1
|
Giampiccolo D, Herbet G, Duffau H. The inferior fronto-occipital fasciculus: bridging phylogeny, ontogeny and functional anatomy. Brain 2025; 148:1507-1525. [PMID: 39932875 PMCID: PMC12074009 DOI: 10.1093/brain/awaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/27/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The inferior-fronto-occipital fasciculus (IFOF) is a long-range white matter tract that connects the prefrontal cortex with parietal, posterior temporal and occipital cortices. First identified in the 19th century through the pioneering studies of Mayo and Meynert using blunt dissection, its anatomy and function remain contentious topics. Structurally, its projections are well documented in human blunt dissection and tractography literature, yet its existence has been questioned by tract-tracing studies in macaques. Functionally, while traditional results from direct white matter stimulation during awake surgery suggested a contribution to language, recent evidence from stimulation and lesion data may indicate a broader role in executive control, extending to attention, motor cognition, memory, reading, emotion recognition and theory of mind. This review begins by examining anatomical evidence suggesting that the IFOF evolved in non-human primates to connect temporal and occipital cortices to prefrontal regions involved in context-dependent selection of visual features for action. We then integrate developmental, electrophysiological, functional and anatomical evidence for the human IFOF to propose it has a similar role in manipulation of visual features in our species-particularly when inhibition of overriding but task-irrelevant stimuli is required to prioritize a second, task-relevant stimulus. Next, we introduce a graded model in which dorsal (orbitofrontal, superior and middle frontal to precuneal, angular and supero-occipital projections) and ventral (inferior frontal to posterotemporal, basal temporal and infero-occipital) projections of the IFOF support perceptual or conceptual control of visual representations for action, respectively. Leveraging this model, we address controversies in the current literature regarding language, motor cognition, attention and emotion under the unifying view of cognitive control. Finally, we discuss surgical implications for this model and its impact on predicting and preventing neurological deficits in neurosurgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
- Department of Neurosurgery, Institute of Neuroscience, Cleveland Clinic London, London SW1X 7HY, UK
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier 34295, France
- Institut Universitaire de France, Paris 75005, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Praxiling Laboratory, UMR 5267, CNRS, Paul Valéry University, Montpellier 34090, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier 34295, France
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier 34000, France
| |
Collapse
|
2
|
Veerareddy A, Fang H, Safari N, Xu P, Krueger F. Social network size, empathy, and white matter: A diffusion tensor imaging (DTI) study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:471-487. [PMID: 39354289 DOI: 10.3758/s13415-024-01225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
Social networks are fundamental for social interactions, with the social brain hypothesis positing that the size of the neocortex evolved to meet social demands. However, the role of fractional anisotropy (FA) in white matter (WM) tracts relevant to mentalizing, empathy, and social networks remains unclear. In this study, we investigated the relationships between FA in brain regions associated with social cognition (superior longitudinal fasciculus (SLF), cingulum (CING), uncinate fasciculus, inferior fronto-occipital fasciculus), social network characteristics (diversity, size, complexity), and empathy (cognitive, affective). We employed diffusion tensor imaging, tract-based spatial statistics, and mediation analyses to examine these associations. Our findings revealed that increased social network size was positively correlated with FA in the left SLF. Further, our mediation analysis showed that lower FA in left CING was associated with increased social network size, mediated by cognitive empathy. In summary, our findings suggest that WM tracts involved in social cognition play distinct roles in social network size and empathy, potentially implicating affective brain regions. In conclusion, our findings offer new perspectives on the cognitive mechanisms involved in understanding others' mental states and experiencing empathy within supportive social networks, with potential implications for understanding individual differences in social behavior and mental health.
Collapse
Affiliation(s)
| | - Huihua Fang
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Nooshin Safari
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Pengfei Xu
- Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China.
- Great Bay Neuroscience and Technology Research Institute (Hong Kong), Hong Kong, Kwun Tong, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA
- Department of Psychology, University of Mannheim, Mannheim, Germany
| |
Collapse
|
3
|
Castelnovo V, Canu E, Aiello EN, Curti B, Sibilla E, Torre S, Freri F, Tripodi C, Lumaca L, Spinelli EG, Schito P, Russo T, Falzone Y, Verde F, Silani V, Ticozzi N, Sturm VE, Rankin KP, Gorno-Tempini ML, Poletti B, Filippi M, Agosta F. How to detect affect recognition alterations in amyotrophic lateral sclerosis. J Neurol 2024; 271:7208-7221. [PMID: 39287680 DOI: 10.1007/s00415-024-12686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To define the clinical usability of an affect recognition (AR) battery-the Comprehensive Affect Testing System (CATS)-in an Italian sample of patients with amyotrophic lateral sclerosis (ALS). METHODS 96 ALS patients and 116 healthy controls underwent a neuropsychological assessment including the AR subtests of the abbreviated version of the CATS (CATS-A). CATS-A AR subtests and their global score (CATS-A AR Quotient, ARQ) were assessed for their factorial, convergent, and divergent validity. The diagnostic accuracy of each CATS-A AR measure in discriminating ALS patients with cognitive impairment from cognitively normal controls and patients was tested via receiver-operating characteristics analyses. Optimal cut-offs were identified for CATS-A AR measures yielding an acceptable AUC value (≥ .70). The ability of CATS-A ARQ to discriminate between different ALS cognitive phenotypes was also tested. Gray-matter (GM) volumes of controls, ALS with normal (ALS-nARQ), and impaired ARQ score (ALS-iARQ) were compared using ANCOVA models. RESULTS CATS-A AR subtests and ARQ proved to have moderate-to-strong convergent and divergent validity. Almost all considered CATS-A measures reached acceptable accuracy and diagnostic power (AUC range = .79-.83). ARQ showed to be the best diagnostic measure (sensitivity = .80; specificity = .75) and discriminated between different ALS cognitive phenotypes. Compared to ALS-nARQ, ALS-iARQ patients showed reduced GM volumes in the right anterior cingulate, right middle frontal, left inferior temporal, and superior occipital regions. CONCLUSIONS The AR subtests of the CATS-A, and in particular the CATS-A ARQ, are sound measures of AR in ALS. AR deficits may be a valid marker of frontotemporal involvement in these patients.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Beatrice Curti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisa Sibilla
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Fabiola Freri
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Chiara Tripodi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Laura Lumaca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paride Schito
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Falzone
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi Di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi Di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi Di Milano, Milan, Italy
| | - Virginia E Sturm
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Katherine P Rankin
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, University of California, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, CA, USA
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi Di Milano, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
4
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Ceccanti M, Libonati L, Moret F, D'Andrea E, Gori MC, Bersani FS, Inghilleri M, Cambieri C. Emotion recognition in amyotrophic lateral sclerosis in a dynamic environment. J Neurol Sci 2024; 460:123019. [PMID: 38640582 DOI: 10.1016/j.jns.2024.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVE The aim of our study was to measure the ability of ALS patients to process dynamic facial expressions as compared to a control group of healthy subjects and to correlate this ability in ALS patients with neuropsychological, clinical and neurological measures of the disease. METHODS Sixty-three ALS patients and 47 healthy controls were recruited. All the ALS patients also underwent i) the Geneva Emotion Recognition Test (GERT) in which ten actors express 14 types of dynamic emotions in brief video clips with audio, ii) the Edimburgh Cognitive and Behavioral ALS Screen (ECAS) test; iii) the ALS Functional Rating Scale Revised (ALSFRS-R) and iv) the Medical Research Council (MRC) for the evaluation of muscle strength. All the healthy subjects enrolled in the study underwent the GERT. RESULTS The recognition of irritation and pleasure was significantly different between ALS patients and the control group. The amusement, despair, irritation, joy, sadness and surprise had been falsely recognized differently between the two groups. Specific ALS cognitive impairment was associated with bulbar-onset phenotype (OR = 14,3889; 95%CI = 3,96-52,16). No association was observed between false emotion recognition and cognitive impairment (F(1,60)=,56,971, p=,45,333). The number of categorical errors was significantly higher in the ALS patients than in the control group (27,66 ± 7,28 vs 17,72 ± 5,29; t = 8723; p = 0.001). CONCLUSIONS ALS patients show deficits in the dynamic processing of a wide range of emotions. These deficits are not necessarily associated with a decline in higher cognitive functions: this could therefore lead to an underestimation of the phenomenon.
Collapse
Affiliation(s)
- Marco Ceccanti
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Laura Libonati
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Federica Moret
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Edoardo D'Andrea
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Maria Cristina Gori
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | | | - Maurizio Inghilleri
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Chiara Cambieri
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy.
| |
Collapse
|
6
|
Easson K, Khairy M, Rohlicek CV, Gilbert G, Majnemer A, Nguyen K, Luu TM, Couture É, Nuyt A, Deoni SCL, Descoteaux M, Brossard‐Racine M. White matter microstructure is differently associated with executive functioning in youth born with congenital heart disease and youth born preterm. Brain Behav 2023; 13:e3308. [PMID: 37997566 PMCID: PMC10726855 DOI: 10.1002/brb3.3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION Executive function deficits and adverse psychological outcomes are common in youth with congenital heart disease (CHD) or born preterm. Association white matter bundles play a critical role in higher order cognitive and emotional functions and alterations to their microstructural organization may result in adverse neuropsychological functioning. This study aimed to examine the relationship of myelination and axon density and orientation alterations within association bundles with executive functioning, psychosocial well-being, and resilience in youth with CHD or born preterm. METHODS Youth aged 16 to 26 years born with complex CHD or preterm at ≤33 weeks of gestational age and healthy controls completed a brain MRI and self-report assessments of executive functioning, psychosocial well-being, and resilience. Multicomponent driven equilibrium single-pulse observation of T1 and T2 and neurite orientation dispersion and density imaging were used to calculate average myelin water fraction (MWF), neurite density index (NDI), and orientation dispersion index values for eight bilateral association bundles. The relationships of bundle-average metrics with neuropsychological outcomes were explored with linear regression and mediation analyses. RESULTS In the CHD group, lower MWF in several bundles was associated with poorer working memory and behavioral self-monitoring and mediated self-monitoring deficits relative to controls. In the preterm group, lower NDI in several bundles was associated with poorer emotional control and lower MWF in the left superior longitudinal fasciculus III mediated planning/organizing deficits relative to controls. No significant relationships were observed for psychosocial well-being or resilience. CONCLUSION The findings of this study suggest that microstructural alterations to association bundles, including lower myelination and axon density, have different relationships with executive functioning in youth with CHD and youth born preterm. Future studies should aim to characterize other neurobiological, social, and environmental influences that may interact with white matter microstructure and neuropsychological functioning in these at-risk individuals.
