1
|
Dutta RR, Abdolmanafi S, Rabizadeh A, Baghbaninogourani R, Mansooridara S, Lopez A, Akbari Y, Paff M. Neuromodulation and Disorders of Consciousness: Systematic Review and Pathophysiology. Neuromodulation 2025; 28:380-400. [PMID: 39425733 DOI: 10.1016/j.neurom.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION Disorders of consciousness (DoC) represent a range of clinical states, affect hundreds of thousands of people in the United States, and have relatively poor outcomes. With few effective pharmacotherapies, neuromodulation has been investigated as an alternative for treating DoC. To summarize the available evidence, a systematic review of studies using various forms of neuromodulation to treat DoC was conducted. MATERIALS AND METHODS Adhering to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic literature review, the PubMed, Scopus, and Web of Science databases were queried to identify articles published between 1990 and 2023 in which neuromodulation was used, usually in conjunction with pharmacologic intervention, to treat or reverse DoC in humans and animals. Records were excluded if DoC (eg, unresponsive wakefulness syndrome, minimally conscious state, etc) were not the primary clinical target. RESULTS A total of 69 studies (58 human, 11 animal) met the inclusion criteria for the systematic review, resulting in over 1000 patients and 150 animals studied in total. Most human studies investigated deep brain stimulation (n = 15), usually of the central thalamus, and transcranial magnetic stimulation (n = 18). Transcranial direct-current stimulation (n = 15) and spinal cord stimulation (n = 6) of the dorsal column also were represented. A few studies investigated low-intensity focused ultrasound (n = 2) and median nerve stimulation (n = 2). Animal studies included primate and murine models, with nine studies involving deep brain stimulation, one using ultrasound, and one using transcranial magnetic stimulation. DISCUSSION While clinical outcomes were mixed and possibly confounded by natural recovery or pharmacologic interventions, deep brain stimulation appeared to facilitate greater improvements in DoC than other modalities. However, repetitive transcranial magnetic stimulation also demonstrated clinical potential with much lower invasiveness.
Collapse
Affiliation(s)
- Rajeev R Dutta
- School of Medicine, University of California Irvine, Irvine, CA, USA.
| | | | | | | | | | - Alexander Lopez
- Department of Neurological Surgery, University of California Irvine, Orange, CA, USA
| | - Yama Akbari
- Department of Neurology, University of California Irvine, Orange, CA, USA; Department of Neurological Surgery, University of California Irvine, Orange, CA, USA; Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA; Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, CA, USA
| | - Michelle Paff
- Department of Neurological Surgery, University of California Irvine, Orange, CA, USA
| |
Collapse
|
2
|
Sun K, Chen G, Liu C, Chu Z, Huang L, Li Z, Zhong S, Ye X, Zhang Y, Jia Y, Pan J, Zhou G, Liu Z, Yu C, Wang Y. A novel MSN-II feature extracted from T1-weighted MRI for discriminating between BD patients and MDD patients. J Affect Disord 2025; 371:36-44. [PMID: 39557301 DOI: 10.1016/j.jad.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Differentiating between patients with bipolar disorder (BD) and major depressive disorder (MDD) is clinically challenging. This study aimed to explore the potential of radiomic textural features for discriminating BD and MDD. METHODS A total 253 subjects (114 patients with BD, 139 patients with MDD) with T1-weighted MRI data were recruited. Radiomics features and gray matter volume (GMV) features were extracted from each brain region. A novel high-level MSN_II feature method based on radiomic features was proposed. And a total of 21 MSN features (5 MSN_I and 16 MSN_II) based on different combinations of the 5 types of radiomic textural feature were calculated. Classification models were constructed using various combinations of MSNs or GMV, and their performance and stability was evaluated through 2000 repeated experiments. RESULTS The model built with combined features (GMV and GMV + MSN_II_GLCM_GLSZM_NGTDM) showed the best classification performance (AUC = 0.896±0.058, ACC = 0.831±0.064) in the validation cohort. After MANOVA analysis and FDR correlation, the MSN_II_GLCM_GLSZM_NGTDM values in 4 regions (right rectus gyrus, right temporal pole: middle temporal gyrus, Vermis3 and Vermis10) showed significant difference between BD and MDD. LIMITATION The main limitation of this study is that the data is derived from a single center without an external independent test set. CONCLUSIONS Incorporating the high-level MSN_II based on radiomics features can improve the classification performance compared to models solely relying on GMV features alone. This result implied the potential application of the proposed high level MSN method and radiomics textural features on the MDD and BD clinical studies.
