1
|
Sarton R, Carbonnier M, Robin S, Ramful D, Sampériz S, Gauthier P, Bintner M, Boumahni B, Gérardin P. Perinatal Mother-to-Child Chikungunya Virus Infection: Screening of Cognitive and Learning Difficulties in a Follow-Up Study of the Chimere Cohort on Reunion Island. Viruses 2025; 17:704. [PMID: 40431715 PMCID: PMC12116154 DOI: 10.3390/v17050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
In this cohort study, we evaluated the cognitive and learning difficulties of school-age children perinatally infected with Chikungunya virus (CHIKV) on Reunion Island using the Evaluation of Cognitive Functions and Learning in Children (EDA) battery screening test compared to the healthy children cohort used for EDA development. Of the 19 infected children, 11 (57.9%) exhibited subnormal or abnormal scores, of whom 3 were classified as high risk, and 8 were classified as at risk for cognitive and learning difficulties. Children who had encephalopathy were at higher risk for displaying at least one difficulty than non-encephalopathic children (relative risk 2.13; 95% CI 1.05-4.33). The difficulties observed affected verbal functions, non-verbal functions, and learning abilities, such as phonology, lexical evocation and comprehension, graphism, selective visual attention, planning, visual-spatial reasoning, dictation and mathematics, as well as core executive functions, such as inhibitory control, shifting, and working memory. Neurocognitive dysfunctions could be linked to severe brain damage, as evidenced by severe white matter reduction mainly in the frontal lobes and corpus callosum and potentially in all functional networks involved in difficulties. These results should motivate further investigation of intellectual and adaptive functioning to diagnose intellectual deficiency and severe maladaptive behaviour in children perinatally infected with Chikungunya virus.
Collapse
Affiliation(s)
- Raphaëlle Sarton
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) de La Réunion, 97410 Saint Pierre, Reunion, France
| | - Magali Carbonnier
- Centre d’Action Médico-Sociale Précoce Isautier, Fondation Père Favron, 97450 Saint Louis, Reunion, France;
| | - Stéphanie Robin
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) de La Réunion, 97400 Saint Denis, Reunion, France;
- Centre Ressources TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), Centre Hospitalier Universitaire (CHU) de La Réunion, 97400 Saint Denis, Reunion, France
| | - Duksha Ramful
- Neonatal Intensive Care Unit, Centre Hospitalier Universitaire (CHU) de La Réunion, 97400 Saint Denis, Reunion, France; (D.R.); (S.S.)
| | - Sylvain Sampériz
- Neonatal Intensive Care Unit, Centre Hospitalier Universitaire (CHU) de La Réunion, 97400 Saint Denis, Reunion, France; (D.R.); (S.S.)
| | - Pascale Gauthier
- Neuroradiology Department, Centre Hospitalier Universitaire (CHU) de La Réunion, 97410 Saint Pierre, Reunion, France; (P.G.); (M.B.)
| | - Marc Bintner
- Neuroradiology Department, Centre Hospitalier Universitaire (CHU) de La Réunion, 97410 Saint Pierre, Reunion, France; (P.G.); (M.B.)
| | - Brahim Boumahni
- Neonatalogy Unit, Centre Hospitalier Universitaire (CHU) de La Réunion, 97410 Saint Pierre, Reunion, France;
| | - Patrick Gérardin
- Centre for Clinical Investigation Clinical Epidemiology (INSERM CIC 1410), Centre Hospitalier Universitaire (CHU) de La Réunion, 97410 Saint Pierre, Reunion, France
| |
Collapse
|
2
|
Li A, Chen C, Feng Y, Hu R, Feng X, Yang J, Lin X, Mei L. Functional divisions of the left anterior and posterior temporoparietal junction for phonological and semantic processing in Chinese character reading. Neuroimage 2025; 311:121201. [PMID: 40216211 DOI: 10.1016/j.neuroimage.2025.121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/27/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
Previous studies have shown that the left temporoparietal junction (TPJ) plays a critical role in word reading. Nevertheless, there is still controversy surrounding the phonological and semantic functions of the left TPJ. The parietal unified connectivity-biased computation (PUCC) model posits that the function of the left TPJ depends on both the neurocomputation of this local area and its long-range connectivity. To clarify the specific roles of different TPJ subregions in phonological and semantic processing of Chinese characters, the present study used connectivity-based clustering to identify seven subdivisions within the left TPJ, and conducted comprehensive analyses including functional and structural connectivity, univariate and multivariate analyses (i.e., representational similarity analysis, RSA) on multimodal imaging data (task-state fMRI, resting-state fMRI, and diffusion-weighted imaging [DWI]). Functional and structural connectivity analyses revealed that the left anterior TPJ had stronger connections with the phonological network, while the left posterior TPJ had stronger connections with the semantic network. RSA revealed that the left anterior and posterior TPJ represented phonological and semantic information of Chinese characters, respectively. More importantly, the phonological and semantic representations of the left TPJ were respectively correlated with its functional connectivity to the phonological and semantic networks. Altogether, our results provide a more elaborate perspective on the functional dissociation of the left anterior and posterior TPJ in phonological and semantic processing of Chinese characters, and support the PUCC model.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Yuan Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Rui Hu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Jingyu Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xingying Lin