Collapse
Affiliation(s)
- Kaitlyn Easson
- Advances in Brain & Child Development (ABCD) Research LaboratoryResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Department of Neurology & Neurosurgery, Faculty of Medicine & Health SciencesMcGill UniversityMontrealQuebecCanada
| | - May Khairy
- Department of Pediatrics, Division of NeonatologyMontreal Children's HospitalMontrealQuebecCanada
| | - Charles V. Rohlicek
- Department of Pediatrics, Division of CardiologyMontreal Children's HospitalMontrealQuebecCanada
| | | | - Annette Majnemer
- Department of Neurology & Neurosurgery, Faculty of Medicine & Health SciencesMcGill UniversityMontrealQuebecCanada
- School of Physical & Occupational Therapy, Faculty of Medicine & Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Pediatrics, Division of NeurologyMontreal Children's HospitalMontrealQuebecCanada
| | - Kim‐Anh Nguyen
- Department of Pediatrics, Division of NeonatologyJewish General HospitalMontrealQuebecCanada
| | - Thuy Mai Luu
- Department of PediatricsCentre Hospitalier Universitaire Sainte‐JustineMontrealQuebecCanada
| | - Élise Couture
- Department of Pediatrics, Division of NeonatologyMontreal Children's HospitalMontrealQuebecCanada
| | - Anne‐Monique Nuyt
- Department of PediatricsCentre Hospitalier Universitaire Sainte‐JustineMontrealQuebecCanada
| | - Sean C. L. Deoni
- Advanced Baby Imaging LabBrown UniversityProvidenceRhode IslandUSA
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL)Université de SherbrookeSherbrookeQuebecCanada
- Imeka Solutions Inc.SherbrookeQuebecCanada
| | - Marie Brossard‐Racine
- Advances in Brain & Child Development (ABCD) Research LaboratoryResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Department of Neurology & Neurosurgery, Faculty of Medicine & Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Pediatrics, Division of NeonatologyMontreal Children's HospitalMontrealQuebecCanada
- School of Physical & Occupational Therapy, Faculty of Medicine & Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
7
|
Abrahams S. Neuropsychological impairment in amyotrophic lateral sclerosis-frontotemporal spectrum disorder. Nat Rev Neurol 2023; 19:655-667. [PMID: 37828358 DOI: 10.1038/s41582-023-00878-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a rapid course, characterized by motor neuron dysfunction, leading to progressive disability and death. This Review, which is aimed at neurologists, psychologists and other health professionals who follow evidence-based practice relating to ALS and frontotemporal dementia (FTD), examines the neuropsychological evidence that has driven the reconceptualization of ALS as a spectrum disorder ranging from a pure motor phenotype to ALS-FTD. It focuses on changes in cognition and behaviour, which vary in severity across the spectrum: around 50% individuals with ALS are within the normal range, 15% meet the criteria for ALS-FTD, and the remaining 35% are in the mid-spectrum range with milder and more focal impairments. The cognitive impairments include deficits in verbal fluency, executive functions, social cognition and language, and apathy is the most prevalent behavioural change. The pattern and severity of cognitive and behavioural change predicts underlying regional cerebral dysfunction from brain imaging and post-mortem pathology. Our increased recognition of cognition and behaviour as part of the ALS phenotype has led to the development and standardization of assessment tools, which have been incorporated into research and clinical care. Measuring change over the course of the disease is vital for clinical trials, and neuropsychology is proving to be a biomarker for the earliest preclinical changes.
Collapse
Affiliation(s)
- Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
de Alcântara C, Cruzeiro MM, França MC, Alencar MA, Jaeger A, de Araújo CM, da Gama NAS, Camargos ST, de Souza LC. A comparative study of cognitive and behavioral profiles between sporadic and type 8 amyotrophic lateral sclerosis. Muscle Nerve 2023; 68:316-322. [PMID: 37424512 DOI: 10.1002/mus.27927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION/AIMS Amyotrophic lateral sclerosis (ALS) type 8 (ALS8) is caused by VAPB gene mutations. The differences between neuropsychological and behavioral profiles of patients with sporadic ALS (sALS) and those with ALS8 are unclear. We aimed to compare cognitive performance and behavioral aspects between sALS and ALS8 patients. METHODS Our study included 29 symptomatic ALS8 patients (17 men; median age 49 years), 20 sALS patients (12 men; median age 55 years), and 30 healthy controls (16 men; median age 50 years), matched for sex, age, and education. Participants underwent neuropsychological assessments focused on executive functions, visual memory, and facial emotion recognition. Behavioral and psychiatric symptoms were evaluated using the Hospital Anxiety and Depression Scale and the Cambridge Behavioral Inventory. RESULTS Clinical groups (sALS and ALS8) exhibited lower global cognitive efficiency and impaired cognitive flexibility, processing speed, and inhibitory control compared with controls. ALS8 and sALS showed similar performance in most executive tests, except for poorer verbal (lexical) fluency in those with sALS. Apathy, anxiety, and stereotypical behaviors were frequent in both clinical groups. DISCUSSION sALS and ALS8 patients demonstrated similar deficits in most cognitive domains and had comparable behavioral profiles. These findings should be considered in the care of patients.
Collapse
Affiliation(s)
- Cássia de Alcântara
- Programa de Pós-graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Mariana Asmar Alencar
- Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio Jaeger
- Programa de Pós-graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Psicologia, Faculdade de Filosofia e de Ciências Humanas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caroline Martins de Araújo
- Programa de Pós-graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Sarah Teixeira Camargos
- Programa de Pós-graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Programa de Pós-graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Hadaya L, Dimitrakopoulou K, Vanes LD, Kanel D, Fenn-Moltu S, Gale-Grant O, Counsell SJ, Edwards AD, Saqi M, Batalle D, Nosarti C. Parsing brain-behavior heterogeneity in very preterm born children using integrated similarity networks. Transl Psychiatry 2023; 13:108. [PMID: 37012252 PMCID: PMC10070645 DOI: 10.1038/s41398-023-02401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Very preterm birth (VPT; ≤32 weeks' gestation) is associated with altered brain development and cognitive and behavioral difficulties across the lifespan. However, heterogeneity in outcomes among individuals born VPT makes it challenging to identify those most vulnerable to neurodevelopmental sequelae. Here, we aimed to stratify VPT children into distinct behavioral subgroups and explore between-subgroup differences in neonatal brain structure and function. 198 VPT children (98 females) previously enrolled in the Evaluation of Preterm Imaging Study (EudraCT 2009-011602-42) underwent Magnetic Resonance Imaging at term-equivalent age and neuropsychological assessments at 4-7 years. Using an integrative clustering approach, we combined neonatal socio-demographic, clinical factors and childhood socio-emotional and executive function outcomes, to identify distinct subgroups of children based on their similarity profiles in a multidimensional space. We characterized resultant subgroups using domain-specific outcomes (temperament, psychopathology, IQ and cognitively stimulating home environment) and explored between-subgroup differences in neonatal brain volumes (voxel-wise Tensor-Based-Morphometry), functional connectivity (voxel-wise degree centrality) and structural connectivity (Tract-Based-Spatial-Statistics). Results showed two- and three-cluster data-driven solutions. The two-cluster solution comprised a 'resilient' subgroup (lower psychopathology and higher IQ, executive function and socio-emotional scores) and an 'at-risk' subgroup (poorer behavioral and cognitive outcomes). No neuroimaging differences between the resilient and at-risk subgroups were found. The three-cluster solution showed an additional third 'intermediate' subgroup, displaying behavioral and cognitive outcomes intermediate between the resilient and at-risk subgroups. The resilient subgroup had the most cognitively stimulating home environment and the at-risk subgroup showed the highest neonatal clinical risk, while the intermediate subgroup showed the lowest clinical, but the highest socio-demographic risk. Compared to the intermediate subgroup, the resilient subgroup displayed larger neonatal insular and orbitofrontal volumes and stronger orbitofrontal functional connectivity, while the at-risk group showed widespread white matter microstructural alterations. These findings suggest that risk stratification following VPT birth is feasible and could be used translationally to guide personalized interventions aimed at promoting children's resilience.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Konstantina Dimitrakopoulou
- Translational Bioinformatics Platform, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Lucy D Vanes
- Centre for Neuroimaging Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Dana Kanel
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Sunniva Fenn-Moltu
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Gale-Grant
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mansoor Saqi
- Translational Bioinformatics Platform, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
10
|
Spinelli EG, Ghirelli A, Riva N, Canu E, Castelnovo V, Domi T, Pozzi L, Carrera P, Silani V, Chiò A, Filippi M, Agosta F. Profiling morphologic MRI features of motor neuron disease caused by TARDBP mutations. Front Neurol 2022; 13:931006. [PMID: 35911889 PMCID: PMC9334911 DOI: 10.3389/fneur.2022.931006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Mutations in the TARDBP gene are a rare cause of genetic motor neuron disease (MND). Morphologic MRI characteristics of MND patients carrying this mutation have been poorly described. Our objective was to investigate distinctive clinical and MRI features of a relatively large sample of MND patients carrying TARDBP mutations. Methods Eleven MND patients carrying a TARDBP mutation were enrolled. Eleven patients with sporadic MND (sMND) and no genetic mutations were also selected and individually matched by age, sex, clinical presentation and disease severity, along with 22 healthy controls. Patients underwent clinical and cognitive evaluations, as well as 3D T1-weighted and diffusion tensor (DT) MRI on a 3 Tesla scanner. Gray matter (GM) atrophy was first investigated at a whole-brain level using voxel-based morphometry (VBM). GM volumes and DT MRI metrics of the main white matter (WM) tracts were also obtained. Clinical, cognitive and MRI features were compared between groups. Results MND with TARDBP mutations was associated with all possible clinical phenotypes, including isolated upper/lower motor neuron involvement, with no predilection for bulbar or limb involvement at presentation. Greater impairment at naming tasks was found in TARDBP mutation carriers compared with sMND. VBM analysis showed significant atrophy of the right lateral parietal cortex in TARDBP patients, compared with controls. A distinctive reduction of GM volumes was found in the left precuneus and right angular gyrus of TARDBP patients compared to controls. WM microstructural damage of the corticospinal tract (CST) and inferior longitudinal fasciculi (ILF) was found in both sMND and TARDBP patients, compared with controls, although decreased fractional anisotropy of the right CST and increased axial diffusivity of the left ILF (p = 0.017) was detected only in TARDBP mutation carriers. Conclusions TARDBP patients showed a distinctive parietal pattern of cortical atrophy and greater damage of motor and extra-motor WM tracts compared with controls, which sMND patients matched for disease severity and clinical presentation were lacking. Our findings suggest that TDP-43 pathology due to TARDBP mutations may cause deeper morphologic alterations in both GM and WM.
Collapse
Affiliation(s)
- Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alma Ghirelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nilo Riva
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology, Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Adriano Chiò
- Rita Levi Montalcini “Department of Neuroscience, ” ALS Center, University of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta
| |
Collapse
|
11
|
Ozzoude M, Varriano B, Beaton D, Ramirez J, Holmes MF, Scott CJM, Gao F, Sunderland KM, McLaughlin P, Rabin J, Goubran M, Kwan D, Roberts A, Bartha R, Symons S, Tan B, Swartz RH, Abrahao A, Saposnik G, Masellis M, Lang AE, Marras C, Zinman L, Shoesmith C, Borrie M, Fischer CE, Frank A, Freedman M, Montero-Odasso M, Kumar S, Pasternak S, Strother SC, Pollock BG, Rajji TK, Seitz D, Tang-Wai DF, Turnbull J, Dowlatshahi D, Hassan A, Casaubon L, Mandzia J, Sahlas D, Breen DP, Grimes D, Jog M, Steeves TDL, Arnott SR, Black SE, Finger E, Tartaglia MC. Investigating the contribution of white matter hyperintensities and cortical thickness to empathy in neurodegenerative and cerebrovascular diseases. GeroScience 2022; 44:1575-1598. [PMID: 35294697 DOI: 10.1007/s11357-022-00539-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Change in empathy is an increasingly recognised symptom of neurodegenerative diseases and contributes to caregiver burden and patient distress. Empathy impairment has been associated with brain atrophy but its relationship to white matter hyperintensities (WMH) is unknown. We aimed to investigate the relationships amongst WMH, brain atrophy, and empathy deficits in neurodegenerative and cerebrovascular diseases. Five hundred thirteen participants with Alzheimer's disease/mild cognitive impairment, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), Parkinson's disease, or cerebrovascular disease (CVD) were included. Empathy was assessed using the Interpersonal Reactivity Index. WMH were measured using a semi-automatic segmentation and FreeSurfer was used to measure cortical thickness. A heterogeneous pattern of cortical thinning was found between groups, with FTD showing thinning in frontotemporal regions and CVD in left superior parietal, left insula, and left postcentral. Results from both univariate and multivariate analyses revealed that several variables were associated with empathy, particularly cortical thickness in the fronto-insulo-temporal and cingulate regions, sex (female), global cognition, and right parietal and occipital WMH. Our results suggest that cortical atrophy and WMH may be associated with empathy deficits in neurodegenerative and cerebrovascular diseases. Future work should consider investigating the longitudinal effects of WMH and atrophy on empathy deficits in neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Miracle Ozzoude
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 0S8, Canada.,L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Brenda Varriano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 0S8, Canada
| | - Derek Beaton
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Joel Ramirez
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melissa F Holmes
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher J M Scott
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Fuqiang Gao
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Paula McLaughlin
- Nova Scotia Health and Dalhousie University, Halifax, NS, Canada
| | - Jennifer Rabin
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Maged Goubran
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Donna Kwan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Queen's University, Kingston, ON, Canada
| | - Angela Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.,School of Communication Sciences and Disorders, Faculty of Health Sciences, Western University, London, ON, Canada
| | - Robert Bartha
- Robarts Research Institute, Western University, London, ON, Canada
| | - Sean Symons
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program for Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Connie Marras
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program for Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Lorne Zinman
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christen Shoesmith
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Michael Borrie
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,St. Joseph's Healthcare Centre, London, ON, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Frank
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Bruyère Research Institute, Ottawa, ON, Canada
| | - Morris Freedman
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Baycrest Health Sciences, Toronto, ON, Canada
| | - Manuel Montero-Odasso
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada.,Gait and Brain Lab, Parkwood Institute, London, ON, Canada
| | - Sanjeev Kumar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephen Pasternak
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Stephen C Strother
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bruce G Pollock
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Dallas Seitz
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David F Tang-Wai
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - John Turnbull
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Leanne Casaubon
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer Mandzia
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Demetrios Sahlas
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - David Grimes
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,London Health Sciences Centre, London, ON, Canada
| | - Thomas D L Steeves
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Sandra E Black
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 0S8, Canada. .,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
12
|
Pallidal functional connectivity changes are associated with disgust recognition in pure motor amyotrophic lateral sclerosis. NEUROIMAGE: CLINICAL 2022; 35:103145. [PMID: 36002963 PMCID: PMC9421543 DOI: 10.1016/j.nicl.2022.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
In cognitively normal ALS, we detected early difficulties in recognizing disgust. Pallidum functional connectivity (FC) alterations occur in pure-motor ALS patients. Reduced left pallidum-temporal FC is linked to altered disgust recognition.