Collapse
Affiliation(s)
- Kai Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chunchen Liu
- College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihan Chu
- College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhou Li
- College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoying Ye
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingli Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiyang Pan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guifei Zhou
- School of Information Science and Technology, Yunnan Normal University, Kunming, China.
| | - Zhenyu Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Science, Beijing, China.
| | - Changbin Yu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Gao F, Wang L, Wang Z, Tian Y, Wu J, Wang M, Wang L. Case report: Monitoring consciousness with fNIRS in a patient with prolonged reduced consciousness following hemorrhagic stroke undergoing adjunct taVNS therapy. Front Neurosci 2025; 19:1519939. [PMID: 39967804 PMCID: PMC11832507 DOI: 10.3389/fnins.2025.1519939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Disorders of consciousness (DoC) resulting from severe brain injury present substantial challenges in rehabilitation due to disruptions in brain network connectivity, particularly within the frontal-parietal network critical for awareness. Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a promising non-invasive intervention; however, the precise mechanisms through which it influences cortical function in DoC patients remain unclear. This study describes the effects of taVNS on fronto-parietal network connectivity and arousal in a 77-year-old female patient with unresponsive wakefulness syndrome (UWS). The patient received bilateral taVNS for 1 h daily over 3 months, with functional connectivity (FC) in the frontoparietal network assessed using functional near-infrared spectroscopy (fNIRS) and behavioral responsiveness evaluated through the Coma Recovery Scale-Revised (CRS-R). After taVNS intervention, mean FC was enhanced from 0.06 (SD = 0.31) to 0.33 (SD = 0.28) in the frontal-parietal network. The frontal-parietal were subdivided into 12 regions of interest (ROIs) and it was determined that the FC between the left dorsolateral prefrontal cortex (DLPFC) and the left prefrontal ROIs was 0.06 ± 0.41 before the intervention and 0.55 ± 0.24 after the intervention. Behavioral improvements were evidenced by an increase in CRS-R scores from 2 to 14, marking the patient's transition from UWS to minimally conscious state plus (MCS+). Additionally, regions associated with auditory and sensory processing showed increased cortical engagement, supporting the positive impact of taVNS on cortical responsiveness. This suggests its value as a non-invasive adjunctive therapy in the rehabilitation of DoC patients. Further studies are necessary to confirm these effects in a wider patient population and to refine the strategy for clinical application of taVNS.
Collapse
Affiliation(s)
- Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Likai Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaru Tian
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Yang Y, Cao TQ, He SH, Wang LC, He QH, Fan LZ, Huang YZ, Zhang HR, Wang Y, Dang YY, Wang N, Chai XK, Wang D, Jiang QH, Li XL, Liu C, Wang SY. Revolutionizing treatment for disorders of consciousness: a multidisciplinary review of advancements in deep brain stimulation. Mil Med Res 2024; 11:81. [PMID: 39690407 DOI: 10.1186/s40779-024-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Among the existing research on the treatment of disorders of consciousness (DOC), deep brain stimulation (DBS) offers a highly promising therapeutic approach. This comprehensive review documents the historical development of DBS and its role in the treatment of DOC, tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis. The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions, providing a framework for refining DBS targets. We also discuss the multimodal approaches for assessing patients with DOC, encompassing clinical behavioral scales, electrophysiological assessment, and neuroimaging techniques methods. During the evolution of DOC therapy, the segmentation of central nuclei, the recording of single-neurons, and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment. Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC, linking neuron-level dynamics with macroscopic behavioral changes. Despite showing promising outcomes, challenges remain in patient selection, precise target localization, and the determination of optimal stimulation parameters. Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC. It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks. Ultimately, by optimizing neuromodulation strategies, we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Innovative Center, Beijing Institute of Brain Disorders, Beijing, 100070, China.
- Department of Neurosurgery, Chinese Institute for Brain Research, Beijing, 100070, China.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK.
| | - Tian-Qing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Sheng-Hong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK
| | - Lu-Chen Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Qi-Heng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Ling-Zhong Fan
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong-Zhi Huang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Hao-Ran Zhang
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100080, China
| | - Yuan-Yuan Dang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100080, China
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiao-Ke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Dong Wang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Qiu-Hua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Warren AEL, Raguž M, Friedrich H, Schaper FLWVJ, Tasserie J, Snider SB, Li J, Chua MMJ, Butenko K, Friedrich MU, Jha R, Iglesias JE, Carney PW, Fischer D, Fox MD, Boes AD, Edlow BL, Horn A, Chudy D, Rolston JD. A human brain network linked to restoration of consciousness after deep brain stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.17.24314458. [PMID: 39484242 PMCID: PMC11527079 DOI: 10.1101/2024.10.17.24314458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Disorders of consciousness (DoC) are states of impaired arousal or awareness. Deep brain stimulation (DBS) is a potential treatment, but outcomes vary, possibly due to differences in patient characteristics, electrode placement, or stimulation of specific brain networks. We studied 40 patients with DoC who underwent DBS targeting the thalamic centromedian-parafascicular complex. Better-preserved gray matter, especially in the striatum, correlated with consciousness improvement. Stimulation was most effective when electric fields extended into parafascicular and subparafascicular nuclei-ventral to the centromedian nucleus, near the midbrain-and when it engaged projection pathways of the ascending arousal network, including the hypothalamus, brainstem, and frontal lobe. Moreover, effective DBS sites were connected to networks similar to those underlying impaired consciousness due to generalized absence seizures and acquired lesions. These findings support the therapeutic potential of DBS for DoC, emphasizing the importance of precise targeting and revealing a broader link between effective DoC treatment and mechanisms underlying other conscciousness-impairing conditions.
