) is a highly lethal RNA virus that causes severe hemorrhagic fever in humans and non-human primates. The lack of effective treatment or vaccine for this pathogen poses a serious threat to a global pandemic. Therefore, it is imperative to explore new drugs and therapies to combat this life-threatening infection. MATERIALS AND METHODS In this study, we employed in silico methods to assess the inhibitory activity of natural products from traditional Chinese medicine (TCM) against four EBOV proteins that are crucial for viral replication and assembly: VP40, VP35, VP30, and VP24. We performed molecular docking of TCM compounds with the EBOV proteins and screened them based on their docking scores, binding free energies, and pharmacokinetic properties. RESULTS Our results pinpointed eight TCM compounds (TCM1797, TCM2872, TCM250, TCM2837, TCM2644, TCM4697, TCM2322, and TCM277) that exhibited superior efficacy in inhibiting all the EBOV proteins compared to the controls. These compounds interacted with key residues of the EBOV proteins through various types of bonds, such as hydrogen bonds, salt bridges, and π-π interactions, forming stable complexes that could disrupt the function of the EBOV proteins. These compounds were found to possess known antiviral activity, acceptable pharmacokinetic properties, and human usage history, which make them promising candidates for anti-EBOV drug development. Moreover, the molecular simulation analysis confirmed the binding stability, structural compactness, and residue flexibility properties of these compounds. Furthermore, the binding free energy results revealed that VP30-TCM2644, VP30-TCM4697, VP35-TCM2837, VP24-TCM250, and VP24-TCM277 complexes exhibit significant binding free energy values compared to the control ligands. Principal Component Analysis (PCA) and Free Energy Landscape (FEL) results revealed the trajectories' motion and conformational energy states. CONCLUSIONS Our findings provide valuable insights into the molecular mechanisms driving the efficacy of TCM drugs against EBOV and suggest novel approaches for the development of anti-EBOV therapies.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Division of Bioinformatics, Department of Biomedical Sciences, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | | | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahad M Alshabrmi
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kar Kheng Yeoh
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Soni M, Tulsian K, Barot P, Vyas VK. Recent Advances in Therapeutic Approaches Against Ebola Virus Infection. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:276-299. [PMID: 38279760 DOI: 10.2174/0127724344267452231206061944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Ebola virus (EBOV) is a genus of negative-strand RNA viruses belonging to the family Filoviradae that was first described in 1976 in the present-day Democratic Republic of the Congo. It has intermittently affected substantial human populations in West Africa and presents itself as a global health menace due to the high mortality rate of patients, high transmission rate, difficult patient management, and the emergence of complicated autoimmune disease-like conditions post-infection. OBJECTIVE EBOV or other EBOV-like species as a biochemical weapon pose a significant risk; hence, the need to develop both prophylactic and therapeutic medications to combat the virus is unquestionable. METHODS In this review work, we have compiled the literature pertaining to transmission, pathogenesis, immune response, and diagnosis of EBOV infection. We included detailed structural details of EBOV along with all the available therapeutics against EBOV disease. We have also highlighted current developments and recent advances in therapeutic approaches against Ebola virus disease (EVD). DISCUSSION The development of preventive vaccines against the virus is proving to be a successful effort as of now; however, problems concerning logistics, product stability, multi- dosing, and patient tracking are prominent in West Africa. Monoclonal antibodies that target EBOV proteins have also been developed and approved in the clinic; however, no small drug molecules that target these viral proteins have cleared clinical trials. An understanding of clinically approved vaccines and their shortcomings also serves an important purpose for researchers in vaccine design in choosing the right vector, antigen, and particular physicochemical properties that are critical for the vaccine's success against the virus across the world. CONCLUSION Our work brings together a comprehensive review of all available prophylactic and therapeutic medications developed and under development against the EBOV, which will serve as a guide for researchers in pursuing the most promising drug discovery strategies against the EBOV and also explore novel mechanisms of fighting against EBOV infection.
