1
|
Myga KA, Azañón E, Ambroziak KB, Ferrè ER, Longo MR. Haptic experience of bodies alters body perception. Perception 2024; 53:716-729. [PMID: 39324272 DOI: 10.1177/03010066241270627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Research on media's effects on body perception has mainly focused on the role of vision of extreme body types. However, haptics is a major part of the way children experience bodies. Playing with unrealistically thin dolls has been linked to the emergence of body image concerns, but the perceptual mechanisms remain unknown. We explore the effects of haptic experience of extreme body types on body perception, using adaptation aftereffects. Blindfolded participants judged whether the doll-like stimuli explored haptically were thinner or fatter than the average body before and after adaptation to an underweight or overweight doll. In a second experiment, participants underwent a traditional visual adaptation paradigm to extreme bodies, using stimuli matched to those in Experiment 1. For both modalities, after adaptation to an underweight body test bodies were judged as fatter. Adaptation to an overweight body produced opposite results. For the first time, we show adiposity aftereffects in haptic modality, analogous to those established in vision, using matched stimuli across visual and haptic paradigms.
Collapse
Affiliation(s)
- Kasia A Myga
- Department of Psychological Sciences, Birkbeck, University of London, London, UK; Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Elena Azañón
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | | | | | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
2
|
Facci L, Basilico S, Sellitto M, Gelosa G, Gandola M, Bottini G. Unilateral tactile agnosia as an onset symptom of corticobasal syndrome. Front Hum Neurosci 2024; 18:1401578. [PMID: 39118817 PMCID: PMC11308946 DOI: 10.3389/fnhum.2024.1401578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 08/10/2024] Open
Abstract
Tactile agnosia is the inability to recognize objects via haptic exploration, in the absence of an elementary sensory deficit. Traditionally, it has been described as a disturbance in extracting information about the physical properties of objects ("apperceptive agnosia") or in associating object representation with its semantic meaning ("associative agnosia"). However, tactile agnosia is a rare and difficult-to-diagnose condition, due to the frequent co-occurrence of sensorimotor symptoms and the lack of consensus on the terminology and assessment methods. Among tactile agnosia classifications, hyloagnosia (i.e., difficulty in quality discrimination of objects) and morphoagnosia (i.e., difficulty in shape and size recognition) have been proposed to account for the apperceptive level. However, a dissociation between the two has been reported in two cases only. Indeed, very few cases of pure tactile agnosia have been described, mostly associated with vascular damages in somatosensory areas, in pre- and postcentral gyrus, intraparietal sulcus, supramarginal gyrus, and insular cortex. An open question is whether degenerative conditions affecting the same areas could lead to similar impairments. Here, we present a single case of unilateral right-hand tactile agnosia, in the context of corticobasal syndrome (CBS), a rare neurodegenerative disease. The patient, a 55-year-old woman, initially presented with difficulties in tactile object recognition, apraxia for the right hand, and an otherwise intact cognitive profile. At the neuroimaging level, she showed a lesion outcome of a right parietal oligodendroglioma removal and a left frontoparietal atrophy. We performed an experimental evaluation of tactile agnosia, targeting every level of tactile processing, from elementary to higher order tactile recognition processes. We also tested 18 healthy participants as a matched control sample. The patient showed intact tactile sensitivity and mostly intact hylognosis functions. Conversely, she was impaired with the right hand in exploring geometrical and meaningless shapes. The patient's clinical evolution in the following 3 years became consistent with the diagnosis of CBS and unilateral tactile apperceptive agnosia as the primary symptom onset in the absence of a cognitive decline. This is the third case described in the literature manifesting morphoagnosia with almost completely preserved hylognosis abilities and the first description of such dissociation in a case with CBS.