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
van Ierschot FC, Veenstra W, Miozzo A, Santini B, Jeltema HR, Spena G, Miceli G. Written language preservation in glioma patients undergoing awake surgery: The value of tailored intra-operative assessment. J Neuropsychol 2024; 18 Suppl 1:205-229. [PMID: 37840529 DOI: 10.1111/jnp.12349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Written language is increasingly important, as contemporary society strongly relies on text-based communication. Nonetheless, in neurosurgical practice, language preservation has classically focused on spoken language. The current study aimed to evaluate the potential role of intra-operative assessments in the preservation of written language skills in glioma patients undergoing awake surgery. It is the first feasibility study to use a standardized and detailed Written language battery in glioma patients undergoing awakening surgery. Reading and spelling were assessed pre- and post-operatively in eleven patients. Intra-operatively, 7 cases underwent written language assessment in addition to spoken object naming. Results show that reading and spelling deficits may arise before and after glioma surgery and that written language may be differently affected than spoken language. In our case series, task-specific preservation of function was obtained in all cases when a specific written language skill was monitored intra-operatively. However, the benefits of intra-operative testing did not always generalize, and non-monitored written language tasks may not be preserved. Hence, when a specific written language skill needs to be preserved, to facilitate return to work and maintain quality of life, results indicate that intra-operative assessment of that skill is advised. An illustrative case report demonstrates how profile analyses can be used pre-operatively to identify cognitive components at risk and intra-operatively to preserve written language abilities in clinical practice.
Collapse
Affiliation(s)
- Fleur Céline van Ierschot
- Center for Mind/Brain Sciences (CiMeC), University of Trento, Rovereto, Italy
- International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), Universities of Trento, Groningen, Newcastle, Potsdam and Macquarie University, Trento, Groningen, Newcastle, Potsdam, Sydney, Italy, Netherlands, Australia, Germany, Australia
| | - Wencke Veenstra
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
- Department of Rehabilitation Medicine, Center for Rehabilitation, University Medical Center Groningen, Groningen, The Netherlands
| | - Antonio Miozzo
- Centre for Aging Brain and Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Barbara Santini
- Department of Neuroscience, Neurosurgery Clinic, University of Verona, Verona, Italy
| | - Hanne-Rinck Jeltema
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Giannantonio Spena
- Centre for Aging Brain and Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences (CiMeC), University of Trento, Rovereto, Italy
- International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), Universities of Trento, Groningen, Newcastle, Potsdam and Macquarie University, Trento, Groningen, Newcastle, Potsdam, Sydney, Italy, Netherlands, Australia, Germany, Australia
| |
Collapse
|
4
|
de Zubicaray GI, Brownsett SLE, Copland DA, Drummond K, Jeffree RL, Olson S, Murton E, Ong B, Robinson GA, Tolkacheva V, McMahon KL. Chronic aphasias after left-hemisphere resective surgery. BRAIN AND LANGUAGE 2023; 239:105244. [PMID: 36889018 DOI: 10.1016/j.bandl.2023.105244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 05/10/2023]
Abstract
Surgical resection of brain tumours is associated with an increased risk of aphasia. However, relatively little is known about outcomes in the chronic phase (i.e., >6 months). Using voxel-based lesion symptom mapping (VLSM) in 46 patients, we investigated whether chronic language impairments are related to the location of surgical resection, residual tumour characteristics (e.g., peri-resection treatment effects, progressive infiltration, oedema) or both. Approximately 72% of patients scored below the cut-off for aphasia. Action naming and spoken sentence comprehension deficits were associated with lesions in the left anterior temporal and inferior parietal lobes, respectively. Voxel-wise analyses revealed significant associations between ventral language pathways and action naming deficits. Reading impairments were also associated with increasing disconnection of cerebellar pathways. The results indicate chronic post-surgical aphasias reflect a combination of resected tissue and tumour infiltration of language-related white matter tracts, implicating progressive disconnection as the critical mechanism of impairment.