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Helen Friedrich
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- University of Wurzburg, Faculty of Medicine, Josef-Schneider-Str. 2, 97080, Wurzburg, Germany
| | - Frederic L W V J Schaper
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordy Tasserie
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel B Snider
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maximilian U Friedrich
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohan Jha
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan E Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Centre for Medical Image Computing, University College London, London, United Kingdom
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick W Carney
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - David Fischer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron D Boes
- Departments of Neurology, Pediatrics, and Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - John D Rolston
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Cao T, He S, Wang L, Chai X, He Q, Liu D, Wang D, Wang N, He J, Wang S, Yang Y, Zhao J, Tan H. Clinical neuromodulatory effects of deep brain stimulation in disorder of consciousness: A literature review. CNS Neurosci Ther 2024; 30:e14559. [PMID: 38115730 PMCID: PMC11163193 DOI: 10.1111/cns.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/11/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The management of patients with disorders of consciousness (DOC) presents substantial challenges in clinical practice. Deep brain stimulation (DBS) has emerged as a potential therapeutic approach, but the lack of standardized regulatory parameters for DBS in DOC hinders definitive conclusions. OBJECTIVE This comprehensive review aims to provide a detailed summary of the current issues concerning patient selection, target setting, and modulation parameters in clinical studies investigating the application of DBS for DOC patients. METHODS A meticulous systematic analysis of the literatures was conducted, encompassing articles published from 1968 to April 2023, retrieved from reputable databases (PubMed, Embase, Medline, and Web of Science). RESULTS The systematic analysis of 21 eligible articles, involving 146 patients with DOC resulting from acquired brain injury or other disorders, revealed significant insights. The most frequently targeted regions were the Centromedian-parafascicular complex (CM-pf) nuclei and central thalamus (CT), both recognized for their role in regulating consciousness. However, other targets have also been explored in different studies. The stimulation frequency was predominantly set at 25 or 100 Hz, with pulse width of 120 μs, and voltages ranged from 0 to 4 V. These parameters were customized based on individual patient responses and evaluations. The overall clinical efficacy rate in all included studies was 39.7%, indicating a positive effect of DBS in a subset of DOC patients. Nonetheless, the assessment methods, follow-up durations, and outcome measures varied across studies, potentially contributing to the variability in reported efficacy rates. CONCLUSION Despite the challenges arising from the lack of standardized parameters, DBS shows promising potential as a therapeutic option for patients with DOC. However, there still remains the need for standardized protocols and assessment methods, which are crucial to deepen the understanding and optimizing the therapeutic potential of DBS in this specific patient population.