Collapse
Affiliation(s)
- Laura Facci
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Cognitive Neuropsychology Centre, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Stefania Basilico
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Cognitive Neuropsychology Centre, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- NeuroMI, Milan Center for Neuroscience, Milan, Italy
| | - Manuela Sellitto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Cognitive Neuropsychology Centre, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- NeuroMI, Milan Center for Neuroscience, Milan, Italy
| | - Giorgio Gelosa
- Cognitive Neuropsychology Centre, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Martina Gandola
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Cognitive Neuropsychology Centre, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- NeuroMI, Milan Center for Neuroscience, Milan, Italy
| | - Gabriella Bottini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Cognitive Neuropsychology Centre, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- NeuroMI, Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
3
|
Saricaoglu M, Hanoglu L, Guntekin B, Ozkara C. The effects of cognitive, physical, and somatosensory rehabilitation after right temporo-parietal tumor resection on cognitive, motor, somatosensory, and electrophysiological parameters: A case report. Physiother Theory Pract 2023; 39:2241-2250. [PMID: 35436161 DOI: 10.1080/09593985.2022.2064787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION This report examines the effects of a multimodal rehabilitation program which includes cognitive, physical, and somatosensory rehabilitation after right temporo-parietal tumor resection on cognitive, motor, somatosensory, and electrophysiological parameters. CASE DESCRIPTION A 22-year-old patient presented with sensory loss in the dominant left hand and reduced writing ability after right temporo-parietal lobe resection. Cognitive, motor, and sensory evaluations were carried out pre and post-treatment. The patient's spontaneous electroencephalo-gram (EEG) and an EEG during application of transcutaneous electrical nerve stimulation (TENS) (TENS EEG) were recorded. As a reference for the patient's electrophysiological values, EEGs of 4 healthy individuals were also taken. Over a period of 1 year, the patient received multimodal rehabilitation which includes cognitive, physical, and somato-sensory rehabilitation on 2 days each week. OUTCOMES An improvement of the patient's cognitive capacities, motor strength, superficial, deep and cortical sensations was achieved. After rehabilitation, an increase in parietal and occipital alpha activity as well as in frontal and parietal beta activity was seen both in spontaneous EEG and in TENS EEG. With increasing TENS intensity, alpha and beta power increased as well. CONCLUSION Our findings suggest that a multimodal rehabilitation program may improve cognitive, sensory, and motor effects after resection due to tumor surgery.
Collapse
Affiliation(s)
- Mevhibe Saricaoglu
- Department of Neuroscience, Institute of Medical Science, Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Cibali, Istanbul, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Guntekin
- Department of Biophysics, Faculty of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Cigdem Ozkara
- Department of Neurology, Istanbul-Cerrahpasa University, Fatih, Istanbul, Turkey
| |
Collapse
|
4
|
Liu YF, Rapp B, Bedny M. Reading Braille by Touch Recruits Posterior Parietal Cortex. J Cogn Neurosci 2023; 35:1593-1616. [PMID: 37584592 PMCID: PMC10877400 DOI: 10.1162/jocn_a_02041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Blind readers use a tactile reading system consisting of raised dot arrays: braille/⠃⠗⠇. How do human brains implement reading by touch? The current study looked for signatures of reading-specific orthographic processes in braille, separate from low-level somatosensory responses and semantic processes. Of specific interest were responses in posterior parietal cortices (PPCs), because of their role in high-level tactile perception. Congenitally blind, proficient braille readers read real words and pseudowords by touch while undergoing fMRI. We leveraged the system of contractions in English braille, where one braille cell can represent multiple English print letters (e.g., "ing" ⠬, "one" ⠐⠕), making it possible to separate physical and orthographic word length. All words in the study consisted of four braille cells, but their corresponding Roman letter spellings varied from four to seven letters (e.g., "con-c-er-t" ⠒⠉⠻⠞. contracted: four cells; uncontracted: seven letters). We found that the bilateral supramarginal gyrus in the PPC increased its activity as the uncontracted word length increased. By contrast, in the hand region of primary somatosensory cortex (S1), activity increased as a function of a low-level somatosensory feature: dot-number per word. The PPC also showed greater response to pseudowords than real words and distinguished between real and pseudowords in multivariate-pattern analysis. Parieto-occipital, early visual and ventral occipito-temporal, as well as prefrontal cortices also showed sensitivity to the real-versus-pseudoword distinction. We conclude that PPC is involved in orthographic processing for braille, that is, braille character and word recognition, possibly because of braille's tactile modality.