Collapse
Affiliation(s)
- Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Sonia L E Brownsett
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia
| | - David A Copland
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia
| | - Kate Drummond
- Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | | | - Sarah Olson
- Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Emma Murton
- Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Benjamin Ong
- Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Gail A Robinson
- Queensland Brain Institute and School of Psychology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Valeriya Tolkacheva
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Herston Imaging Research Facility, Royal Brisbane & Women's Hospital, Brisbane, QLD 4029, Australia
| |
Collapse
|
5
|
Shahab QS, Young IM, Dadario NB, Tanglay O, Nicholas PJ, Lin YH, Fonseka RD, Yeung JT, Bai MY, Teo C, Doyen S, Sughrue ME. A connectivity model of the anatomic substrates underlying Gerstmann syndrome. Brain Commun 2022; 4:fcac140. [PMID: 35706977 PMCID: PMC9189613 DOI: 10.1093/braincomms/fcac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
The Gerstmann syndrome is a constellation of neurological deficits that include agraphia, acalculia, left-right discrimination and finger agnosia. Despite a growing interest in this clinical phenomenon, there remains controversy regarding the specific neuroanatomic substrates involved. Advancements in data-driven, computational modelling provides an opportunity to create a unified cortical model with greater anatomic precision based on underlying structural and functional connectivity across complex cognitive domains. A literature search was conducted for healthy task-based functional MRI and PET studies for the four cognitive domains underlying Gerstmann's tetrad using the electronic databases PubMed, Medline, and BrainMap Sleuth (2.4). Coordinate-based, meta-analytic software was utilized to gather relevant regions of interest from included studies to create an activation likelihood estimation (ALE) map for each cognitive domain. Machine-learning was used to match activated regions of the ALE to the corresponding parcel from the cortical parcellation scheme previously published under the Human Connectome Project (HCP). Diffusion spectrum imaging-based tractography was performed to determine the structural connectivity between relevant parcels in each domain on 51 healthy subjects from the HCP database. Ultimately 102 functional MRI studies met our inclusion criteria. A frontoparietal network was found to be involved in the four cognitive domains: calculation, writing, finger gnosis, and left-right orientation. There were three parcels in the left hemisphere, where the ALE of at least three cognitive domains were found to be overlapping, specifically the anterior intraparietal area, area 7 postcentral (7PC) and the medial intraparietal sulcus. These parcels surround the anteromedial portion of the intraparietal sulcus. Area 7PC was found to be involved in all four domains. These regions were extensively connected in the intraparietal sulcus, as well as with a number of surrounding large-scale brain networks involved in higher-order functions. We present a tractographic model of the four neural networks involved in the functions which are impaired in Gerstmann syndrome. We identified a 'Gerstmann Core' of extensively connected functional regions where at least three of the four networks overlap. These results provide clinically actionable and precise anatomic information which may help guide clinical translation in this region, such as during resective brain surgery in or near the intraparietal sulcus, and provides an empiric basis for future study.
Collapse
Affiliation(s)
- Qazi S. Shahab
- School of Medicine, University of New South Wales, 2052 Sydney, Australia
| | | | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney 2000, Australia
| | | | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - R. Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Jacky T. Yeung
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Michael Y. Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | | | | |
Collapse
|
6
|
Evidence of graphomotor dysfunction in children with dyslexia A combined behavioural and fMRI experiment. Cortex 2022; 148:68-88. [DOI: 10.1016/j.cortex.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/19/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
|
7
|
Tomasino B, Guarracino I, Ius T, Maieron M, Skrap M. Real-Time Neuropsychological Testing Protocol for Left Temporal Brain Tumor Surgery: A Technical Note and Case Report. Front Hum Neurosci 2021; 15:760569. [PMID: 34924981 PMCID: PMC8678085 DOI: 10.3389/fnhum.2021.760569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background: The risk of surgery in eloquent areas is related to neuropsychological dysfunctions. Maximizing the extent of resection increases the overall survival. The onco-functional balance is mandatory when surgery involves cognitive areas, and maximal information on the cognitive status of patients during awake surgery is needed. This can be achieved using direct cortical stimulation mapping and, in addition to this, a neuropsychological monitoring technique called real-time neuropsychological testing (RTNT). The RTNT includes testing protocols based on the area where the surgery is performed. We reported on tests used for left temporal lobe surgery and our RTNT decision tree. Case Report: We reported our RTNT experience with a 25-year-old right-handed man with 13 years of schooling. He reported daily partial seizures. MRI revealed the presence of a low-grade glioma involving the temporo-insular cortex. The neuropsychological status presurgery which was within the normal range was combined with functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) information. Awake surgery plus RTNT was performed. Direct electrical stimulation during object naming elicited a motor speech arrest. Resection was continuously accompanied by the RTNT. The RTNT provided enriched information to the surgeon. Performance never dropped. A slight decrement in accuracy emerged for pseudoword repetition, short-term memory and working memory, phonological processing, and verbal comprehension. Total resection was performed, and the histological examination confirmed the nature of the lesion. Immediate postsurgery performance was within the normal range as it was the fMRI and DTI assessment. Conclusion: The RTNT provides essential information that can be used online, during surgery, for clinical aims to provide the surgeon with useful feedback on the cognitive status of patients.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Ilaria Guarracino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Tamara Ius
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Udine, Italy
| | - Marta Maieron
- Fisica Sanitaria, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Udine, Italy
| | - Miran Skrap
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Udine, Italy
| |
Collapse
|
8
|
Pre-Surgery Cognitive Performance and Voxel-Based Lesion-Symptom Mapping in Patients with Left High-Grade Glioma. Cancers (Basel) 2021; 13:cancers13061467. [PMID: 33806837 PMCID: PMC8004913 DOI: 10.3390/cancers13061467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: The literature on the effects of high-grade glioma (HGG) growth on cognition is still scarce. (2) Method: A consecutive series of 85 patients with HGG involving the left hemisphere underwent an extended neuropsychological evaluation prior to surgery. Voxel-based lesion-symptom mapping (VLSM) was used to identify regions related to cognitive performance. (3) Results: The patients' mean level of pre-surgery accuracy was overall high. They showed the greatest difficulties in language with tasks such as naming (42.1% of patients impaired on nouns and 61.4% on verbs), reading (36.3% on words and 32.7% on pseudo-words), auditory lexical decisions (43.9%) and writing (41.3%) being most frequently impaired. VLSM analysis revealed anatomically separated areas along the temporal cortex and the white matter related to impairments on the different tasks, with voxels commonly shared by all tasks restricted to a small region in the ventral superior and middle temporal gyrus. (4) Conclusions: High-grade glioma affects cognition; nonetheless, lesions do not cause diffuse deficits but selectively impact the different language sub-domains along the ventral stream and the dorsal stream for language processing.