In the present study, we aimed to investigate the resting-state functional connectivity (RS-FC) of the globus pallidus (GP) in patients with amyotrophic lateral sclerosis (ALS) compared to healthy controls, and the relationship between RS-FC changes and disgust recognition. Twenty-six pure-motor ALS patients and 52 healthy controls underwent RS functional MRI and a neuropsychological assessment including the Comprehensive Affect Testing System. A seed-based RS-FC analysis was performed between the left and right GP and the rest of the brain and compared between groups. Correlations between RS-FC significant changes and subjects’ performance in recognizing disgust were tested. Compared to controls, patients were significantly less able to recognize disgust. In ALS compared to controls, the seed-based analysis showed: reduced RS-FC between bilateral GP and bilateral middle and superior frontal and middle cingulate gyri, and increased RS-FC between bilateral GP and bilateral postcentral, supramarginal and superior temporal gyri and Rolandic operculum. Decreased RS-FC was further observed between left GP and left middle and inferior temporal gyri and bilateral caudate; and increased RS-FC was also shown between right GP and left lingual and fusiform gyri. In patients and controls, lower performance in recognizing disgust correlated with reduced RS-FC between left GP and left middle and inferior temporal gyri. In pure-motor ALS patients, we demonstrated altered RS-FC between GP and the rest of the brain. The reduced left pallidum-temporo-striatal RS-FC may have a role in the lower ability of patients in recognizing disgust.
Collapse
|
13
|
Magno MA, Canu E, Filippi M, Agosta F. Social cognition in the FTLD spectrum: evidence from MRI. J Neurol 2021; 269:2245-2258. [PMID: 34797434 DOI: 10.1007/s00415-021-10892-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Over the past few years, there has been great interest in social cognition, a wide term referring to the human ability of understanding others' emotions, thoughts, and intentions, to empathize with them and to behave accordingly. While there is no agreement on the classification of social cognitive processes, they can broadly be categorized as consisting of theory of mind, empathy, social perception, and social behavior. The study of social cognition and its relative deficits is increasingly assuming clinical relevance. However, the clinical and neuroanatomical correlates of social cognitive alterations in neurodegenerative conditions, such as those belonging to the frontotemporal lobar (FTLD) spectrum, are not fully established. In this review, we describe the current understanding of social cognition impairments in different FTLD conditions with respect to MRI.
Collapse
Affiliation(s)
- Maria Antonietta Magno
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
14
|
Emotional Processing and Experience in Amyotrophic Lateral Sclerosis: A Systematic and Critical Review. Brain Sci 2021; 11:brainsci11101356. [PMID: 34679420 PMCID: PMC8534224 DOI: 10.3390/brainsci11101356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Even though increasing literature describes changes in emotional processing in Amyotrophic Lateral Sclerosis (ALS), efforts to summarize relevant findings are lacking in the field. A systematic literature review was performed to provide a critical and up-to-date account of emotional abilities in ALS. References were identified by searches of PubMed, Web of Science and Scopus (1980–2021, English literature), with the following key terms: (“Amyotrophic Lateral Sclerosis” or “Primary Lateral Sclerosis” or “Motor Neuron”) and “Emotion*” and (“Processing” or “Attribution” or “Elaboration” or “Perception” or “Recognition”). Studies concerning only caregivers, pseudobulbar affect, and social cognition were excluded. Forty-one articles were included, all concerning ALS, and seven topics were identified: Emotion recognition, Emotional responsiveness, Emotional reactivity, Faces approachability rating, Valence rating, Memory for emotional materials and Alexithymia. The majority of these aspects have only been sparsely addressed. The evidence confirms altered emotional processing in ALS. The most consistent findings regard the recognition of facial expressions for negative emotions, but also alterations in the subjective responsiveness to emotional stimuli (arousal, valence and approachability), in psychophysiological and cerebral reactivity and in emotional memory, together with alexithymia traits, were reported. According to this evidence, emotional abilities should be included in the clinical assessment and therapeutic interventions.
Collapse
|
15
|
Castelnovo V, Canu E, Magno MA, Basaia S, Riva N, Poletti B, Silani V, Filippi M, Agosta F. Impaired recognition of disgust in amyotrophic lateral sclerosis is related to basal ganglia involvement. NEUROIMAGE-CLINICAL 2021; 32:102803. [PMID: 34537684 PMCID: PMC8478135 DOI: 10.1016/j.nicl.2021.102803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Altered ability to correctly recognize disgust in
pure motor ALS patients. Potential role of the left pallidum in the altered
processing of disgust. Disgust as one of the first emotion that ALS
patients fail to recognize.
In the present study we investigated emotion recognition
in pure motor amyotrophic lateral sclerosis (ALS) patients and its relationship
with the integrity of basal ganglia, hippocampus and amygdala. Twenty ALS
patients without either cognitive or behavioural impairment, and 52 matched
healthy controls performed a neuropsychological assessment including the
Comprehensive Affect Testing System (CATS) investigating emotion recognition.
All participants underwent also a 3T brain MRI. Volumes of basal ganglia,
hippocampus and amygdala bilaterally were measured using FIRST in FSL.
Sociodemographic, cognitive and MRI data were compared between groups. In ALS
patients, correlations between CATS significant findings, brain volumes,
cognition, mood and behaviour were explored. ALS patients showed altered
performances at the CATS total score and, among the investigated emotions,
patients were significantly less able to recognize disgust compared with
controls. No brain volumetric differences were observed between groups. In ALS
patients, a lower performance in disgust recognition was related with a reduced
volume of the left pallidum and a lower performance on the Edinburgh Cognitive
and Behavioural ALS Screen. Cognitively/behaviourally unimpaired ALS patients
showed impaired disgust recognition, which was associated with pallidum volume.
The association with cognitive alterations may suggest impaired disgust
recognition as an early marker of cognitive decline.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Antonietta Magno
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
16
|
Canna A, Trojsi F, Di Nardo F, Caiazzo G, Tedeschi G, Cirillo M, Esposito F. Combining structural and metabolic markers in a quantitative MRI study of motor neuron diseases. Ann Clin Transl Neurol 2021; 8:1774-1785. [PMID: 34342169 PMCID: PMC8419394 DOI: 10.1002/acn3.51418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess the performance of a combination of three quantitative MRI markers (iron deposition, basal neuronal metabolism, and regional atrophy) for differential diagnosis between amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS). METHODS In total, 33 ALS, 12 PLS, and 28 healthy control (HC) subjects underwent a 3T MRI study including single- and multi-echo sequences for gray matter (GM) volumetry and quantitative susceptibility mapping (QSM) and a pseudo-continuous arterial spin labeling (ASL) sequence for cerebral blood flow (CBF) measurement. Mean values of QSM, CBF, and GM volumes were extracted in the motor cortex, basal ganglia, thalamus, amygdala, and hippocampus. A generalized linear model was applied to the three measures to binary discriminate between groups. The diagnostic performances were evaluated via receiver operating characteristic analyses. RESULTS A significant discrimination was obtained: between ALS and HCs in the left and right motor cortex, where QSM increases were respectively associated with disability scores and disease duration; between PLS and ALS in the left motor cortex, where PLS patients resulted significantly more atrophic; between ALS and HC in the right motor cortex, where GM volumes were associated with upper motor neuron scores. Significant discrimination between ALS and HC was achieved in subcortical structures only combining all three parameters. INTERPRETATION While increased QSM values in the motor cortex of ALS patients is a consolidated finding, combining QSM, CBF, and GM volumetry shows higher diagnostic potential for differentiating ALS patients from HC subjects and, in the motor cortex, between ALS and PLS.
Collapse
Affiliation(s)
- Antonietta Canna
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Mario Cirillo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
17
|
Roux A, Lemaitre AL, Deverdun J, Ng S, Duffau H, Herbet G. Combining Electrostimulation With Fiber Tracking to Stratify the Inferior Fronto-Occipital Fasciculus. Front Neurosci 2021; 15:683348. [PMID: 34093122 PMCID: PMC8172990 DOI: 10.3389/fnins.2021.683348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The inferior fronto-occipital fasciculus (IFOF) is one of the longest association fiber tracts of the brain. According to the most recent anatomical studies, it may be formed by several layers, suggesting a role in multiple cognitive functions. However, to date, no attempt has been made to dissociate the functional contribution of the IFOF subpathways. In this study, real-time, cortico-subcortical mapping with direct electrostimulation was performed in 111 patients operated on in wide-awake surgery for a right low-grade glioma. Patients performed two behavioral tasks during stimulation, tapping, respectively, mentalizing and visual semantic cognition-two functions supposed to be partly mediated by the IFOF. Responsive white matter sites were first subjected to a clustering analysis to assess potential topological differences in network organization. Then they were used as seeds to generate streamline tractograms based on the HC1021 diffusion dataset (template-based approach). The tractograms obtained for each function were overlapped and contrasted to determine whether some fiber pathways were more frequently involved in one or the other function. The obtained results not only provided strong evidence for a role of the right IFOF in both functions, but also revealed that the tract is dissociable into two functional strata according to a ventral (semantic) and dorsal (mentalizing) compartmentalization. Besides, they showed a high degree of anatomo-functionnal variability across patients in the functional implication of the IFOF, possibly related to symmetrical/hemispheric differences in network organization. Collectively, these findings support the view that the right IFOF is a functionally multi-layered structure, with nevertheless interindividual variations.