Collapse
Affiliation(s)
- Yun-Fei Liu
- Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University
| |
Collapse
|
5
|
Distinguishing transient from persistent tactile agnosia after partial anterior circulation infarcts - Behavioral and neuroimaging evidence for white matter disconnection. Neuroimage Clin 2022; 36:103193. [PMID: 36126517 PMCID: PMC9486662 DOI: 10.1016/j.nicl.2022.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
From a cohort of 36 patients presenting apperceptive tactile agnosia after first cortical ischemic stroke, 14 showed temporary impairment at admission. A previous multi-voxel analysis of the cortical lesions, using as explanatory variable the course of tactile object recognition performance over the recovery period of 9 months, partitioned the cohort into three subgroups. Of the 14 patients constituting two of the subgroups, 7 recovered from their impairment whereas 7 did not. These two subgroups could not be distinguished at admission. The primary aim of the present study is to present two assessments that can do so. The first assessment comprises a pattern of behavioral measures, determined via principal component analysis, encoded in three tests: picking small objects, macrogeometrical discrimination and tactile object recognition. The receiver operating characteristic curve derived from permutation of the behavioral test scores yielded an 80% probability of correct identification of the patient subgroup and an 8% probability for false identification. As done with the permuted scores, the pattern could predict the persistence of affliction of new stroke patients with tactile agnosia. The second predictive assessment extends our previous evaluation of cortical MRI lesion maps to include subcortical regions. Confirming our previous study, the lesions of the persistently impaired subgroup disrupted significantly the anterior arcuatus fasciculus and associated superior longitudinal fasciculus III in the ipsilesional hemisphere, impeding reciprocal information transfer between supramarginal gyrus and both the ventral premotor cortex and Brodmann area 44. Due to the importance of interhemispheric information transfer in tactile agnosia, we performed a supplementary analysis of tactile object recognition scores. It showed that haptic information transfer from the non-affected to the affected hands in the persistent cases partly restored function during the nine months, possibly following restoration of functional interhemispheric haptic information transfer at the border of posterior corpus callosum and splenium. In conclusion, the combined findings of the cortical lesion at subarea PFt of the inferior parietal lobule and the associated subcortical tract lesions permit almost perfect prediction of persistent impairment of tactile object recognition. The study substantiates the need for combined analysis of both cortical lesions and white matter tract disconnections.
Collapse
|
6
|
Khormi YH, Atteya MME. Isolated post-traumatic astereognosis: a case-based review. Childs Nerv Syst 2022; 38:17-24. [PMID: 34694463 DOI: 10.1007/s00381-021-05392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Astereognosis is the tactile inability to recognize objects placed in the palms by touch with the eyes closed or blind-folded in the presence of intact primary sensory modalities. Stereognosis is usually considered a function of the contralateral sensory cerebral cortex. However, lesions of several anatomic areas and pathologic entities have been reported to be associated with astereognosis. Only two previous reports linked traumatic injury to isolated astereognosis: following surgical evacuation of traumatic parietal extradural hematoma and following bullet injury in the neck in 1992 and 1919, respectively. METHODS AND RESULTS All the pertinent literature was analyzed, focusing on the relevant definitions, clinical spectra, pathoanatomical processes, assessment, management, and outcomes of astereognosis. Also, an illustrative case was presented. The case highlights isolated post-traumatic left hand astereognosis in a 17-year-old boy following a blunt trauma to the head which resulted in a non-hemorrhagic contusion of the right post-central gyrus. CONCLUSIONS Post-traumatic isolated astereognosis is a rare and probably underreported sequel of traumatic brain injury. Neurosurgeons need to be more sensitive to the assessment and detection of subtle stereognostic deficits in general and in trauma patients in particular. Other anatomical areas, in addition to the contralateral post-central gyrus, may be considered in the pathogenesis of astereognosis with the involvement of the dorsal column medial lemniscus tract such as the brainstem, foramen magnum, and the cervical spinal cord. To the best of our knowledge, this rare case report is considered the second report on astereognosis following head trauma, and the third report on astereognosis following trauma in general.