Collapse
|
9
|
Young JS, Lee AT, Chang EF. A Review of Cortical and Subcortical Stimulation Mapping for Language. Neurosurgery 2021; 89:331-342. [PMID: 33444451 DOI: 10.1093/neuros/nyaa436] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/21/2020] [Indexed: 11/14/2022] Open
Abstract
Since the early descriptions of language function based on observations of patients with language deficits by Broca and Wernicke, neurosurgeons have been focused on characterizing the anatomic regions necessary for language perception and production, and preserving these structures during surgery to minimize patient deficits post operatively. In this supplementary issue on awake intraoperative mapping, we review language processing across multiple domains, highlighting key advances in direct electrical stimulation of different cortical and subcortical regions involved in naming, repetition, reading, writing, and syntax. We then discuss different intraoperative tasks for assessing the function of a given area and avoiding injury to critical, eloquent regions.
Collapse
Affiliation(s)
| | - Anthony T Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
10
|
Morshed RA, Young JS, Lee AT, Berger MS, Hervey-Jumper SL. Clinical Pearls and Methods for Intraoperative Awake Language Mapping. Neurosurgery 2020; 89:143-153. [PMID: 33289505 DOI: 10.1093/neuros/nyaa440] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Intraoperative language mapping of tumor and peritumor tissue is a well-established technique for avoiding permanent neurological deficits and maximizing extent of resection. Although there are several components of language that may be tested intraoperatively (eg, naming, writing, reading, and repetition), there is a lack of consistency in how patients are tested intraoperatively as well as the techniques involved to ensure safety during an awake procedure. Here, we review appropriate patient selection, neuroanesthetic techniques, cortical and subcortical language mapping stimulation paradigms, and selection of intraoperative language tasks used during awake craniotomies. We also expand on existing language mapping reviews by considering how intensity and timing of electrical stimulation may impact interpretation of mapping results.
Collapse
|
11
|
Saarinen T, Kujala J, Laaksonen H, Jalava A, Salmelin R. Task-Modulated Corticocortical Synchrony in the Cognitive-Motor Network Supporting Handwriting. Cereb Cortex 2020; 30:1871-1886. [PMID: 31670795 PMCID: PMC7132916 DOI: 10.1093/cercor/bhz210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 01/06/2023] Open
Abstract
Both motor and cognitive aspects of behavior depend on dynamic, accurately timed neural processes in large-scale brain networks. Here, we studied synchronous interplay between cortical regions during production of cognitive-motor sequences in humans. Specifically, variants of handwriting that differed in motor variability, linguistic content, and memorization of movement cues were contrasted to unveil functional sensitivity of corticocortical connections. Data-driven magnetoencephalography mapping (n = 10) uncovered modulation of mostly left-hemispheric corticocortical interactions, as quantified by relative changes in phase synchronization. At low frequencies (~2–13 Hz), enhanced frontoparietal synchrony was related to regular handwriting, whereas premotor cortical regions synchronized for simple loop production and temporo-occipital areas for a writing task substituting normal script with loop patterns. At the beta-to-gamma band (~13–45 Hz), enhanced synchrony was observed for regular handwriting in the central and frontoparietal regions, including connections between the sensorimotor and supplementary motor cortices and between the parietal and dorsal premotor/precentral cortices. Interpreted within a modular framework, these modulations of synchrony mainly highlighted interactions of the putative pericentral subsystem of hand coordination and the frontoparietal subsystem mediating working memory operations. As part of cortical dynamics, interregional phase synchrony varies depending on task demands in production of cognitive-motor sequences.