Collapse
Affiliation(s)
- Alexandre Roux
- Department of Neurosurgery, GHU Paris, Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm UMR 1266, IMA-Brain, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Jeremy Deverdun
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,I2FH, Institut d'Imagerie Fonctionnelle Humaine, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
18
|
Zemmoura I, Burkhardt E, Herbet G. The inferior longitudinal fasciculus: anatomy, function and surgical considerations. J Neurosurg Sci 2021; 65:590-604. [PMID: 33940783 DOI: 10.23736/s0390-5616.21.05391-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inferior longitudinal fasciculus (ILF) is a large association white matter tract that interconnects, in a bidirectional manner, the occipital cortex to anterior temporal structures. In view of both its pattern of cortical projections and its recently evidenced multilayered anatomical organization, the ILF has been supposed to be vital for maintaining a wide range of cognitive and affective processes operating on the visual modality. As tumors commonly damage the temporal cortex, an updated knowledge of the functional anatomy of this ventral tract is needed to better map and monitor online its potential functions and thus to improve surgical outcomes. In this review, we first describe the gross anatomy of the ILF, its array of cortical terminations and its different layers. We then provide a comprehensive review of the functions that have been assigned to the tract. We successively address its role in object and face recognition, visual emotion recognition, language and semantic, including reading, and memory. It is especially shown that the ILF is critically involved in visually-guided behaviors, as its breakdown, both in sudden neurosurgical and progressive neurodegenerative diseases, is commonly associated with visual-specific neuropsychological syndromes (e.g. prosopagnosia and pure alexia, and so on). In the last section, we discuss the extent to which the ILF can reorganize in response to glioma infiltration and to surgery, and provide some reflections on how its intra-operative mapping may be refined.
Collapse
Affiliation(s)
- Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France - .,CHRU de Tours, Neurosurgery Department, Tours, France -
| | - Eléonor Burkhardt
- Praxiling, CNRS UMR 5267, Paul Valéry Montpellier 3 University, Montpellier, France
| | - Guillaume Herbet
- Institute of Functional Genomics, University of Montpellier, CNRS UMR5203, INSERM U1191, Montpellier, France.,Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
19
|
Crespi C, Santi GC, Dodich A, Lupo F, Greco LC, Piccoli T, Lunetta C, Cerami C. Unraveling Moral Reasoning in Amyotrophic Lateral Sclerosis: How Emotional Detachment Modifies Moral Judgment. Front Psychol 2020; 11:2083. [PMID: 32973626 PMCID: PMC7471658 DOI: 10.3389/fpsyg.2020.02083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/28/2020] [Indexed: 01/28/2023] Open
Abstract
In the last decade, scientific literature provided solid evidence of cognitive deficits in amyotrophic lateral sclerosis (ALS) patients and their effects on end-life choices. However, moral cognition and judgment are still poorly investigated in this population. Here we aimed at evaluating both socio-cognitive and socio-affective components of moral reasoning in a sample of 28 ALS patients. Patients underwent clinical and neuropsychological evaluation including basic cognitive and social cognition measures. Additionally, we administered an experimental task including moral dilemmas, with instrumental and incidental conditions. Patients’ performances were compared with a control group [healthy control (HC)], including 36 age-, gender-, and education-matched healthy subjects. Despite that the judgment pattern was comparable in ALS and HC, patients resulted less prone to carry out a moral transgression compared to HC. Additionally, ALS patients displayed higher levels of moral permissibility and lower emotional arousal, with similar levels of engagement in both instrumental and incidental conditions. Our findings expanded the current literature about cognitive deficits in ALS, showing that in judging moral actions, patients may present non-utilitarian choices and emotion flattening. Such a decision-making profile may have relevant implications in applying moral principles in real-life situations and for the judgment of end-of-life treatments and care in clinical settings.
Collapse
Affiliation(s)
- Chiara Crespi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Alessandra Dodich
- CeRiN, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Federica Lupo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | | | - Tommaso Piccoli
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Chiara Cerami
- Istituto Universitario di Studi Superiori, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
20
|
Gabel MC, Broad RJ, Young AL, Abrahams S, Bastin ME, Goldstein LH, Turner MR, Cercignani M, Leigh PN. Reply to: Early white matter changes on diffusion tensor imaging in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:1266-1267. [PMID: 32639092 PMCID: PMC7359105 DOI: 10.1002/acn3.51107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Matt C Gabel
- Department of Neuroscience, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, UK
| | - Rebecca J Broad
- Department of Neuroscience, Trafford Centre, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, UK
| | - Alexandra L Young
- Centre for Medical Image Computing, Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sharon Abrahams
- Department of Psychology, School of Philosophy, Psychology & Language Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Department of Psychology, School of Philosophy, Psychology & Language Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Laura H Goldstein
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Martin R Turner
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mara Cercignani
- Department of Neuroscience, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, UK
| | - P Nigel Leigh
- Department of Neuroscience, Trafford Centre, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, UK
| |
Collapse
|
21
|
Maresca G, Maggio MG, Latella D, Naro A, Portaro S, Calabrò RS. Understanding the role of social cognition in neurodegenerative Disease: A scoping review on an overlooked problem. J Clin Neurosci 2020; 77:17-24. [PMID: 32389547 DOI: 10.1016/j.jocn.2020.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022]
Abstract
Social cognition (SC) is the set of socio-cognitive processes that guide automatic and voluntary behaviors by modulating behavioral responses, it includes both cognitive (Theory of the mind - ToM) and affective aspects (Empathy). SC also includes representations of internal somatic states, self-knowledge, perception of others, communication with others and interpersonal motivations. SC is relevant in daily life and reflects the neural complexity of social processing. The purpose of this scoping review is to evaluate the role of SC in neurological disorders, also considering the pathophysiological mechanisms underlying SC and potential assessment tools. The included studies were carried out between 2010 and 2019 and were found on PubMed, Scopus, Cochrane, and Web of Sciences databases, using the combined terms "social cognition"; "dementia"; "multiple sclerosis"; "parkinson", "amyotrophic lateral sclerosis", "neurodegenerative disease". Our review has shown that different SC domains are affected by several neurological conditions, with regards to dementia and amyotrophic lateral sclerosis. Further studies are needed to investigate the association between cognitive and social deficits, for a better management of patients with neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Antonino Naro
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | | | | |
Collapse
|
22
|
Chen QF, Zhang XH, Huang NX, Chen HJ. Identification of Amyotrophic Lateral Sclerosis Based on Diffusion Tensor Imaging and Support Vector Machine. Front Neurol 2020; 11:275. [PMID: 32411072 PMCID: PMC7198809 DOI: 10.3389/fneur.2020.00275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: White matter (WM) impairments involving both motor and extra-motor areas have been well-documented in amyotrophic lateral sclerosis (ALS). This study tested the potential of diffusion measurements in WM for identifying ALS based on support vector machine (SVM). Methods: Voxel-wise fractional anisotropy (FA) values of diffusion tensor images (DTI) were extracted from 22 ALS patients and 26 healthy controls and served as discrimination features. The revised ALS Functional Rating Scale (ALSFRS-R) was employed to assess ALS severity. Feature ranking and selection were based on Fisher scores. A linear kernel SVM algorithm was applied to build the classification model, from which the classification performance was evaluated. To promote classifier generalization ability, a leave-one-out cross-validation (LOOCV) method was adopted. Results: By using the 2,400~3,400 ranked features as optimal features, the highest classification accuracy of 83.33% (sensitivity = 77.27% and specificity = 88.46%, P = 0.0001) was achieved, with an area under receiver operating characteristic curve of 0.862. The predicted function value was positively correlated with patient ALSFRS-R scores (r = 0.493, P = 0.020). In the optimized SVM model, FA values from several regions mostly contributed to classification, primarily involving the corticospinal tract pathway, postcentral gyrus, and frontal and parietal areas. Conclusions: Our results suggest the feasibility of ALS diagnosis based on SVM analysis and diffusion measurements of WM. Additional investigations using a larger cohort is recommended in order to validate the results of this study.
Collapse
Affiliation(s)
- Qiu-Feng Chen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
23
|
Li Y, Huang P, Guo T, Guan X, Gao T, Sheng W, Zhou C, Wu J, Song Z, Xuan M, Gu Q, Xu X, Yang Y, Zhang M. Brain structural correlates of depressive symptoms in Parkinson's disease patients at different disease stage. Psychiatry Res Neuroimaging 2020; 296:111029. [PMID: 31918166 DOI: 10.1016/j.pscychresns.2019.111029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) pathology may damage emotion circuit and cause depression. We investigated whether the neural basis of depressive symptoms varies at different PD stages. Seventy-six healthy controls (HC) and 98 PD patients (divided into early and middle stage groups) underwent brain magnetic resonance imaging (MRI) and general neuropsychological tests. Voxel-based morphometry and tract-based analysis were used to study the association between brain structural alterations and the Hamilton Depression Scale 17 Item (HAMD-17) scores in different groups. Comparing with HC group, PD patients showed widespread brain alterations in both gray and white matter. The HAMD-17 scores were positively correlated with GM volume in the right pre-central gyrus of early PD patients. In the middle stage group, HAMD-17 scores were positively correlated with GM volume in midbrain and right superior temporal gyrus, and negatively associated with GM volume in left anterior cingulate and superior frontal gyrus. In white matter analysis, The HAMD-17 scores were positively correlated with fractional anisotropy value of the bilateral inferior fronto-occipital fasciculus in the early stage group, but not the middle stage group. We concluded that the neural basis of depressive symptoms might be distinct in different stages of PD, implying the need for differential treatments.
Collapse
Affiliation(s)
- Yanxuan Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University 325000, Wenzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Ting Gao
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Wenshuang Sheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University 325000, Wenzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University 325000, Wenzhou, China.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China.
| |
Collapse
|
24
|
Herbet G, Duffau H. Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions. Physiol Rev 2020; 100:1181-1228. [PMID: 32078778 DOI: 10.1152/physrev.00033.2019] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For more than one century, brain processing was mainly thought in a localizationist framework, in which one given function was underpinned by a discrete, isolated cortical area, and with a similar cerebral organization across individuals. However, advances in brain mapping techniques in humans have provided new insights into the organizational principles of anatomo-functional architecture. Here, we review recent findings gained from neuroimaging, electrophysiological, as well as lesion studies. Based on these recent data on brain connectome, we challenge the traditional, outdated localizationist view and propose an alternative meta-networking theory. This model holds that complex cognitions and behaviors arise from the spatiotemporal integration of distributed but relatively specialized networks underlying conation and cognition (e.g., language, spatial cognition). Dynamic interactions between such circuits result in a perpetual succession of new equilibrium states, opening the door to considerable interindividual behavioral variability and to neuroplastic phenomena. Indeed, a meta-networking organization underlies the uniquely human propensity to learn complex abilities, and also explains how postlesional reshaping can lead to some degrees of functional compensation in brain-damaged patients. We discuss the major implications of this approach in fundamental neurosciences as well as for clinical developments, especially in neurology, psychiatry, neurorehabilitation, and restorative neurosurgery.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
Benbrika S, Desgranges B, Eustache F, Viader F. Cognitive, Emotional and Psychological Manifestations in Amyotrophic Lateral Sclerosis at Baseline and Overtime: A Review. Front Neurosci 2019; 13:951. [PMID: 31551700 PMCID: PMC6746914 DOI: 10.3389/fnins.2019.00951] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
It is now well recognized that, in addition to motor impairment, amyotrophic lateral sclerosis (ALS) may cause extra-motor clinical signs and symptoms. These can include the alteration of certain cognitive functions, impaired social cognition, and changes in the perception and processing of emotions. Where these extra-motor manifestations occur in ALS, they usually do so from disease onset. In about 10% of cases, the cognitive and behavioral changes meet the diagnostic criteria for frontotemporal dementia. The timecourse of behavioral and cognitive involvement in ALS is unclear. Whereas longitudinal studies have failed to show cognitive decline over time, some cross-sectional studies have demonstrated poorer cognitive performances in the advanced stages of the disease. Neuroimaging studies show that in ALS, extra-motor signs and symptoms are associated with specific brain lesions, but little is known about how they change over time. Finally, patients with ALS appear less depressed than might be expected, given the prognosis. Moreover, many patients achieve satisfactory psychosocial adjustment throughout the course of the disease, regardless of their degree of motor disability. There are scant longitudinal data on extra-motor impairment in ALS, and to our knowledge, no systematic review on this subject has yet been published. Even so, a better understanding of patients' clinical trajectory is essential if they are to be provided with tailored care and given the best possible support. We therefore undertook to review the evidence for extra-motor changes and their time course in ALS, in both the cognitive, emotional and psychological domains, with a view to identifying mechanisms that may help these patients cope with their disease.