Collapse
Affiliation(s)
- Molisha Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Kartik Tulsian
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Parv Barot
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Sharma G, Chatterjee S, Chakraborty C, Kim JC. Advances in Nanozymes as a Paradigm for Viral Diagnostics and Therapy. Pharmacol Rev 2023; 75:739-757. [PMID: 36707250 DOI: 10.1124/pharmrev.122.000719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Over the past few decades, humankind has constantly encountered new viral species that create havoc in the socioeconomic balance worldwide. Among the method to combat these novel viral infections, fast and point-of-care diagnosis is of prime importance to contain the spreading of viral infections. However, most sensitive diagnostic systems for viral infections are time-consuming and require well-trained professionals, making it difficult for the patients. In recent years nanozymes emerged as promising therapeutic and fast diagnostic tools due to their multienzyme-like catalytic performance. Nanozymes can be designed using inorganic or organic components with tailorable physicochemical surface properties, enabling the attachment of various molecules and species on the surface of the nanozyme for specific recognition. In addition to the composition, the multienzyme-like catalytic performance can be modulated by the shape and size of the nanoparticles. Due to their multicatalytic abilities, nanozymes can be used for fast diagnosis and therapy for viral infections. Here we attempt to focus on the insights and recent explorations on the advances in designing various types of nanozymes as a theranostic tool for viral infections. Thus, this review intends to generate interest in the clinical translation of nanozymes as a theranostic tool for viral infections by providing knowledge about the multidisciplinary potential of nanozyme. SIGNIFICANCE STATEMENT: The multienzyme-like properties of nanozymes suggest their role in diagnosing and treating various diseases. Although the potential roles of nanozymes for various viral infections have been studied in the last few decades, no review provides recent explorations on designing various types of nanozymes for the detection and treatment of viral infections. This review provides insights into designing nanozymes to diagnose and treat viral infections, assisting future researchers in developing clinically translatable nanozymes to combat novel viral infections.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea (G.S., J.-C.K.) and Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India (S.C., C.C.)
| | - Srijan Chatterjee
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea (G.S., J.-C.K.) and Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India (S.C., C.C.)
| | - Chiranjib Chakraborty
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea (G.S., J.-C.K.) and Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India (S.C., C.C.)
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea (G.S., J.-C.K.) and Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India (S.C., C.C.)
| |
Collapse
|
4
|
Chakraborty C, Bhattacharya M, Saha A, Alshammari A, Alharbi M, Saikumar G, Pal S, Dhama K, Lee SS. Revealing the structural and molecular interaction landscape of the favipiravir-RTP and SARS-CoV-2 RdRp complex through integrative bioinformatics: Insights for developing potent drugs targeting SARS-CoV-2 and other viruses. J Infect Public Health 2023; 16:1048-1056. [PMID: 37196368 DOI: 10.1016/j.jiph.2023.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The global research community has made considerable progress in therapeutic and vaccine research during the COVID-19 pandemic. Several therapeutics have been repurposed for the treatment of COVID-19. One such compound is, favipiravir, which was approved for the treatment of influenza viruses, including drug-resistant influenza. Despite the limited information on its molecular activity, clinical trials have attempted to determine the effectiveness of favipiravir in patients with mild to moderate COVID-19. Here, we report the structural and molecular interaction landscape of the macromolecular complex of favipiravir-RTP and SARS-CoV-2 RdRp with the RNA chain. METHODS Integrative bioinformatics was used to reveal the structural and molecular interaction landscapes of two macromolecular complexes retrieved from RCSB PDB. RESULTS We analyzed the interactive residues, H-bonds, and interaction interfaces to evaluate the structural and molecular interaction landscapes of the two macromolecular complexes. We found seven and six H-bonds in the first and second interaction landscapes, respectively. The maximum bond length is 3.79 Å. In the hydrophobic interactions, five residues (Asp618, Asp760, Thr687, Asp623, and Val557) were associated with the first complex and two residues (Lys73 and Tyr217) were associated with the second complex. The mobilities, collective motion, and B-factor of the two macromolecular complexes were analyzed. Finally, we developed different models, including trees, clusters, and heat maps of antiviral molecules, to evaluate the therapeutic status of favipiravir as an antiviral drug. CONCLUSIONS The results revealed the structural and molecular interaction landscape of the binding mode of favipiravir with the nsp7-nsp8-nsp12-RNA SARS-CoV-2 RdRp complex. Our findings can help future researchers in understanding the mechanism underlying viral action and guide the design of nucleotide analogs that mimic favipiravir and exhibit greater potency as antiviral drugs against SARS-CoV-2 and other infectious viruses. Thus, our work can help in preparing for future epidemics and pandemics.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Soumen Pal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
5
|
Taki E, Ghanavati R, Navidifar T, Dashtbin S, Heidary M, Moghadamnia M. Ebanga™: The most recent FDA-approved drug for treating Ebola. Front Pharmacol 2023; 14:1083429. [PMID: 36969842 PMCID: PMC10032372 DOI: 10.3389/fphar.2023.1083429] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/31/2023] [Indexed: 03/29/2023] Open
Abstract
Ebolavirus (EBOV) is a virulent pathogen that causes Ebola virus disease (EVD), which is a life-threatening human condition with a fatality rate of up to 90%. Since the first outbreak in Africa in 1976, several outbreaks and epidemics of EBOV have occurred across the globe. While EVD is recognized as a serious threat to human health and outbreaks occur almost every year, the treatment options for the disease are limited. In designing therapeutic strategies against EBOV infection, viral structural proteins, such as glycoprotein (GP), could be an excellent target for neutralizing the virus. According to the latest research, GP-specific antibodies are the most efficient post-exposure treatments for EVD. Ansuvimab-zykl, i.e., mAb114 (Ebanga™), is a recent FDA-approved human immunoglobulin monoclonal antibody targeting EBOV GP. This review provides a brief overview of the pharmacological effects and safety profile of ansuvimab in clinical trials and provides insights into the precise mechanism of this new drug for treating EVD.