Collapse
Affiliation(s)
- Timo Saarinen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Aalto NeuroImaging, Aalto University, FI-00076 AALTO, Espoo, Finland
- Address correspondence to Timo Saarinen, Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, FI-00076 AALTO, Espoo, Finland.
| | - Jan Kujala
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Department of Psychology, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Hannu Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Aalto NeuroImaging, Aalto University, FI-00076 AALTO, Espoo, Finland
| | - Antti Jalava
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Aalto NeuroImaging, Aalto University, FI-00076 AALTO, Espoo, Finland
| |
Collapse
|
12
|
Chen H, Pan X, Bickerton WL, Lau JK, Zhou J, Zhou B, Harris L, Rotshtein P. Delineating the cognitive-neural substrates of writing: a large scale behavioral and voxel based morphometry study. Sci Rep 2019; 9:18881. [PMID: 31827143 PMCID: PMC6906401 DOI: 10.1038/s41598-019-55129-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/23/2019] [Indexed: 11/26/2022] Open
Abstract
The current study investigated the cognitive and neural substrates that underpin writing ability. We explored similarities and differences in writing numbers and words and compared these to language and manual actions in a large group of sub-acute, stroke patients (n = 740). The behavioral data showed association and dissociation in the ability to write words and numbers. Comorbidities of writing deficits with both language and motor impairments were prevalent, with less than a handful showing deficits restricted to the writing tasks. A second analysis with a subset of patients (n = 267) explored the neural networks that mediate writing abilities. Lesion to right temporal contributed to writing words, while lesions to left postcentral contributed to writing numbers. Overlapping neural mechanisms included the bilateral prefrontal cortex, right inferior parietal, left middle occipital and the right cerebellum. With the former regions associated with error pattern typical to writing based on prior knowledge (the lexical route), while lesion to left MOG was associated with errors to the phonological (non-lexical) route. Using principle components extracted from the behavioral data, we showed that right prefrontal and right parietal contributed to the ability to use pen, while lesion to bilateral prefrontal, inferior temporal and cerebellum supported unique use of pen for writing. The behavioral and imaging data suggested that writing numbers and words primarily relied on overlapping cognitive and neural functions. Incidents of pure writing deficits, in the absence of motor or language deficits were rare. Nevertheless, the PCA and neural data suggested that writing abilities were associated with some unique neuro-cognitive functions, specifically dedicated to the use of pen and the ability to transform meaning to motor command.
Collapse
Affiliation(s)
- Haobo Chen
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, P.R. China.
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Xiaoping Pan
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, P.R. China.
| | | | - Johnny King Lau
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- School of Psychology and Clinical Language Sciences, University of Reading, Harry Pitt Building, Reading, RG6 7BE, UK
| | - Jin Zhou
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, P.R. China
| | - Beinan Zhou
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Faculty of linguistics, philology and phonetics, University of Oxford, Oxford, OX1 3UD, UK
| | - Lara Harris
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Psychological Medicine, King's College London, London, WC2R 2LS, UK
| | - Pia Rotshtein
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
13
|
Thomas F, Bouaziz N, Gallea C, Schenin-King Andrianisaina P, Durand F, Bolloré O, Benadhira R, Isaac C, Braha-Zeitoun S, Moulier V, Valero-Cabré A, Januel D. Structural and functional brain biomarkers of clinical response to rTMS of medication-resistant auditory hallucinations in schizophrenia patients: study protocol for a randomized sham-controlled double-blind clinical trial. Trials 2019; 20:229. [PMID: 31014369 PMCID: PMC6480831 DOI: 10.1186/s13063-019-3311-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The potential of non-invasive repetitive transcranial magnetic stimulation (rTMS) to improve auditory verbal hallucinations (AVH) in schizophrenia patients has been increasingly explored over the past decade. Despite highly promising results, high inter-individual variability of clinical response and ineffective outcomes in a significant number of patients underscored the need to identify factors associated with the clinical response to rTMS. It should help improve the efficacy of rTMS in patients with medication-resistant AVH, and allow a better understanding of its neural impact. Here, we describe an exploratory study protocol which aims to identify structural and functional brain biomarkers associated with clinical response after an rTMS treatment for medication-resistant AVH in schizophrenia. METHODS Forty-five schizophrenia patients with medication-resistant AVH will be enrolled in a double-blind randomized sham-controlled monocentric clinical trial. Patients will be assigned to a regime of 20 sessions of active or sham 1 Hz rTMS delivered twice a day, 5 days a week for 2 weeks over the left temporo-parietal junction. Response will be assessed after rTMS and patients will be classified in responders or non-responders to treatment. Magnetic resonance imaging (MRI) sessions including diffusion weighted imaging and resting-state functional MRI sequences will be recorded before the onset of the rTMS treatment and 3 days following its discontinuation. The primary outcome measure is difference in fractional anisotropy between responder and non-responder patients at baseline. Differences in resting-state functional MRI data at baseline will be also investigated between responder and non-responder groups. Clinical, neuropsychological, neurophysiological, and blood serum BDNF assessments will be performed at baseline, 3 days, 1 month, and 3 months following rTMS. DISCUSSION The aim of this research project is to identify and assess the biomarker value of MRI-based structural and functional biomarkers predicting clinical response to rTMS for AVH in schizophrenia patients. The outcome of the trial should improve patient care by offering them a novel suitable therapy and deepen our understanding on how rTMS may impact AVH and develop more effective therapies adapted to individual patient needs. TRIAL REGISTRATION ClinicalTrials.gov, NCT02755623 . Registered on 22 April 2016.