Collapse
Affiliation(s)
| | - Béatrice Desgranges
- Neuropsychology and Imaging of Human Memory, Normandy University-PSL Research University-EPHE-INSERM U1077, Caen University Hospital, Caen, France
| | | | | |
Collapse
|
26
|
Eddy CM. What Do You Have in Mind? Measures to Assess Mental State Reasoning in Neuropsychiatric Populations. Front Psychiatry 2019; 10:425. [PMID: 31354534 PMCID: PMC6636467 DOI: 10.3389/fpsyt.2019.00425] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Social interaction is closely associated with both functional capacity and well-being. Previous research has not only revealed evidence of social dysfunction in individuals with a wide range of psychiatric and neurological disorders but also generated an abundance of potential measures for assessing social cognition. This review explores the most popular measures used within neuropsychiatric populations to investigate the ability to recognize or reason about the mental states of others. Measures are also critically analyzed in terms of strengths and limitations to aid task selection in future clinical studies. The most frequently applied assessment tools use verbal, visual or audiovisual forms of presentation and assess recognition of mental states from facial features, self-rated empathy, the understanding of other's cognitive mental states such as beliefs and intentions, or the ability to combine knowledge of other's thoughts and emotions in order to understand subtle communications or socially inappropriate behavior. Key weaknesses of previous research include limited investigation of relationships with clinical symptoms, and underutilization of measures of everyday social functioning that offer a useful counterpart to traditional "lab" tasks. Future studies should aim to carefully select measures not only based on the range of skills to be assessed but also taking into account potential difficulties with interpretation and the need to gain insight into the application of social cognitive skills as well as ability per se. Some of the best measures include those with well-matched control trials (e.g., Yoni Task) or those that restrict the influence of verbal deficits (e.g., intentions comic strip task), elicit spontaneous mentalizing (e.g., Animations Task), and possess greater ecological validity (e.g., Movie for the Assessment of Social Cognition). Social cognitive research within psychiatric populations will be further enhanced through the development of more closely matched control tasks, and the exploration of relationships between task performance, medication, strategy use, and broader emotional and motor functions.
Collapse
Affiliation(s)
- Clare M. Eddy
- Research and Innovation, BSMHFT National Centre for Mental Health, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Arioli M, Canessa N. Neural processing of social interaction: Coordinate-based meta-analytic evidence from human neuroimaging studies. Hum Brain Mapp 2019; 40:3712-3737. [PMID: 31077492 DOI: 10.1002/hbm.24627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
While the action observation and mentalizing networks are considered to play complementary roles in understanding others' goals and intentions, they might be concurrently engaged when processing social interactions. We assessed this hypothesis via three activation-likelihood-estimation meta-analyses of neuroimaging studies on the neural processing of: (a) social interactions, (b) individual actions by the action observation network, and (c) mental states by the mentalizing network. Conjunction analyses and direct comparisons unveiled overlapping and specific regions among the resulting maps. We report quantitative meta-analytic evidence for a "social interaction network" including key nodes of the action observation and mentalizing networks. An action-social interaction-mentalizing gradient of activity along the posterior temporal cortex highlighted a hierarchical processing of interactions, from visuomotor analyses decoding individual and shared intentions to in-depth inferences on actors' intentional states. The medial prefrontal cortex, possibly in conjunction with the amygdala, might provide additional information concerning the affective valence of the interaction. This evidence suggests that the functional architecture underlying the neural processing of interactions involves the joint involvement of the action observation and mentalizing networks. These data might inform the design of rehabilitative treatments for social cognition disorders in pathological conditions, and the assessment of their outcome in randomized controlled trials.
Collapse
Affiliation(s)
- Maria Arioli
- Department of Humanities and Life Sciences, Scuola Universitaria Superiore IUSS, Pavia, Italy.,Cognitive Neuroscience Laboratory, IRCCS ICS Maugeri, Pavia, Italy
| | - Nicola Canessa
- Department of Humanities and Life Sciences, Scuola Universitaria Superiore IUSS, Pavia, Italy.,Cognitive Neuroscience Laboratory, IRCCS ICS Maugeri, Pavia, Italy
| |
Collapse
|
28
|
Frontal Anatomical Correlates of Cognitive and Speech Motor Deficits in Amyotrophic Lateral Sclerosis. Behav Neurol 2019; 2019:9518309. [PMID: 31001362 PMCID: PMC6436339 DOI: 10.1155/2019/9518309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/25/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023] Open
Abstract
The goal of this study was to identify neurostructural frontal lobe correlates of cognitive and speaking rate changes in amyotrophic lateral sclerosis (ALS). 17 patients diagnosed with ALS and 12 matched controls underwent clinical, bulbar, and neuropsychological assessment and structural neuroimaging. Neuropsychological testing was performed via a novel computerized frontal battery (ALS-CFB), based on a validated theoretical model of frontal lobe functions, and focused on testing energization, executive function, emotion processing, theory of mind, and behavioral inhibition via antisaccades. The measure of speaking rate represented bulbar motor changes. Neuroanatomical assessment was performed using volumetric analyses focused on frontal lobe regions, postcentral gyrus, and occipital lobes as controls. Partial least square regressions (PLS) were used to predict behavioral (cognitive and speech rate) outcomes using volumetric measures. The data supported the overall hypothesis that distinct behavioral changes in cognition and speaking rate in ALS were related to specific regional neurostructural brain changes. These changes did not support a notion of a general dysexecutive syndrome in ALS. The observed specificity of behavior-brain changes can begin to provide a framework for subtyping of ALS. The data also support a more integrative framework for clinical assessment of frontal lobe functioning in ALS, which requires both behavioral testing and neuroimaging.
Collapse
|
29
|
Meijboom R, Steketee RME, Ham LS, Mantini D, Bron EE, van der Lugt A, van Swieten JC, Smits M. Exploring quantitative group-wise differentiation of Alzheimer's disease and behavioural variant frontotemporal dementia using tract-specific microstructural white matter and functional connectivity measures at multiple time points. Eur Radiol 2019; 29:5148-5159. [PMID: 30859283 PMCID: PMC6719324 DOI: 10.1007/s00330-019-06061-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/07/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Objectives This study explored group-wise quantitative measures of tract-specific white matter (WM) microstructure and functional default mode network (DMN) connectivity to establish an initial indication of their clinical applicability for early-stage and follow-up differential diagnosis of Alzheimer’s disease (AD) and behavioural variant frontotemporal dementia (bvFTD). Methods Eleven AD and 12 bvFTD early-stage patients and 18 controls underwent diffusion tensor imaging and resting state functional magnetic resonance imaging at 3 T. All AD and 6 bvFTD patients underwent the same protocol at 1-year follow-up. Functional connectivity measures of DMN and WM tract-specific diffusivity measures were determined for all groups. Exploratory analyses were performed to compare all measures between the three groups at baseline and between patients at follow-up. Additionally, the difference between baseline and follow-up diffusivity measures in AD and bvFTD patients was compared. Results Functional connectivity of the DMN was not different between groups at baseline and at follow-up. Diffusion abnormalities were observed widely in bvFTD and regionally in the hippocampal cingulum in AD. The extent of the differences between bvFTD and AD was diminished at follow-up, yet abnormalities were still more pronounced in bvFTD. The rate of change was similar in bvFTD and AD. Conclusions This study provides a tentative indication that quantitative tract-specific microstructural WM abnormalities, but not quantitative functional connectivity of the DMN, may aid early-stage and follow-up differential diagnosis of bvFTD and AD. Specifically, pronounced microstructural changes in anterior WM tracts may characterise bvFTD, whereas microstructural abnormalities of the hippocampal cingulum may characterise AD. Key Points • The clinical applicability of quantitative brain imaging measures for early-stage and follow-up differential diagnosis of dementia subtypes was explored using a group-wise approach. • Quantitative tract-specific microstructural white matter abnormalities, but not quantitative functional connectivity of the default mode network, may aid early-stage and follow-up differential diagnosis of behavioural variant frontotemporal dementia and Alzheimer’s disease. • Pronounced microstructural white matter (WM) changes in anterior WM tracts characterise behavioural variant frontotemporal dementia, whereas microstructural WM abnormalities of the hippocampal cingulum in the absence of other WM changes characterise Alzheimer’s disease. Electronic supplementary material The online version of this article (10.1007/s00330-019-06061-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Meijboom
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - R M E Steketee
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - L S Ham
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - D Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Functional Neuroimaging Laboratory, IRCCS San Camillo Hospital Foundation, Lido, Italy
| | - E E Bron
- Biomedical Imaging Group Rotterdam - Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - A van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - J C van Swieten
- Department of Neurology, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - M Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
30
|
Zhang Y, Qiu T, Yuan X, Zhang J, Wang Y, Zhang N, Zhou C, Luo C, Zhang J. Abnormal topological organization of structural covariance networks in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2018; 21:101619. [PMID: 30528369 PMCID: PMC6411656 DOI: 10.1016/j.nicl.2018.101619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/03/2018] [Accepted: 11/29/2018] [Indexed: 01/12/2023]
Abstract
Neuroimaging studies of patients with amyotrophic lateral sclerosis (ALS) have shown widespread alterations in structure, function, and connectivity in both motor and non-motor brain regions, suggesting multi-systemic neurobiological abnormalities that might impact large-scale brain networks. Here, we examined the alterations in the topological organization of structural covariance networks of ALS patients (N = 60) compared with normal controls (N = 60). We found that structural covariance networks of ALS patients showed a consistent rearrangement towards a regularized architecture evidenced by increased path length, clustering coefficient, small-world index, and modularity, as well as decreased global efficiency, suggesting inefficient global integration and increased local segregation. Locally, ALS patients showed decreased nodal degree and betweenness in the gyrus rectus and/or Heschl's gyrus, and increased betweenness in the supplementary motor area, triangular part of the inferior frontal gyrus, supramarginal gyrus and posterior cingulate cortex. In addition, we identified a different number and distribution of hubs in ALS patients, showing more frontal and subcortical hubs than in normal controls. In conclusion, we reveal abnormal topological organization of structural covariance networks in ALS patients, and provide network-level evidence for the concept that ALS is a multisystem disorder with a cerebral involvement extending beyond the motor areas.