Collapse
Affiliation(s)
- Elahe Taki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Marjan Moghadamnia
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Inhibiting the transcription and replication of Ebola viruses by disrupting the nucleoprotein and VP30 protein interaction with small molecules. Acta Pharmacol Sin 2023:10.1038/s41401-023-01055-0. [PMID: 36759643 PMCID: PMC9909651 DOI: 10.1038/s41401-023-01055-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Ebola virus (EBOV) causes hemorrhagic fever in humans with high morbidity and fatality. Although over 45 years have passed since the first EBOV outbreak, small molecule drugs are not yet available. Ebola viral protein VP30 is a unique RNA synthesis cofactor, and the VP30/NP interaction plays a critical role in initiating the transcription and propagation of EBOV. Here, we designed a high-throughput screening technique based on a competitive binding assay to bind VP30 between an NP-derived peptide and a chemical compound. By screening a library of 8004 compounds, we obtained two lead compounds, Embelin and Kobe2602. The binding of these compounds to the VP30-NP interface was validated by dose-dependent competitive binding assay, surface plasmon resonance, and thermal shift assay. Moreover, the compounds were confirmed to inhibit the transcription and replication of the Ebola genome by a minigenome assay. Similar results were obtained for their two respective analogs (8-gingerol and Kobe0065). Interestingly, these two structurally different molecules exhibit synergistic binding to the VP30/NP interface. The antiviral efficacy (EC50) increased from 1 μM by Kobe0065 alone to 351 nM when Kobe0065 and Embelin were combined in a 4:1 ratio. The synergistic anti-EBOV effect provides a strong incentive for further developing these lead compounds in future studies.
Collapse
|
7
|
Yi D, Li Q, Wang H, Lv K, Ma L, Wang Y, Wang J, Zhang Y, Liu M, Li X, Qi J, Shi Y, Gao GF, Cen S. Repurposing of berbamine hydrochloride to inhibit Ebola virus by targeting viral glycoprotein. Acta Pharm Sin B 2022; 12:4378-4389. [PMID: 36561997 PMCID: PMC9764067 DOI: 10.1016/j.apsb.2022.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
Ebola virus (EBOV) infection leads to staggeringly high mortality rate. Effective and low-cost treatments are urgently needed to control frequent EBOV outbreaks in Africa. In this study, we report that a natural compound called berbamine hydrochloride strongly inhibits EBOV replication in vitro and in vivo. Our work further showed that berbamine hydrochloride acts by directly binding to the cleaved EBOV glycoprotein (GPcl), disrupting GPcl interaction with viral receptor Niemann-Pick C1, thus blocking the fusion of viral and cellular membranes. Our data support the probability of developing anti-EBOV small molecule drugs by targeting viral GPcl. More importantly, since berbamine hydrochloride has been used in clinic to treat leukopenia, it holds great promise of being quickly repurposed as an anti-EBOV drug.
Collapse
Affiliation(s)
- Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Han Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors.
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China,CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China,Corresponding authors.
| |
Collapse
|
8
|
Kumari M, Lu RM, Li MC, Huang JL, Hsu FF, Ko SH, Ke FY, Su SC, Liang KH, Yuan JPY, Chiang HL, Sun CP, Lee IJ, Li WS, Hsieh HP, Tao MH, Wu HC. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. J Biomed Sci 2022; 29:68. [PMID: 36096815 PMCID: PMC9465653 DOI: 10.1186/s12929-022-00852-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/01/2022] [Indexed: 12/12/2022] Open
Abstract
The novel coronavirus disease (COVID-19) pandemic remains a global public health crisis, presenting a broad range of challenges. To help address some of the main problems, the scientific community has designed vaccines, diagnostic tools and therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The rapid pace of technology development, especially with regard to vaccines, represents a stunning and historic scientific achievement. Nevertheless, many challenges remain to be overcome, such as improving vaccine and drug treatment efficacies for emergent mutant strains of SARS-CoV-2. Outbreaks of more infectious variants continue to diminish the utility of available vaccines and drugs. Thus, the effectiveness of vaccines and drugs against the most current variants is a primary consideration in the continual analyses of clinical data that supports updated regulatory decisions. The first two vaccines granted Emergency Use Authorizations (EUAs), BNT162b2 and mRNA-1273, still show more than 60% protection efficacy against the most widespread current SARS-CoV-2 variant, Omicron. This variant carries more than 30 mutations in the spike protein, which has largely abrogated the neutralizing effects of therapeutic antibodies. Fortunately, some neutralizing antibodies and antiviral COVID-19 drugs treatments have shown continued clinical benefits. In this review, we provide a framework for understanding the ongoing development efforts for different types of vaccines and therapeutics, including small molecule and antibody drugs. The ripple effects of newly emergent variants, including updates to vaccines and drug repurposing efforts, are summarized. In addition, we summarize the clinical trials supporting the development and distribution of vaccines, small molecule drugs, and therapeutic antibodies with broad-spectrum activity against SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Monika Kumari
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Mu-Chun Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Jhih-Liang Huang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Fu-Fei Hsu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Feng-Yi Ke
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Joyce Pei-Yi Yuan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiao-Ling Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Cheng-Pu Sun
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Jung Lee
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Pang Hsieh
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Mi-Hua Tao
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan.