Collapse
Affiliation(s)
- Yahya H Khormi
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
- Division of Neurosurgery, Department of Surgery, King Fahad Central Hospital, Jizan, Saudi Arabia
| | - Mostafa M E Atteya
- Division of Neurosurgery, Department of Surgery, King Fahad Central Hospital, Jizan, Saudi Arabia.
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Helwan University, Helwan, Egypt.
| |
Collapse
|
7
|
Sobinov AR, Bensmaia SJ. The neural mechanisms of manual dexterity. Nat Rev Neurosci 2021; 22:741-757. [PMID: 34711956 DOI: 10.1038/s41583-021-00528-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.
Collapse
Affiliation(s)
- Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.,Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA. .,Neuroscience Institute, University of Chicago, Chicago, IL, USA. .,Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Schendel K, Herron TJ, Curran B, Dronkers NF, Ivanova M, Baldo J. Case study: A selective tactile naming deficit for letters and numbers due to interhemispheric disconnection. Neuroimage Clin 2021; 30:102614. [PMID: 33770548 PMCID: PMC8022252 DOI: 10.1016/j.nicl.2021.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022]
Abstract
The role of white matter pathways in cognition is a topic of active investigation that is vital to both the fields of clinical neurology and cognitive neuroscience. White matter pathways provide critical connectivity amongst numerous specialized brain regions thereby enabling higher level cognition. While the effects of dissections and lesions of the corpus callosum have been reported, it is less understood how unilateral focal white matter lesions may impact cognitive processes. Here, we report a unique case study in which a small left lateralized stroke in the white matter adjacent to the body of the corpus callosum selectively impaired the ability to name letters and numbers presented to the ipsilesional, left hand. Naming of letters, numbers and objects was tested in both the visual and tactile modalities in both hands. Diffusion-weighted imaging showed a marked reduction in white matter pathway integrity through the body of the corpus callosum. Clinically, this case highlights the significant impact that a focal white matter lesion can have on higher-level cognition, specifically the integration of verbal and tactile information. Moreover, this case adds to prior reports on tactile agnosia by including DTI imaging data and emphasizing the role that white matter pathways through the body of the corpus callosum play in integrating tactile input from the right hemisphere with verbal naming capabilities of the left hemisphere. Finally, the findings also provoke fresh insight into alternative strategies for rehabilitating cognitive functioning when structural connectivity may be compromised.
Collapse
Affiliation(s)
| | | | - Brian Curran
- VA Northern California Health Care System, United States
| | | | | | - Juliana Baldo
- VA Northern California Health Care System, United States
| |
Collapse
|
9
|
D'Imperio D, Avesani R, Rossato E, Aganetto S, Scandola M, Moro V. Recovery from tactile agnosia: a single case study. Neurocase 2020; 26:18-28. [PMID: 31755352 DOI: 10.1080/13554794.2019.1694951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In a patient suffering from tactile agnosia a comparison was made (using the ABABAB paradigm) between three blocks of neuropsychological rehabilitation sessions involving off-line anodal transcranial direct current stimulation (anodal-tDCS) and three blocks of rehabilitation sessions without tDCS. During the blocks with anodal-tDCS, the stimulation was administered in counterbalanced order to two sites: i) the perilesional parietal area (specific stimulation) and ii) an occipital area far from the lesion (nonspecific stimulation).Rehabilitation associated with anodal-tDCS (in particular in the perilesional areas) is more efficacious than without stimulation.