Collapse
Affiliation(s)
- Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Ting Qiu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xinru Yuan
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jinlei Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yue Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Na Zhang
- School of Mathematical Sciences, University of Jinan, Jinan 250022, Shandong Province, PR China
| | - Chaoyang Zhou
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400044, PR China.
| |
Collapse
|
31
|
Christidi F, Karavasilis E, Rentzos M, Kelekis N, Evdokimidis I, Bede P. Clinical and Radiological Markers of Extra-Motor Deficits in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:1005. [PMID: 30524366 PMCID: PMC6262087 DOI: 10.3389/fneur.2018.01005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is now universally recognized as a complex multisystem disorder with considerable extra-motor involvement. The neuropsychological manifestations of frontotemporal, parietal, and basal ganglia involvement in ALS have important implications for compliance with assistive devices, survival, participation in clinical trials, caregiver burden, and the management of individual care needs. Recent advances in neuroimaging have been instrumental in characterizing the biological substrate of heterogeneous cognitive and behavioral deficits in ALS. In this review we discuss the clinical and radiological aspects of cognitive and behavioral impairment in ALS focusing on the recognition, assessment, and monitoring of these symptoms.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Herbet G, Zemmoura I, Duffau H. Functional Anatomy of the Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses. Front Neuroanat 2018; 12:77. [PMID: 30283306 PMCID: PMC6156142 DOI: 10.3389/fnana.2018.00077] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
The inferior longitudinal fasciculus (ILF) is a long-range, associative white matter pathway that connects the occipital and temporal-occipital areas of the brain to the anterior temporal areas. In view of the ILF's anatomic connections, it has been suggested that this pathway has a major role in a relatively large array of brain functions. Until recently, however, the literature data on these potential functions were scarce. Here, we review the key findings of recent anatomic, neuromodulation, and neuropsychological studies. We also summarize reports on how this tract is disrupted in a wide range of brain disorders, including psychopathologic, neurodevelopmental, and neurologic diseases. Our review reveals that the ILF is a multilayered, bidirectional tract involved in processing and modulating visual cues and thus in visually guided decisions and behaviors. Accordingly, sudden disruption of the ILF by neurologic insult is mainly associated with neuropsychological impairments of visual cognition (e.g., visual agnosia, prosopagnosia, and alexia). Furthermore, disruption of the ILF may constitute the pathophysiologic basis for visual hallucinations and socio-emotional impairments in schizophrenia, as well as emotional difficulties in autism spectrum disorder. Degeneration of the ILF in neurodegenerative diseases affecting the temporal lobe may explain (at least in part) the gradual onset of semantic and lexical access difficulties. Although some of the functions mediated by the ILF appear to be relatively lateralized, observations from neurosurgery suggest that disruption of the tract's anterior portion can be dynamically compensated for by the contralateral portion. This might explain why bilateral disruption of the ILF in either acute or progressive disease is highly detrimental in neuropsychological terms.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Ilyess Zemmoura
- Department of Neurosurgery, Tours University Medical Center, Tours, France
- UMR 1253, iBrain, INSERM, University of Tours, Tours, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| |
Collapse
|
33
|
Social Cognition through the Lens of Cognitive and Clinical Neuroscience. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4283427. [PMID: 30302338 PMCID: PMC6158937 DOI: 10.1155/2018/4283427] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Social cognition refers to a set of processes, ranging from perception to decision-making, underlying the ability to decode others' intentions and behaviors to plan actions fitting with social and moral, besides individual and economic considerations. Its centrality in everyday life reflects the neural complexity of social processing and the ubiquity of social cognitive deficits in different pathological conditions. Social cognitive processes can be clustered in three domains associated with (a) perceptual processing of social information such as faces and emotional expressions (social perception), (b) grasping others' cognitive or affective states (social understanding), and (c) planning behaviors taking into consideration others', in addition to one's own, goals (social decision-making). We review these domains from the lens of cognitive neuroscience, i.e., in terms of the brain areas mediating the role of such processes in the ability to make sense of others' behavior and plan socially appropriate actions. The increasing evidence on the “social brain” obtained from healthy young individuals nowadays constitutes the baseline for detecting changes in social cognitive skills associated with physiological aging or pathological conditions. In the latter case, impairments in one or more of the abovementioned domains represent a prominent concern, or even a core facet, of neurological (e.g., acquired brain injury or neurodegenerative diseases), psychiatric (e.g., schizophrenia), and developmental (e.g., autism) disorders. To pave the way for the other papers of this issue, addressing the social cognitive deficits associated with severe acquired brain injury, we will briefly discuss the available evidence on the status of social cognition in normal aging and its breakdown in neurodegenerative disorders. Although the assessment and treatment of such impairments is a relatively novel sector in neurorehabilitation, the evidence summarized here strongly suggests that the development of remediation procedures for social cognitive skills will represent a future field of translational research in clinical neuroscience.
Collapse
|
34
|
Neuropsychological evidence for the crucial role of the right arcuate fasciculus in the face-based mentalizing network: A disconnection analysis. Neuropsychologia 2018; 115:179-187. [DOI: 10.1016/j.neuropsychologia.2018.01.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/15/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
|
35
|
Wang Y, Metoki A, Alm KH, Olson IR. White matter pathways and social cognition. Neurosci Biobehav Rev 2018; 90:350-370. [PMID: 29684403 PMCID: PMC5993647 DOI: 10.1016/j.neubiorev.2018.04.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 03/02/2018] [Accepted: 04/15/2018] [Indexed: 12/13/2022]
Abstract
There is a growing consensus that social cognition and behavior emerge from interactions across distributed regions of the "social brain". Researchers have traditionally focused their attention on functional response properties of these gray matter networks and neglected the vital role of white matter connections in establishing such networks and their functions. In this article, we conduct a comprehensive review of prior research on structural connectivity in social neuroscience and highlight the importance of this literature in clarifying brain mechanisms of social cognition. We pay particular attention to three key social processes: face processing, embodied cognition, and theory of mind, and their respective underlying neural networks. To fully identify and characterize the anatomical architecture of these networks, we further implement probabilistic tractography on a large sample of diffusion-weighted imaging data. The combination of an in-depth literature review and the empirical investigation gives us an unprecedented, well-defined landscape of white matter pathways underlying major social brain networks. Finally, we discuss current problems in the field, outline suggestions for best practice in diffusion-imaging data collection and analysis, and offer new directions for future research.
Collapse
Affiliation(s)
- Yin Wang
- Department of Psychology, Temple University, Philadelphia, 19107, USA.
| | - Athanasia Metoki
- Department of Psychology, Temple University, Philadelphia, 19107, USA
| | - Kylie H Alm
- Department of Psychology, Temple University, Philadelphia, 19107, USA
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, 19107, USA.
| |
Collapse
|
36
|
Social Cognition Dysfunctions in Neurodegenerative Diseases: Neuroanatomical Correlates and Clinical Implications. Behav Neurol 2018; 2018:1849794. [PMID: 29854017 PMCID: PMC5944290 DOI: 10.1155/2018/1849794] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
Social cognitive function, involved in the perception, processing, and interpretation of social information, has been shown to be crucial for successful communication and interpersonal relationships, thereby significantly impacting mental health, well-being, and quality of life. In this regard, assessment of social cognition, mainly focusing on four key domains, such as theory of mind (ToM), emotional empathy, and social perception and behavior, has been increasingly evaluated in clinical settings, given the potential implications of impairments of these skills for therapeutic decision-making. With regard to neurodegenerative diseases (NDs), most disorders, characterized by variable disease phenotypes and progression, although similar for the unfavorable prognosis, are associated to impairments of social cognitive function, with consequent negative effects on patients' management. Specifically, in some NDs these deficits may represent core diagnostic criteria, such as for behavioral variant frontotemporal dementia (bvFTD), or may emerge during the disease course as critical aspects, such as for Parkinson's and Alzheimer's diseases. On this background, we aimed to revise the most updated evidence on the neurobiological hypotheses derived from network-based approaches, clinical manifestations, and assessment tools of social cognitive dysfunctions in NDs, also prospecting potential benefits on patients' well-being, quality of life, and outcome derived from potential therapeutic perspectives of these deficits.
Collapse
|
37
|
Zhang F, Chen G, He M, Dai J, Shang H, Gong Q, Jia Z. Altered white matter microarchitecture in amyotrophic lateral sclerosis: A voxel-based meta-analysis of diffusion tensor imaging. NEUROIMAGE-CLINICAL 2018; 19:122-129. [PMID: 30035009 PMCID: PMC6051469 DOI: 10.1016/j.nicl.2018.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/18/2018] [Accepted: 04/01/2018] [Indexed: 02/05/2023]
Abstract
Background The results of recent diffusion tensor imaging (DTI) studies on amyotrophic lateral sclerosis (ALS) are inconclusive and controversial. We performed a voxel-based meta-analysis to identify a statistical consensus among published DTI studies of altered white matter (WM) microarchitecture in ALS. Methods A systematic search was conducted for relevant studies that used voxel-wise analyses of WM microarchitecture in patients with ALS. Anisotropic effect size-signed differential mapping (AES-SDM) was applied to analyze fractional anisotropy (FA) differences between ALS patients and healthy controls. Meta-regression analysis was used to explore the effects of clinical characteristics on WM integrity in patients with ALS. Results A total of 14 studies with 16 datasets that included 396 patients and 360 healthy controls were identified. The pooled meta-analysis revealed that patients with ALS exhibited significant FA reductions in two clusters relative to healthy controls. The largest cluster exhibited a peak coordinate in the left corona radiata, extending to the body and splenium of the corpus callosum, left superior longitudinal fasciculus, posterior limb of the internal capsule, right corona radiata, and bilateral cingulate gyrus. The other cluster exhibited decreased FA in the right corticospinal tract that extended to the right cerebral peduncle. The Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) score was positively correlated with the FA reduction in the left corona radiata. Mean age and illness duration were not linearly correlated with the FA reductions. Conclusions This study provides a thorough profile of WM microarchitecture alterations in patients with ALS and further evidence that the neuronal degeneration is not limited to the corticospinal tract but also includes extra-motor areas, which supports the view that ALS is a multisystem degenerative disorder that involves the white matter.
Collapse
Affiliation(s)
- Feifei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Manxi He
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu 610031, China
| | - Jing Dai
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu 610031, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
38
|
Meijboom R, Steketee RME, Ham LS, van der Lugt A, van Swieten JC, Smits M. Differential Hemispheric Predilection of Microstructural White Matter and Functional Connectivity Abnormalities between Respectively Semantic and Behavioral Variant Frontotemporal Dementia. J Alzheimers Dis 2018; 56:789-804. [PMID: 28059782 DOI: 10.3233/jad-160564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semantic dementia (SD) and behavioral variant frontotemporal dementia (bvFTD), subtypes of frontotemporal dementia, are characterized by distinct clinical symptoms and neuroimaging features, with predominant left temporal grey matter (GM) atrophy in SD and bilateral or right frontal GM atrophy in bvFTD. Such differential hemispheric predilection may also be reflected by other neuroimaging features, such as brain connectivity. This study investigated white matter (WM) microstructure and functional connectivity differences between SD and bvFTD, focusing on the hemispheric predilection of these differences. Eight SD and 12 bvFTD patients, and 17 controls underwent diffusion tensor imaging and resting state functional MRI at 3T. Whole-brain WM microstructure was assessed to determine distinct WM tracts affected in SD and bvFTD. For these tracts, diffusivity measures and lateralization indices were calculated. Functional connectivity was established for GM regions affected in early stage SD or bvFTD. Results of a direct comparison between SD and bvFTD are reported. Whole-brain WM microstructure abnormalities were more pronounced in the left hemisphere in SD and bilaterally- with a slight predilection for the right- in bvFTD. Lateralization of tract-specific abnormalities was seen in SD only, toward the left hemisphere. Functional connectivity of disease-specific regions was mainly decreased bilaterally in SD and in the right hemisphere in bvFTD. SD and bvFTD show WM microstructure and functional connectivity abnormalities in different regions, that are respectively more pronounced in the left hemisphere in SD and in the right hemisphere in bvFTD. This indicates differential hemispheric predilection of brain connectivity abnormalities between SD and bvFTD.
Collapse
Affiliation(s)
- Rozanna Meijboom
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - Rebecca M E Steketee
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - Leontine S Ham
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| |
Collapse
|
39
|
Ibáñez A, García AM, Esteves S, Yoris A, Muñoz E, Reynaldo L, Pietto ML, Adolfi F, Manes F. Social neuroscience: undoing the schism between neurology and psychiatry. Soc Neurosci 2018; 13:1-39. [PMID: 27707008 PMCID: PMC11177280 DOI: 10.1080/17470919.2016.1245214] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple disorders once jointly conceived as "nervous diseases" became segregated by the distinct institutional traditions forged in neurology and psychiatry. As a result, each field specialized in the study and treatment of a subset of such conditions. Here we propose new avenues for interdisciplinary interaction through a triangulation of both fields with social neuroscience. To this end, we review evidence from five relevant domains (facial emotion recognition, empathy, theory of mind, moral cognition, and social context assessment), highlighting their common disturbances across neurological and psychiatric conditions and discussing their multiple pathophysiological mechanisms. Our proposal is anchored in multidimensional evidence, including behavioral, neurocognitive, and genetic findings. From a clinical perspective, this work paves the way for dimensional and transdiagnostic approaches, new pharmacological treatments, and educational innovations rooted in a combined neuropsychiatric training. Research-wise, it fosters new models of the social brain and a novel platform to explore the interplay of cognitive and social functions. Finally, we identify new challenges for this synergistic framework.