| |
Collapse
|
9
|
Sun W, Luan F, Wang J, Ma L, Li X, Yang G, Hao C, Qin X, Dong S. Structural insights into the interactions between lloviu virus VP30 and nucleoprotein. Biochem Biophys Res Commun 2022; 616:82-88. [PMID: 35649303 DOI: 10.1016/j.bbrc.2022.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
Abstract
The family Filoviridae comprises many notorious viruses, such as Ebola virus (EBOV) and Marburg virus (MARV), that can infect humans and nonhuman primates. Lloviu virus (LLOV), a less well studied filovirus, is considered a potential pathogen for humans. The VP30 C-terminal domain (CTD) of these filoviruses exhibits nucleoprotein (NP) binding and plays an essential role in viral transcription, replication and assembly. In this study, we confirmed the interactions between LLOV VP30 CTD and its NP fragment, and also determined the crystal structure of the chimeric dimeric LLOV NP-VP30 CTD at 2.50 Å resolution. The structure is highly conserved across the family Filoviridae. While in the dimer structure, only one VP30 CTD binds the NP fragment, which indicates that the interaction between LLOV VP30 CTD and NP is not strong. Our work provides a preliminary model to investigate the interactions between LLOV VP30 and NP and suggests a potential target for anti-filovirus drug development.
Collapse
Affiliation(s)
- Weiyan Sun
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fuchen Luan
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jiajia Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lin Ma
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiuxiu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Gongxian Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Chenyang Hao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China; School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China.
| | - Shishang Dong
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
10
|
Alizadeh M, Amini-Khoei H, Tahmasebian S, Ghatrehsamani M, Ghatreh Samani K, Edalatpanah Y, Rostampur S, Salehi M, Ghasemi-Dehnoo M, Azadegan-Dehkordi F, Sanami S, Bagheri N. Designing a novel multi‑epitope vaccine against Ebola virus using reverse vaccinology approach. Sci Rep 2022; 12:7757. [PMID: 35545650 PMCID: PMC9094136 DOI: 10.1038/s41598-022-11851-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
Ebola virus (EBOV) is a dangerous zoonotic infectious disease. To date, more than 25 EBOV outbreaks have been documented, the majority of which have occurred in Central Africa. The rVSVG-ZEBOV-GP vaccine (ERVEBO), a live attenuated vaccine, has been approved by the US Food and Drug Administration (FDA) to combat EBOV. Because of the several drawbacks of live attenuated vaccines, multi-epitope vaccines probably appear to be safer than live attenuated vaccines. In this work, we employed immunoinformatics tools to design a multi-epitope vaccine against EBOV. We collected sequences of VP35, VP24, VP30, VP40, GP, and NP proteins from the NCBI database. T-cell and linear B-cell epitopes from target proteins were identified and tested for antigenicity, toxicity, allergenicity, and conservancy. The selected epitopes were then linked together in the vaccine's primary structure using appropriate linkers, and the 50S ribosomal L7/L12 (Locus RL7 MYCTU) sequence was added as an adjuvant to the vaccine construct's N-terminal. The physicochemical, antigenicity, and allergenicity parameters of the vaccine were all found to be satisfactory. The 3D model of the vaccine was predicted, refined, and validated. The vaccine construct had a stable and strong interaction with toll-like receptor 4 (TLR4) based on molecular docking and molecular dynamic simulation (MD) analysis. The results of codon optimization and in silico cloning revealed that the proposed vaccine was highly expressed in Escherichia coli (E. coli). The findings of this study are promising; however, experimental validations should be carried out to confirm these findings.
Collapse
Affiliation(s)
- Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatrehsamani
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Keihan Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yadolah Edalatpanah
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Susan Rostampur
- Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
11
|
Ahmadi R, Emami S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur J Med Chem 2022; 234:114255. [DOI: 10.1016/j.ejmech.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
|