Collapse
Affiliation(s)
- Fanny Thomas
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013, Paris, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Noomane Bouaziz
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France
| | - Cécile Gallea
- Movement Investigations and Therapeutics, MOV'IT, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Palmyre Schenin-King Andrianisaina
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Florence Durand
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Ombline Bolloré
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France
| | - René Benadhira
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Clémence Isaac
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Sonia Braha-Zeitoun
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France.,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France
| | - Virginie Moulier
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, 47 boulevard de l'Hôpital, 75013, Paris, France. .,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 700 Albany Street, Boston, MA, W-702A, USA.
| | - Dominique Januel
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202 avenue Jean Jaurès, 93332, Neuilly-sur-Marne, France. .,Laboratoire de psychopathologie et de neuropsychologie, Université Paris 8, 2 rue de la Liberté, 93526, Saint-Denis, France.
| |
Collapse
|
14
|
Reductions in GABA following a tDCS-language intervention for primary progressive aphasia. Neurobiol Aging 2019; 79:75-82. [PMID: 31029018 DOI: 10.1016/j.neurobiolaging.2019.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/03/2023]
Abstract
Transcranial direct current stimulation (tDCS) has shown efficacy in augmenting the effects of language therapy in primary progressive aphasia (PPA). The mechanism of action of tDCS is not understood, but preliminary work in healthy adults suggests it modulates γ-aminobutyric acid (GABA) levels to create an environment optimal for learning. It is unknown if this proposed mechanism translates to aging or neurodegenerative conditions. This study tested the hypothesis that tDCS reduces GABA at the stimulated tissue in PPA. We applied GABA-edited magnetic resonance spectroscopy to quantify GABA levels before and after a sham-controlled tDCS intervention with language therapy in PPA. All participants showed improvements but those receiving active tDCS showed significantly greater language improvements compared to sham both immediately after the intervention and at 2-month follow-up. GABA levels in the targeted tissue decreased from baseline after the intervention and remained decreased 2 months after the intervention. This work supports the hypothesis that tDCS modulates GABAergic inhibition to augment learning and is clinically useful for PPA combined with language therapy.
Collapse
|
15
|
van Ierschot F, Bastiaanse R, Miceli G. Evaluating Spelling in Glioma Patients Undergoing Awake Surgery: a Systematic Review. Neuropsychol Rev 2018; 28:470-495. [DOI: 10.1007/s11065-018-9391-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/07/2018] [Indexed: 01/20/2023]
|
16
|
Ruis C. Monitoring cognition during awake brain surgery in adults: A systematic review. J Clin Exp Neuropsychol 2018; 40:1081-1104. [DOI: 10.1080/13803395.2018.1469602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Carla Ruis
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Rofes A, Mandonnet E, de Aguiar V, Rapp B, Tsapkini K, Miceli G. Language processing from the perspective of electrical stimulation mapping. Cogn Neuropsychol 2018; 36:117-139. [PMID: 29996708 DOI: 10.1080/02643294.2018.1485636] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Electrical Stimulation (ES) is a neurostimulation technique that is used to localize language functions in the brain of people with intractable epilepsy and/or brain tumors. We reviewed 25 ES articles published between 1984 and 2018 and interpreted them from a cognitive neuropsychological perspective. Our aim was to highlight ES as a tool to further our understanding of cognitive models of language. We focused on associations and dissociations between cognitive functions within the framework of two non-neuroanatomically specified models of language. Also, we discussed parallels between the ES and the stroke literatures and showed how ES data can help us to generate hypotheses regarding how language is processed. A good understanding of cognitive models of language is essential to motivate task selection and to tailor surgical procedures, for example, by avoiding testing the same cognitive functions and understanding which functions may be more or less relevant to be tested during surgery.