Collapse
Affiliation(s)
- Daniela D'Imperio
- Social Neuroscience Laboratory, Department of Psychology, Sapienza University, Rome, Italy.,NPSY.Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| | - Renato Avesani
- Department of Rehabilitation, IRCSS Sacro Cuore-Don Calabria, Negrar, Italy
| | - Elena Rossato
- Department of Rehabilitation, IRCSS Sacro Cuore-Don Calabria, Negrar, Italy
| | - Serena Aganetto
- Department of Rehabilitation, IRCSS Sacro Cuore-Don Calabria, Negrar, Italy
| | - Michele Scandola
- NPSY.Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| | - Valentina Moro
- NPSY.Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Monteiro M, de Oliveira-Souza R, Andrade J, Marins T, de Carvalho Rodrigues E, Bramati I, Lent R, Moll J, Tovar-Moll F. Cortical lateralization of cheirosensory processing in callosal dysgenesis. NEUROIMAGE-CLINICAL 2019; 23:101808. [PMID: 31153001 PMCID: PMC6541908 DOI: 10.1016/j.nicl.2019.101808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/17/2019] [Accepted: 03/30/2019] [Indexed: 01/27/2023]
Abstract
The paradoxical absence of a split-brain syndrome in most cases of callosal dysgenesis has originated three main hypotheses, namely, (i) bilateral cortical representation of language, (ii) bilateral thalamocortical projections of somatosensory pathways conveyed by the spinothalamic-medial lemniscus system, and (iii) a variable combination of (i) and (ii). We used functional neuroimaging to investigate the cortical representation and lateralization of somatosensory information from the palm of each hand in six cases of callosal dysgenesis (hypothesis [ii]). Cortical regions of interest were contralateral and ipsilateral S1 (areas 3a and 3b, 1 and 2 in the central sulcus and postcentral gyrus) and S2 (parts of areas 40 and 43 in the parietal operculum). The degree of cortical asymmetry was expressed by a laterality index (LI), which may assume values from −1 (fully left-lateralized) to +1 (fully right-lateralized). In callosal dysgenesis, LI values for the right and the left hands were, respectively, −1 and + 1 for both S1 and S2, indicating absence of engagement of ipsilateral S1 and S2. In controls, LI values were − 0.70 (S1) and − 0.51 (S2) for right hand stimulation, and 0.82 (S1) and 0.36 (S2) for left hand stimulation, reflecting bilateral asymmetric activations, which were significantly higher in the hemisphere contralateral to the stimulated hand. Therefore, none of the main hypotheses so far entertained to account for the callosal dysgenesis-split-brain paradox have succeeded. We conclude that the preserved interhemispheric transfer of somatosensory tactile information in callosal dysgenesis must be mediated by a fourth alternative, such as aberrant interhemispheric bundles, reorganization of subcortical commissures, or both. We studied the cortical sensory representation of the hands in callosal dysgenesis. The representation of the hands was bilateral but asymmetric in controls. The representation of the hands was strictly contralateral in callosal dysgenesis. The representation of the hands is a distinguishing feature of callosal dysgenesis.
Collapse
Affiliation(s)
- Myriam Monteiro
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of the State of Rio de Janeiro (Uni-Rio), Brazil
| | - Ricardo de Oliveira-Souza
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Theo Marins
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Ivanei Bramati
- The D'Or Institute for Research & Education (IDOR), Brazil
| | - Roberto Lent
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of the State of Rio de Janeiro (Uni-Rio), Brazil; The Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Jorge Moll
- The D'Or Institute for Research & Education (IDOR), Brazil
| | - Fernanda Tovar-Moll
- The D'Or Institute for Research & Education (IDOR), Brazil; The Federal University of the State of Rio de Janeiro (Uni-Rio), Brazil.
| |
Collapse
|
11
|
Abela E, Missimer JH, Pastore-Wapp M, Krammer W, Wiest R, Weder BJ. Early prediction of long-term tactile object recognition performance after sensorimotor stroke. Cortex 2019; 115:264-279. [DOI: 10.1016/j.cortex.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/20/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023]
|