1
|
Chakraborty P, Hasan G. ER-Ca 2+ stores and the regulation of store-operated Ca 2+ entry in neurons. J Physiol 2024; 602:1463-1474. [PMID: 36691983 DOI: 10.1113/jp283827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Key components of endoplasmic reticulum (ER) Ca2+ release and store-operated Ca2+ entry (SOCE) are likely expressed in all metazoan cells. Due to the complexity of canonical Ca2+ entry mechanisms in neurons, the functional significance of ER-Ca2+ release and SOCE has been difficult to identify and establish. In this review we present evidence of how these two related mechanisms of Ca2+ signalling impact multiple aspects of neuronal physiology and discuss their interaction with the better understood classes of ion channels that are gated by either voltage changes or extracellular ligands in neurons. Given how a small imbalance in Ca2+ homeostasis can have strongly detrimental effects on neurons, leading to cell death, it is essential that neuronal SOCE is carefully regulated. We go on to discuss some mechanisms of SOCE regulation that have been identified in Drosophila and mammalian neurons. These include specific splice variants of stromal interaction molecules, different classes of membrane-interacting proteins and an ER-Ca2+ channel. So far these appear distinct from the mechanisms of SOCE regulation identified in non-excitable cells. Finally, we touch upon the significance of these studies in the context of certain human neurodegenerative diseases.
Collapse
Affiliation(s)
- Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- SASTRA University, Thanjavur, Tamil Nadu, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
2
|
Mitra R, Richhariya S, Hasan G. Orai-mediated calcium entry determines activity of central dopaminergic neurons by regulation of gene expression. eLife 2024; 12:RP88808. [PMID: 38289659 PMCID: PMC10945566 DOI: 10.7554/elife.88808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Maturation and fine-tuning of neural circuits frequently require neuromodulatory signals that set the excitability threshold, neuronal connectivity, and synaptic strength. Here, we present a mechanistic study of how neuromodulator-stimulated intracellular Ca2+ signals, through the store-operated Ca2+ channel Orai, regulate intrinsic neuronal properties by control of developmental gene expression in flight-promoting central dopaminergic neurons (fpDANs). The fpDANs receive cholinergic inputs for release of dopamine at a central brain tripartite synapse that sustains flight (Sharma and Hasan, 2020). Cholinergic inputs act on the muscarinic acetylcholine receptor to stimulate intracellular Ca2+ release through the endoplasmic reticulum (ER) localised inositol 1,4,5-trisphosphate receptor followed by ER-store depletion and Orai-mediated store-operated Ca2+ entry (SOCE). Analysis of gene expression in fpDANs followed by genetic, cellular, and molecular studies identified Orai-mediated Ca2+ entry as a key regulator of excitability in fpDANs during circuit maturation. SOCE activates the transcription factor trithorax-like (Trl), which in turn drives expression of a set of genes, including Set2, that encodes a histone 3 lysine 36 methyltransferase (H3K36me3). Set2 function establishes a positive feedback loop, essential for receiving neuromodulatory cholinergic inputs and sustaining SOCE. Chromatin-modifying activity of Set2 changes the epigenetic status of fpDANs and drives expression of key ion channel and signalling genes that determine fpDAN activity. Loss of activity reduces the axonal arborisation of fpDANs within the MB lobe and prevents dopamine release required for the maintenance of long flight.
Collapse
Affiliation(s)
- Rishav Mitra
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
3
|
Lai J, Demirbas D, Kim J, Jeffries AM, Tolles A, Park J, Chittenden TW, Buckley PG, Yu TW, Lodato MA, Lee EA. ATM-deficiency-induced microglial activation promotes neurodegeneration in ataxia-telangiectasia. Cell Rep 2024; 43:113622. [PMID: 38159274 PMCID: PMC10908398 DOI: 10.1016/j.celrep.2023.113622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing. Pseudotime analysis revealed that activation of A-T microglia preceded upregulation of apoptosis-related genes in granule and Purkinje neurons and that microglia exhibited increased neurotoxic cytokine signaling to granule and Purkinje neurons in A-T. To confirm these findings experimentally, we performed transcriptomic profiling of A-T induced pluripotent stem cell (iPSC)-derived microglia, which revealed cell-intrinsic microglial activation of cytokine production and innate immune response pathways compared to controls. Furthermore, A-T microglia co-culture with either control or A-T iPSC-derived neurons was sufficient to induce cytotoxicity. Taken together, these studies reveal that cell-intrinsic microglial activation may promote neurodegeneration in A-T.
Collapse
Affiliation(s)
- Jenny Lai
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Neuroscience, Harvard University, Boston, MA 02115, USA
| | - Didem Demirbas
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Junho Kim
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ailsa M Jeffries
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Allie Tolles
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junseok Park
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas W Chittenden
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Computational Statistics and Bioinformatics Group, Genuity AI Research Institute, Genuity Science, Boston, MA 02114, USA
| | | | - Timothy W Yu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael A Lodato
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Edara VV, Manning KE, Ellis M, Lai L, Moore KM, Foster SL, Floyd K, Davis-Gardner ME, Mantus G, Nyhoff LE, Bechnak S, Alaaeddine G, Naji A, Samaha H, Lee M, Bristow L, Hussaini L, Ciric CR, Nguyen PV, Gagne M, Roberts-Torres J, Henry AR, Godbole S, Grakoui A, Sexton M, Piantadosi A, Waggoner JJ, Douek DC, Anderson EJ, Rouphael N, Wrammert J, Suthar MS. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 Omicron variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34981056 DOI: 10.1101/2021.09.09.459619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naïve vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.