Collapse
Affiliation(s)
- Adrià Rofes
- Global Brain Health Institute, Trinity College Dublin , Dublin , Ireland.,Department of Cognitive Science, Johns Hopkins University , Baltimore , MD , USA
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital , Paris , France.,University Diderot Paris 7 , Paris , France.,Frontlab, INSERM, ICM , Paris , France
| | - Vânia de Aguiar
- Department of Neurology, Johns Hopkins University , Baltimore , MD , USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University , Baltimore , MD , USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins University , Baltimore , MD , USA
| | - Gabriele Miceli
- Center for Mind and Brain Sciences, University of Trento , Trento , Italy
| |
Collapse
|
18
|
Baldo JV, Kacinik N, Ludy C, Paulraj S, Moncrief A, Piai V, Curran B, Turken A, Herron T, Dronkers NF. Voxel-based lesion analysis of brain regions underlying reading and writing. Neuropsychologia 2018; 115:51-59. [PMID: 29572061 DOI: 10.1016/j.neuropsychologia.2018.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/23/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
The neural basis of reading and writing has been a source of inquiry as well as controversy in the neuroscience literature. Reading has been associated with both left posterior ventral temporal zones (termed the "visual word form area") as well as more dorsal zones, primarily in left parietal cortex. Writing has also been associated with left parietal cortex, as well as left sensorimotor cortex and prefrontal regions. Typically, the neural basis of reading and writing are examined in separate studies and/or rely on single case studies exhibiting specific deficits. Functional neuroimaging studies of reading and writing typically identify a large number of activated regions but do not necessarily identify the core, critical hubs. Last, due to constraints on the functional imaging environment, many previous studies have been limited to measuring the brain activity associated with single-word reading and writing, rather than sentence-level processing. In the current study, the brain correlates of reading and writing at both the single- and sentence-level were studied in a large sample of 111 individuals with a history of chronic stroke using voxel-based lesion symptom mapping (VLSM). VLSM provides a whole-brain, voxel-by-voxel statistical analysis of the role of distinct regions in a particular behavior by comparing performance of individuals with and without a lesion at every voxel. Rather than comparing individual cases or small groups with particular behavioral dissociations in reading and writing, VLSM allowed us to analyze data from a large, well-characterized sample of stroke patients exhibiting a wide range of reading and writing impairments. The VLSM analyses revealed that reading was associated with a critical left inferior temporo-occipital focus, while writing was primarily associated with the left supramarginal gyrus. Separate VLSM analyses of single-word versus sentence-level reading showed that sentence-level reading was uniquely associated with anterior to mid-portions of the middle and superior temporal gyri. Both single-word and sentence-level writing overlapped to a great extent in the left supramarginal gyrus, but sentence-level writing was associated with additional underlying white matter pathways such as the internal capsule. These findings suggest that critical aspects of reading and writing processes diverge, with reading relying critically on the ventral visual recognition stream and writing relying on a dorsal visuo-spatial-motor stream.
Collapse
Affiliation(s)
- Juliana V Baldo
- VA Northern California Health Care System, 150 Muir Rd. (126R), Martinez, CA 94553, USA.
| | | | - Carl Ludy
- VA Northern California Health Care System, 150 Muir Rd. (126R), Martinez, CA 94553, USA
| | - Selvi Paulraj
- VA Northern California Health Care System, 150 Muir Rd. (126R), Martinez, CA 94553, USA; Palo Alto University, USA
| | - Amber Moncrief
- VA Northern California Health Care System, 150 Muir Rd. (126R), Martinez, CA 94553, USA
| | - Vitória Piai
- Radboud University, Donders Centre for Brain, Cognition and Behaviour, The Netherlands; Radboudumc, Department of Medical Psychology, The Netherlands
| | - Brian Curran
- VA Northern California Health Care System, 150 Muir Rd. (126R), Martinez, CA 94553, USA
| | - And Turken
- VA Northern California Health Care System, 150 Muir Rd. (126R), Martinez, CA 94553, USA
| | - Tim Herron
- VA Northern California Health Care System, 150 Muir Rd. (126R), Martinez, CA 94553, USA
| | - Nina F Dronkers
- VA Northern California Health Care System, 150 Muir Rd. (126R), Martinez, CA 94553, USA; University of California, Davis, USA
| |
Collapse
|
19
|
Gialluisi A, Guadalupe T, Francks C, Fisher SE. Neuroimaging genetic analyses of novel candidate genes associated with reading and language. BRAIN AND LANGUAGE 2017; 172:9-15. [PMID: 27476042 DOI: 10.1016/j.bandl.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/07/2016] [Indexed: 05/23/2023]
Abstract
Neuroimaging measures provide useful endophenotypes for tracing genetic effects on reading and language. A recent Genome-Wide Association Scan Meta-Analysis (GWASMA) of reading and language skills (N=1862) identified strongest associations with the genes CCDC136/FLNC and RBFOX2. Here, we follow up the top findings from this GWASMA, through neuroimaging genetics in an independent sample of 1275 healthy adults. To minimize multiple-testing, we used a multivariate approach, focusing on cortical regions consistently implicated in prior literature on developmental dyslexia and language impairment. Specifically, we investigated grey matter surface area and thickness of five regions selected a priori: middle temporal gyrus (MTG); pars opercularis and pars triangularis in the inferior frontal gyrus (IFG-PO and IFG-PT); postcentral parietal gyrus (PPG) and superior temporal gyrus (STG). First, we analysed the top associated polymorphisms from the reading/language GWASMA: rs59197085 (CCDC136/FLNC) and rs5995177 (RBFOX2). There was significant multivariate association of rs5995177 with cortical thickness, driven by effects on left PPG, right MTG, right IFG (both PO and PT), and STG bilaterally. The minor allele, previously associated with reduced reading-language performance, showed negative effects on grey matter thickness. Next, we performed exploratory gene-wide analysis of CCDC136/FLNC and RBFOX2; no other associations surpassed significance thresholds. RBFOX2 encodes an important neuronal regulator of alternative splicing. Thus, the prior reported association of rs5995177 with reading/language performance could potentially be mediated by reduced thickness in associated cortical regions. In future, this hypothesis could be tested using sufficiently large samples containing both neuroimaging data and quantitative reading/language scores from the same individuals.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands.