Collapse
Affiliation(s)
- Agustín Ibáñez
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- c Center for Social and Cognitive Neuroscience (CSCN), School of Psychology , Universidad Adolfo Ibáñez , Santiago de Chile , Chile
- d Universidad Autónoma del Caribe , Barranquilla , Colombia
- e Centre of Excellence in Cognition and its Disorders , Australian Research Council (ACR) , Sydney , Australia
| | - Adolfo M García
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- f Faculty of Elementary and Special Education (FEEyE) , National University of Cuyo (UNCuyo) , Mendoza , Argentina
| | - Sol Esteves
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | - Adrián Yoris
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
| | - Edinson Muñoz
- g Departamento de Lingüística y Literatura, Facultad de Humanidades , Universidad de Santiago de Chile , Santiago , Chile
| | - Lucila Reynaldo
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | | | - Federico Adolfi
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | - Facundo Manes
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- e Centre of Excellence in Cognition and its Disorders , Australian Research Council (ACR) , Sydney , Australia
- i Department of Experimental Psychology , University of South Carolina , Columbia , SC , USA
| |
Collapse
|
40
|
Li F, Zhou F, Huang M, Gong H, Xu R. Frequency-Specific Abnormalities of Intrinsic Functional Connectivity Strength among Patients with Amyotrophic Lateral Sclerosis: A Resting-State fMRI Study. Front Aging Neurosci 2017; 9:351. [PMID: 29163133 PMCID: PMC5681965 DOI: 10.3389/fnagi.2017.00351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023] Open
Abstract
The classical concept that amyotrophic lateral sclerosis (ALS) is a degenerative disorder characterized by the loss of upper and lower motor neurons is agreed. However, more and more studies have suggested the involvement of some extra-motor regions. The aim of this study is to investigate the frequency-related alteration pattern of intrinsic functional connectivity strength (FCS) at the voxel-wise level in the relatively early-stage of ALS on a whole brain scale. In this study, 21 patients with ALS and 21 well-matched healthy control subjects were enrolled to examine the intrinsic FCS in the different frequencies (slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz, and typical band: 0.01-0.1 Hz). Compared with the control subjects, the ALS patients showed a significantly decreased FCS in the left prefrontal cortex (PFC) and the bilateral superior frontal gyrus. In the slow-5 band, the patients with ALS showed decreased FCS in the left lingual gyrus, as well as increased FCS in the left postcentral gyrus/paracentral lobule (PoCG/PARC). In the slow-4 band, the ALS patients presented decreased FCS in the left and right ventrolateral PFC. Moreover, the increased FCS in the left PoCG/PARC in the slow-5 band was positively correlated with the ALSFRS-r score (P = 0.015). Our results demonstrated that the FCS changes in ALS were wide spread and frequency dependent. These findings may provide some evidences that ALS patients have the consistent impairment in some extra-motor regions at a relatively early-stage.
Collapse
Affiliation(s)
- Fangjun Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Trojsi F, Di Nardo F, Santangelo G, Siciliano M, Femiano C, Passaniti C, Caiazzo G, Fratello M, Cirillo M, Monsurrò MR, Esposito F, Tedeschi G. Resting state fMRI correlates of Theory of Mind impairment in amyotrophic lateral sclerosis. Cortex 2017; 97:1-16. [PMID: 29073458 DOI: 10.1016/j.cortex.2017.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/21/2017] [Accepted: 09/17/2017] [Indexed: 11/29/2022]
Abstract
Theory of Mind (ToM), the ability to recognize thoughts and emotions of another, may be one of the cognitive domains affected in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease now recognized as a multi-system disorder. The present study aimed to identify early dysfunctions of brain resting state functional magnetic resonance imaging (RS-fMRI) networks in a group of ALS patients longitudinally explored for impairment of "cognitive" and "affective" ToM subcomponents. RS-fMRI connectivity was investigated in a group of 21 patients with ALS (i.e., 9 with bulbar-onset or ALS-B and 12 with limb-onset or ALS-L) in early stages of disease and 15 healthy controls (HCs). The same subjects were assessed, at baseline and after six months, for neuropsychological performances, including cognitive and affective ToM and multi-domain cognitive functions. The RS-fMRI study showed a decreased connectivity in frontotemporal areas within the main cognitive resting state networks, including the default mode (DMN), the right and left fronto-parietal (R-, L-FPN), and the salience (SLN) networks, in the entire ALS group. As exploratory results, comparing the ALS-B subgroup to the ALS-L one, we revealed a widespread decrease of RS-fMRI signals in the left middle frontal gyrus for L-FPN and SLN and in the left superior frontal gyrus for SLN. At baseline, no ToM or other cognitive abnormalities were reported in the entire group of ALS patients compared to HCs, although, after six months, the ALS-B subset exhibited a significant impairment of both affective and cognitive ToM subcomponents, whereas the ALS-L group showed significant impairment of the cognitive subcomponent alone. Our findings provide original evidence of the deficit of both ToM subcomponents during the ALS course, supporting the hypothesis of a biologically more aggressive character of ALS-B. Moreover, early RS-fMRI abnormalities in cognitive networks may underlie and precede the clinical appearance of ToM alterations in ALS.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Centre - Hermitage Capodimonte, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Di Nardo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Centre - Hermitage Capodimonte, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gabriella Santangelo
- Department of Psychology, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Mattia Siciliano
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Centre - Hermitage Capodimonte, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy; Department of Psychology, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Cinzia Femiano
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Centre - Hermitage Capodimonte, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carla Passaniti
- Department of Psychology, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giuseppina Caiazzo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Centre - Hermitage Capodimonte, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Michele Fratello
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Centre - Hermitage Capodimonte, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mario Cirillo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Centre - Hermitage Capodimonte, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Rosaria Monsurrò
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Centre - Hermitage Capodimonte, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Centre - Hermitage Capodimonte, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
42
|
Kovrazhkina EA, Razinskaya OD, Gubsky LV. [Clinical polymorphism of amyotrophic lateral sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:4-10. [PMID: 28884711 DOI: 10.17116/jnevro2017117814-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To clarify clinical polymorphism of amyotrophic lateral sclerosis (ALS). MATERIAL AND METHODS The study was based on records of a hospital personalized register. Ninety-four patients, aged from 25 to 81 years, diagnosed with ALS according to El Escorial criteria were included. Electromyography and, if necessary, transcranial magnetic stimulation and magnetic-resonance tomography were used to confirm the diagnosis. Disease progression was assessed with the ARSFRS. Age at disease onset, progression rate and duration of survival of patients, rare symptoms of ALS ('extramotor'), time for palliative care (gastrostomy, non-invasive and invasive lung ventilation) and provision of the care to the patient, family history were recorded in a specially designed questionnaire. RESULTS Most of the patients had sporadic ALS, only two familial cases were identified. Spinal onset ALS was found in 66.0% of the patients, bulbar onset in 29.8%, diffuse onset (spinal and bulbar motor neurons were affected simultaneously) in 4.2%. Moderate ALS progression was observed in 42.6% of the patients, mean time till death was 3.0±1.2 years. A slow progression was found in patients with cervical, low back and bulbar onset. A rapid and even 'momentary' type of progression was in diffuse and breast onset. An extremely slow progression with the long-term hospital treatment and survival >5 years was found in 9.7%. Rare ALS symptoms were represented by specific cognitive and psychological impairments, a type of frontal/temporal dysfunction, but only 5 (5.3%) patients were diagnosed with ALS-dementia. Signs of pathological muscle fatigue (myasthenic syndrome) were identified in 18 (19.1%), extrapyramidal disorders in 5 (5.3%), coordination disorders in 4 (4.3%), pain in 12 (12.8%), sensory symptoms in 5 (5.3%) of the patients. CONCLUSION ALS is a multisystemic neurodegeneration disease though the progressive motor neuron death determines the fatal outcome.
Collapse
Affiliation(s)
- E A Kovrazhkina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O D Razinskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - L V Gubsky
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
43
|
Agosta F, Ferraro PM, Riva N, Spinelli EG, Domi T, Carrera P, Copetti M, Falzone Y, Ferrari M, Lunetta C, Comi G, Falini A, Quattrini A, Filippi M. Structural and functional brain signatures of C9orf72 in motor neuron disease. Neurobiol Aging 2017; 57:206-219. [PMID: 28666709 DOI: 10.1016/j.neurobiolaging.2017.05.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022]
Abstract
This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology and Cytogenetics, San Raffaele Scientific Institute, Milan, Italy; Division of Genetics and Cell Biology, Unit of Genomics for Human Disease Diagnosis, San Raffaele Scientific Institute, Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, Foggia, Italy
| | - Yuri Falzone
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Clinical Molecular Biology and Cytogenetics, San Raffaele Scientific Institute, Milan, Italy; Division of Genetics and Cell Biology, Unit of Genomics for Human Disease Diagnosis, San Raffaele Scientific Institute, Milan, Italy
| | | | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy; Department of Neuroradiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
44
|
Strong MJ, Abrahams S, Goldstein LH, Woolley S, Mclaughlin P, Snowden J, Mioshi E, Roberts-South A, Benatar M, HortobáGyi T, Rosenfeld J, Silani V, Ince PG, Turner MR. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:153-174. [PMID: 28054827 PMCID: PMC7409990 DOI: 10.1080/21678421.2016.1267768] [Citation(s) in RCA: 642] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
This article presents the revised consensus criteria for the diagnosis of frontotemporal dysfunction in amyotrophic lateral sclerosis (ALS) based on an international research workshop on frontotemporal dementia (FTD) and ALS held in London, Canada in June 2015. Since the publication of the Strong criteria, there have been considerable advances in the understanding of the neuropsychological profile of patients with ALS. Not only is the breadth and depth of neuropsychological findings broader than previously recognised - - including deficits in social cognition and language - but mixed deficits may also occur. Evidence now shows that the neuropsychological deficits in ALS are extremely heterogeneous, affecting over 50% of persons with ALS. When present, these deficits significantly and adversely impact patient survival. It is the recognition of this clinical heterogeneity in association with neuroimaging, genetic and neuropathological advances that has led to the current re-conceptualisation that neuropsychological deficits in ALS fall along a spectrum. These revised consensus criteria expand upon those of 2009 and embrace the concept of the frontotemporal spectrum disorder of ALS (ALS-FTSD).