Collapse
|
5
|
Dhanya SK, Hasan G. Deficits Associated With Loss of STIM1 in Purkinje Neurons Including Motor Coordination Can Be Rescued by Loss of Septin 7. Front Cell Dev Biol 2021; 9:794807. [PMID: 34993201 PMCID: PMC8724567 DOI: 10.3389/fcell.2021.794807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Septins are cytoskeletal proteins that can assemble to form heteromeric filamentous complexes and regulate a range of membrane-associated cellular functions. SEPT7, a member of the septin family, functions as a negative regulator of the plasma membrane–localized store-operated Ca2+ entry (SOCE) channel, Orai in Drosophila neurons, and in human neural progenitor cells. Knockdown of STIM, a Ca2+ sensor in the endoplasmic reticulum (ER) and an integral component of SOCE, leads to flight deficits in Drosophila that can be rescued by partial loss of SEPT7 in neurons. Here, we tested the effect of reducing and removing SEPT7 in mouse Purkinje neurons (PNs) with the loss of STIM1. Mice with the complete knockout of STIM1 in PNs exhibit several age-dependent changes. These include altered gene expression in PNs, which correlates with increased synapses between climbing fiber (CF) axons and Purkinje neuron (PN) dendrites and a reduced ability to learn a motor coordination task. Removal of either one or two copies of the SEPT7 gene in STIM1KO PNs restored the expression of a subset of genes, including several in the category of neuron projection development. Importantly, the rescue of gene expression in these animals is accompanied by normal CF-PN innervation and an improved ability to learn a motor coordination task in aging mice. Thus, the loss of SEPT7 in PNs further modulates cerebellar circuit function in STIM1KO animals. Our findings are relevant in the context of identifying SEPT7 as a putative therapeutic target for various neurodegenerative diseases caused by reduced intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- Sreeja Kumari Dhanya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- SASTRA University, Thanjavur, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- *Correspondence: Gaiti Hasan,
| |
Collapse
|
6
|
Mitra R, Richhariya S, Jayakumar S, Notani D, Hasan G. IP3-mediated Ca2+ signals regulate larval to pupal transition under nutrient stress through the H3K36 methyltransferase Set2. Development 2021; 148:269014. [PMID: 34117888 DOI: 10.1242/dev.199018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Persistent loss of dietary protein usually signals a shutdown of key metabolic pathways. In Drosophila larvae that have reached a 'critical weight' and can pupariate to form viable adults, such a metabolic shutdown would needlessly lead to death. Inositol 1,4,5-trisphosphate-mediated calcium (IP3/Ca2+) release in some interneurons (vGlutVGN6341) allows Drosophila larvae to pupariate on a protein-deficient diet by partially circumventing this shutdown through upregulation of neuropeptide signaling and the expression of ecdysone synthesis genes. Here, we show that IP3/Ca2+ signals in vGlutVGN6341 neurons drive expression of Set2, a gene encoding Drosophila Histone 3 Lysine 36 methyltransferase. Furthermore, Set2 expression is required for larvae to pupariate in the absence of dietary protein. IP3/Ca2+ signal-driven Set2 expression upregulates key Ca2+-signaling genes through a novel positive-feedback loop. Transcriptomic studies, coupled with analysis of existing ChIP-seq datasets, identified genes from larval and pupal stages that normally exhibit robust H3K36 trimethyl marks on their gene bodies and concomitantly undergo stronger downregulation by knockdown of either the intracellular Ca2+ release channel IP3R or Set2. IP3/Ca2+ signals thus regulate gene expression through Set2-mediated H3K36 marks on select neuronal genes for the larval to pupal transition.
Collapse
Affiliation(s)
- Rishav Mitra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Dimple Notani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
7
|
Sharma A, Hasan G. Modulation of flight and feeding behaviours requires presynaptic IP 3Rs in dopaminergic neurons. eLife 2020; 9:e62297. [PMID: 33155978 PMCID: PMC7647402 DOI: 10.7554/elife.62297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Innate behaviours, although robust and hard wired, rely on modulation of neuronal circuits, for eliciting an appropriate response according to internal states and external cues. Drosophila flight is one such innate behaviour that is modulated by intracellular calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs). Cellular mechanism(s) by which IP3Rs modulate neuronal function for specific behaviours remain speculative, in vertebrates and invertebrates. To address this, we generated an inducible dominant negative form of the IP3R (IP3RDN). Flies with neuronal expression of IP3RDN exhibit flight deficits. Expression of IP3RDN helped identify key flight-modulating dopaminergic neurons with axonal projections in the mushroom body. Flies with attenuated IP3Rs in these presynaptic dopaminergic neurons exhibit shortened flight bouts and a disinterest in seeking food, accompanied by reduced excitability and dopamine release upon cholinergic stimulation. Our findings suggest that the same neural circuit modulates the drive for food search and for undertaking longer flight bouts.
Collapse
Affiliation(s)
- Anamika Sharma
- National Centre for Biological Sciences, TIFRBangaloreIndia
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|