| |
Collapse
|
20
|
Papagno C. Studying cognitive functions by means of direct electrical stimulation: a review. Neurol Sci 2017; 38:2079-2087. [DOI: 10.1007/s10072-017-3095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 12/01/2022]
|
21
|
McMaster E, Roberts T. Handwriting in 2015: A main occupation for primary school–aged children in the classroom? JOURNAL OF OCCUPATIONAL THERAPY SCHOOLS AND EARLY INTERVENTION 2016. [DOI: 10.1080/19411243.2016.1141084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Rogić Vidaković M, Gabelica D, Vujović I, Šoda J, Batarelo N, Džimbeg A, Zmajević Schönwald M, Rotim K, Đogaš Z. A novel approach for monitoring writing interferences during navigated transcranial magnetic stimulation mappings of writing related cortical areas. J Neurosci Methods 2015; 255:139-50. [PMID: 26279342 DOI: 10.1016/j.jneumeth.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND It has recently been shown that navigated repetitive transcranial magnetic stimulation (nTMS) is useful in preoperative neurosurgical mapping of motor and language brain areas. In TMS mapping of motor cortices the evoked responses can be quantitatively monitored by electromyographic (EMG) recordings. No such setup exists for monitoring of writing during nTMS mappings of writing related cortical areas. NEW METHOD We present a novel approach for monitoring writing during nTMS mappings of motor writing related cortical areas. COMPARISON WITH EXISTING METHOD(S) To our best knowledge, this is the first demonstration of quantitative monitoring of motor evoked responses from hand by EMG, and of pen related activity during writing with our custom made pen, together with the application of chronometric TMS design and patterned protocol of rTMS. RESULTS The method was applied in four healthy subjects participating in writing during nTMS mapping of the premotor cortical area corresponding to BA 6 and close to the superior frontal sulcus. The results showed that stimulation impaired writing in all subjects. The corresponding spectra of measured signal related to writing movements was observed in the frequency band 0-20 Hz. Magnetic stimulation affected writing by suppressing normal writing frequency band. CONCLUSION The proposed setup for monitoring of writing provides additional quantitative data for monitoring and the analysis of rTMS induced writing response modifications. The setup can be useful for investigation of neurophysiologic mechanisms of writing, for therapeutic effects of nTMS, and in preoperative mapping of language cortical areas in patients undergoing brain surgery.
Collapse
Affiliation(s)
- Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology (LAHEN), Department of Neuroscience, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia.
| | - Dragan Gabelica
- Laboratory for Human and Experimental Neurophysiology (LAHEN), Department of Neuroscience, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia.
| | - Igor Vujović
- Faculty of Maritime Studies, University of Split, Zrinsko-Frankopanska 38, 21000 Split, Croatia.
| | - Joško Šoda
- Faculty of Maritime Studies, University of Split, Zrinsko-Frankopanska 38, 21000 Split, Croatia.
| | - Nikolina Batarelo
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Croatia, R. Boškovića 32, 21000 Split, Croatia.
| | - Andrija Džimbeg
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Croatia, R. Boškovića 32, 21000 Split, Croatia.
| | - Marina Zmajević Schönwald
- Department of Neurosurgery, Clinical Unit for Intraoperative Neurophysiologic Monitoring, Clinical Medical Centre "Sisters of Mercy", Vinogradska cesta 29, 10000 Zagreb, Croatia.
| | - Krešimir Rotim
- Department of Neurosurgery, Clinical Unit for Intraoperative Neurophysiologic Monitoring, Clinical Medical Centre "Sisters of Mercy", Vinogradska cesta 29, 10000 Zagreb, Croatia.
| | - Zoran Đogaš
- Laboratory for Human and Experimental Neurophysiology (LAHEN), Department of Neuroscience, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia.
| |
Collapse
|
23
|
Roux FE, Minkin K, Durand JB, Sacko O, Réhault E, Tanova R, Démonet JF. Electrostimulation mapping of comprehension of auditory and visual words. Cortex 2015; 71:398-408. [DOI: 10.1016/j.cortex.2015.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/19/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
|
24
|
Abstract
To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner’s area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.
Collapse
Affiliation(s)
- Yuichi Higashiyama
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Neurology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Katsuhiko Takeda
- Department of Neurology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Yoshiaki Someya
- Center for Advanced Research for Logic and Sensibility, Keio University, Tokyo, Japan
| | - Yoshiyuki Kuroiwa
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- * E-mail:
| |
Collapse
|