Collapse
Affiliation(s)
- Michael J Strong
- a Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry , London , Ontario , Canada
| | - Sharon Abrahams
- b Department of Psychology, School of Philosophy, Psychology & Language Sciences , Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh , UK
| | - Laura H Goldstein
- c King's College London, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience , London , UK
| | - Susan Woolley
- d Forbes Norris MDA/ALS Research Centre, California Pacific Medical Centre , San Francisco , CA , USA
| | - Paula Mclaughlin
- e Western University , Schulich School of Medicine & Dentistry , London , ON , Canada
| | - Julie Snowden
- f Greater Manchester Neuroscience Centre , Salford Royal NHS Trust and University of Manchester , Manchester , UK
| | - Eneida Mioshi
- g Faculty of Medicine and Health Sciences , University of East Anglia , Norwich , UK
| | - Angie Roberts-South
- h Northwestern University , Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Evanston , IL , USA
| | - Michael Benatar
- i Department of Neurology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Tibor HortobáGyi
- j Department of Neuropathology , Institute of Pathology, University of Debrecen , Debrecen , Hungary
| | - Jeffrey Rosenfeld
- k Department of Neurology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Vincenzo Silani
- l Department of Neurology and Laboratory Neuroscience - IRCCS Istituto Auxologico Italiano, Department of Pathophysiology and Transplantation , 'Dino Ferrari' Centre, Università degli Studi di Milano , Milan , Italy
| | - Paul G Ince
- m Sheffield Institute for Translational Neuroscience, Department of Neuroscience , The University of Sheffield , Sheffield , UK , and
| | - Martin R Turner
- n Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , UK
| |
Collapse
|
45
|
Poletti B, Carelli L, Lafronza A, Solca F, Faini A, Ciammola A, Grobberio M, Raimondi V, Pezzati R, Ardito RB, Silani V. Cognitive-constructivist Approach in Medical Settings: The Use of Personal Meaning Questionnaire for Neurological Patients' Personality Investigation. Front Psychol 2017; 8:582. [PMID: 28443057 PMCID: PMC5387101 DOI: 10.3389/fpsyg.2017.00582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/29/2017] [Indexed: 01/04/2023] Open
Abstract
Objective: The cognitive-constructivist psychotherapy approach considers the self as a continuous regulation process between present and past experience, in which attributions of meaning is characterized by the use of internal rules. In this conception, everyone would be driven by a specific inner coherence called Personal Meaning Organization (PMO). Such approach has never been applied to neurological patients by means of ad hoc developed tools. We performed an explorative study aimed to characterize personality styles in different neurological conditions within the theoretical framework of cognitive-constructivist model. Materials and Methods: Three groups of neurological patients (Amyotrophic Lateral Sclerosis, Multiple Sclerosis, Primary Headache) and a sample of healthy participants, each composed by 15 participants, for a total of 60 participants, were recruited. The Personal Meaning Questionnaire (PMQ), an Italian questionnaire assessing PMOs construct, and other clinical tools for psychological and quality of life assessment were administered to all subjects. Results: The main finding concerned the detection, across all clinical conditions, of a higher prevalence of phobic personality style, with Amyotrophic Lateral Sclerosis showing a relevant prevalence of such PMO with respect to all other neurological conditions and controls. However, with respect to controls, in all clinical conditions, PMQ highlighted a tendency, even if not statistically significant, to codify experience by means of specific cognitive and emotional patterns. Conclusion: Our findings represent the first contribution towards understanding the personality profiles of patients affected by neurological conditions according to cognitive-constructivist theory.
Collapse
Affiliation(s)
- Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico ItalianoMilan, Italy
| | - Laura Carelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico ItalianoMilan, Italy
| | - Annalisa Lafronza
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico ItalianoMilan, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico ItalianoMilan, Italy
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico ItalianoMilan, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico ItalianoMilan, Italy
| | - Monica Grobberio
- Laboratory of Clinical Neuropsychology, Department of Neurology - ASST LarianaComo, Italy
| | - Vanessa Raimondi
- Department of Neurology and Clinical Psychology Services, ASST CremaCrema, Italy
| | - Rita Pezzati
- University of Applied Sciences and Arts of Southern SwitzerlandManno, Switzerland.,Centro Terapia CognitivaComo, Italy
| | - Rita B Ardito
- Center for Cognitive Science, Department of Psychology, University of TurinTurin, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico ItalianoMilan, Italy.,Department of Pathophysiology and Transplantation and "Dino Ferrari" Center, University of Milan Medical SchoolMilan, Italy
| |
Collapse
|
46
|
Aging of cerebral white matter. Ageing Res Rev 2017; 34:64-76. [PMID: 27865980 DOI: 10.1016/j.arr.2016.11.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions.
Collapse
|
47
|
Trojsi F, Siciliano M, Russo A, Passaniti C, Femiano C, Ferrantino T, De Liguoro S, Lavorgna L, Monsurrò MR, Tedeschi G, Santangelo G. Theory of Mind and Its Neuropsychological and Quality of Life Correlates in the Early Stages of Amyotrophic Lateral Sclerosis. Front Psychol 2016; 7:1934. [PMID: 28018269 PMCID: PMC5149517 DOI: 10.3389/fpsyg.2016.01934] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/25/2016] [Indexed: 01/09/2023] Open
Abstract
This study aims to explore the potential impairment of Theory of Mind (ToM; i.e., the ability to represent cognitive and affective mental states to both self and others) and the clinical, neuropsychological and Quality of Life (QoL) correlates of these cognitive abnormalities in the early stages of amyotrophic lateral sclerosis (ALS), a multisystem neurodegenerative disease recently recognized as a part of the same clinical and pathological spectrum of frontotemporal lobar degeneration. Twenty-two consecutive, cognitively intact ALS patients, and 15 healthy controls, underwent assessment of executive, verbal comprehension, visuospatial, behavioral, and QoL measures, as well as of the ToM abilities by Emotion Attribution Task (EAT), Advanced Test of ToM (ATT), and Eyes Task (ET). ALS patients obtained significantly lower scores than controls on EAT and ET. No significant difference was found between the two groups on ATT. As regard to type of ALS onset, patients with bulbar onset performed worse than those with spinal onset on ET. Correlation analysis revealed that EAT and ET were positively correlated with education, memory prose, visuo-spatial performances, and “Mental Health” scores among QoL items. Our results suggest that not only “cognitive” but also “affective” subcomponents of ToM may be impaired in the early stages of ALS, with significant linkage to disease onset and dysfunctions of less executively demanding conditions, causing potential impact on patients’ “Mental Health.”
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences - MRI Research Center SUN-FISM, Università degli Studi della Campania "L. Vanvitelli" Naples, Italy
| | - Mattia Siciliano
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences - MRI Research Center SUN-FISM, Università degli Studi della Campania "L. Vanvitelli"Naples, Italy; Department of Psychology, Università degli Studi della Campania "L. Vanvitelli"Caserta, Italy
| | - Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences - MRI Research Center SUN-FISM, Università degli Studi della Campania "L. Vanvitelli" Naples, Italy
| | - Carla Passaniti
- Department of Psychology, Università degli Studi della Campania "L. Vanvitelli" Caserta, Italy
| | - Cinzia Femiano
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences - MRI Research Center SUN-FISM, Università degli Studi della Campania "L. Vanvitelli" Naples, Italy
| | - Teresa Ferrantino
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences - MRI Research Center SUN-FISM, Università degli Studi della Campania "L. Vanvitelli" Naples, Italy
| | - Stefania De Liguoro
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences - MRI Research Center SUN-FISM, Università degli Studi della Campania "L. Vanvitelli" Naples, Italy
| | - Luigi Lavorgna
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences - MRI Research Center SUN-FISM, Università degli Studi della Campania "L. Vanvitelli" Naples, Italy
| | - Maria R Monsurrò
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences - MRI Research Center SUN-FISM, Università degli Studi della Campania "L. Vanvitelli" Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences - MRI Research Center SUN-FISM, Università degli Studi della Campania "L. Vanvitelli" Naples, Italy
| | - Gabriella Santangelo
- Department of Psychology, Università degli Studi della Campania "L. Vanvitelli" Caserta, Italy
| |
Collapse
|
48
|
Meta-analysis of social cognition in amyotrophic lateral sclerosis. Cortex 2016; 88:1-7. [PMID: 28002755 DOI: 10.1016/j.cortex.2016.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/15/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with executive dysfunction and behavioural impairment. Recent studies suggested that social cognitive deficits might also be a prominent feature of ALS. Current meta-analysis aimed to summarize available evidence for deficits in social cognition including theory of mind (ToM) and emotion recognition in ALS. In this meta-analysis of 15 studies, facial emotion recognition and ToM performances of 389 patients with ALS and 471 healthy controls were compared. ALS was associated with significant impairments with medium effect sizes in ToM (d = .65) and facial emotion recognition (d = .69). Among individual emotions recognition of disgust and surprise were particularly impaired. Deficits in perspective taking (d = .73) aspects of ToM (ToM-PT) was more pronounced in comparison to decoding (d = .28) aspects of ToM (ToM-decoding). The severity of social cognitive impairment was similar to level of executive dysfunction and there was a significant relationship between social cognition and executive dysfunction. Deficits in social cognition are part of the cognitive phenotype of ALS.
Collapse
|
49
|
Crespi C, Cerami C, Dodich A, Canessa N, Iannaccone S, Corbo M, Lunetta C, Falini A, Cappa SF. Microstructural Correlates of Emotional Attribution Impairment in Non-Demented Patients with Amyotrophic Lateral Sclerosis. PLoS One 2016; 11:e0161034. [PMID: 27513746 PMCID: PMC4981464 DOI: 10.1371/journal.pone.0161034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
Abstract
Impairments in the ability to recognize and attribute emotional states to others have been described in amyotrophic lateral sclerosis patients and linked to the dysfunction of key nodes of the emotional empathy network. Microstructural correlates of such disorders are still unexplored. We investigated the white-matter substrates of emotional attribution deficits in a sample of amyotrophic lateral sclerosis patients without cognitive decline. Thirteen individuals with either probable or definite amyotrophic lateral sclerosis and 14 healthy controls were enrolled in a Diffusion Tensor Imaging study and administered the Story-based Empathy Task, assessing the ability to attribute mental states to others (i.e., Intention and Emotion attribution conditions). As already reported, a significant global reduction of empathic skills, mainly driven by a failure in Emotion Attribution condition, was found in amyotrophic lateral sclerosis patients compared to healthy subjects. The severity of this deficit was significantly correlated with fractional anisotropy along the forceps minor, genu of corpus callosum, right uncinate and inferior fronto-occipital fasciculi. The involvement of frontal commissural fiber tracts and right ventral associative fronto-limbic pathways is the microstructural hallmark of the impairment of high-order processing of socio-emotional stimuli in amyotrophic lateral sclerosis. These results support the notion of the neurofunctional and neuroanatomical continuum between amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Chiara Crespi
- Università Vita-Salute San Raffaele, Milano, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
- * E-mail:
| | - Chiara Cerami
- Università Vita-Salute San Raffaele, Milano, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
- Department of Clinical Neurosciences, IRCCS San Raffaele Turro, Milano, Italy
| | - Alessandra Dodich
- Università Vita-Salute San Raffaele, Milano, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Nicola Canessa
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
- NeTS Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Sandro Iannaccone
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
- Department of Clinical Neurosciences, IRCCS San Raffaele Turro, Milano, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milano, Italy
| | - Christian Lunetta
- NEuroMuscolar Omnicentre, Fondazione Serena Onlus, Niguarda Ca’ Granda Hospital, Milano, Italy
| | - Andrea Falini
- Università Vita-Salute San Raffaele, Milano, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
- CERMAC – Neuroradiology, San Raffaele Scientific Institute, Milano, Italy
| | - Stefano F. Cappa
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
- NeTS Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
| |
Collapse
|
50
|
Oh SI, Oh KW, Kim HJ, Park JS, Kim SH. Impaired Perception of Emotional Expression in Amyotrophic Lateral Sclerosis. J Clin Neurol 2016; 12:295-300. [PMID: 27095526 PMCID: PMC4960213 DOI: 10.3988/jcn.2016.12.3.295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose The increasing recognition that deficits in social emotions occur in amyotrophic lateral sclerosis (ALS) is helping to explain the spectrum of neuropsychological dysfunctions, thus supporting the view of ALS as a multisystem disorder involving neuropsychological deficits as well as motor deficits. The aim of this study was to characterize the emotion perception abilities of Korean patients with ALS based on the recognition of facial expressions. Methods Twenty-four patients with ALS and 24 age- and sex-matched healthy controls completed neuropsychological tests and facial emotion recognition tasks [ChaeLee Korean Facial Expressions of Emotions (ChaeLee-E)]. The ChaeLee-E test includes facial expressions for seven emotions: happiness, sadness, anger, disgust, fear, surprise, and neutral. Results The ability to perceive facial emotions was significantly worse among ALS patients performed than among healthy controls [65.2±18.0% vs. 77.1±6.6% (mean±SD), p=0.009]. Eight of the 24 patients (33%) scored below the 5th percentile score of controls for recognizing facial emotions. Conclusions Emotion perception deficits occur in Korean ALS patients, particularly regarding facial expressions of emotion. These findings expand the spectrum of cognitive and behavioral dysfunction associated with ALS into emotion processing dysfunction.
Collapse
Affiliation(s)
- Seong Il Oh
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ki Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jin Seok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|