Collapse
Affiliation(s)
- Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Luchen Wang
- School of Information Science and TechnologyFudan UniversityShanghaiChina
| | - Xiaoke Chai
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dongsheng Liu
- Department of NeurosurgeryAviation General HospitalBeijingChina
| | - Dong Wang
- Department of NeurosurgeryGanzhou People's HospitalGanzhouJiangxi ProvinceChina
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shouyang Wang
- School of Information Science and TechnologyFudan UniversityShanghaiChina
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Chinese Institute for Brain ResearchBeijingChina
- Beijing Institute of Brain DisordersBeijingChina
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Lu J, Wu J, Shu Z, Zhang X, Li H, Liang S, Han J, Yu N. Brain Temporal-Spectral Functional Variability Reveals Neural Improvements of DBS Treatment for Disorders of Consciousness. IEEE Trans Neural Syst Rehabil Eng 2024; 32:923-933. [PMID: 38386574 DOI: 10.1109/tnsre.2024.3368434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Deep brain stimulation (DBS) is establishing itself as a promising treatment for disorders of consciousness (DOC). Measuring consciousness changes is crucial in the optimization of DBS therapy for DOC patients. However, conventional measures use subjective metrics that limit the investigations of treatment-induced neural improvements. The focus of this study is to analyze the regulatory effects of DBS and explain the regulatory mechanism at the brain functional level for DOC patients. Specifically, this paper proposed a dynamic brain temporal-spectral analysis method to quantify DBS-induced brain functional variations in DOC patients. Functional near-infrared spectroscopy (fNIRS) that promised to evaluate consciousness levels was used to monitor brain variations of DOC patients. Specifically, a fNIRS-based experimental procedure with auditory stimuli was developed, and the brain activities during the procedure from thirteen DOC patients before and after the DBS treatment were recorded. Then, dynamic brain functional networks were formulated with a sliding-window correlation analysis of phase lag index. Afterwards, with respect to the temporal variations of global and regional networks, the variability of global efficiency, local efficiency, and clustering coefficient were extracted. Further, dynamic networks were converted into spectral representations by graph Fourier transform, and graph energy and diversity were formulated to assess the spectral global and regional variability. The results showed that DOC patients under DBS treatment exhibited increased global and regional functional variability that was significantly associated with consciousness improvements. Moreover, the functional variability in the right brain regions had a stronger correlation with consciousness enhancements than that in the left brain regions. Therefore, the proposed method well signifies DBS-induced brain functional variations in DOC patients, and the functional variability may serve as promising biomarkers for consciousness evaluations in DOC patients.
Collapse
|
8
|
Yang Y, He Q, Dang Y, Xia X, Xu X, Chen X, Zhao J, He J. Long-term functional outcomes improved with deep brain stimulation in patients with disorders of consciousness. Stroke Vasc Neurol 2023; 8:368-378. [PMID: 36882201 PMCID: PMC10647871 DOI: 10.1136/svn-2022-001998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has been preliminarily applied to treat patients with disorders of consciousness (DoCs). The study aimed to determine whether DBS was effective for treating patients with DoC and identify factors related to patients' outcomes. METHODS Data from 365 patients with DoCs who were consecutively admitted from 15 July 2011 to 31 December 2021 were retrospectively analysed. Multivariate regression and subgroup analysis were performed to adjust for potential confounders. The primary outcome was improvement in consciousness at 1 year. RESULTS An overall improvement in consciousness at 1 year was achieved in 32.4% (12/37) of the DBS group compared with 4.3% (14/328) of the conservative group. After full adjustment, DBS significantly improved consciousness at 1 year (adjusted OR 11.90, 95% CI 3.65-38.46, p<0.001). There was a significant treatment×follow up interaction (H=14.99, p<0.001). DBS had significantly better effects in patients with minimally conscious state (MCS) compared with patients with vegetative state/unresponsive wakefulness syndrome (p for interaction <0.001). A nomogram based on age, state of consciousness, pathogeny and duration of DoCs indicated excellent predictive performance (c-index=0.882). CONCLUSIONS DBS was associated with better outcomes in patients with DoC, and the effect was likely to be significantly greater in patients with MCS. DBS should be cautiously evaluated by nomogram preoperatively, and randomised controlled trials are still needed.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Translational Medicine Center, Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Dang
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Xiaoyu Xia
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Xin Xu
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Academician Office, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Shu Z, Wu J, Li H, Liu J, Lu J, Lin J, Liang S, Wu J, Han J, Yu N. fNIRS-based functional connectivity signifies recovery in patients with disorders of consciousness after DBS treatment. Clin Neurophysiol 2023; 147:60-68. [PMID: 36702043 DOI: 10.1016/j.clinph.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/20/2022] [Accepted: 12/12/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVE While deep brain stimulation (DBS) has proved effective for certain patients with disorders of consciousness (DOC), the working neural mechanism is not clear, the response varies for patients, and the assessment is inadequate. This paper aims to quantify the DBS-induced changes of consciousness in DOC patients at the neural functional level. METHODS Ten DOC patients were included for DBS surgery. The DBS target was the right centromedian-parafascicular (CM-pf) nuclei for four patients and the bilateral CM-pf nuclei for six patients. Functional near-infrared spectroscopy (fNIRS) was taken to measure the neural activation of patients, in parallel with Coma Recovery Scale-Revised (CRS-R), before the DBS surgery and one month after. The fNIRS signals were recorded from the frontal, parietal, and occipital lobes. Functional connectivity analysis quantified the communication between brain regions, area communication strength, and global communication efficiency. Linear regression analysis was conducted between the changes of indices based on functional connectivity analysis and the changes of the CRS-R index. RESULTS Patients with trauma (n = 4) exhibited a greater increase of CRS-R scores after DBS treatment compared with patients with hemorrhage (n = 4) and brainstem infarction (n = 2). Global communication efficiency changed consistently with the CRS-R index (slope = 57.384, p < 0.05, R2=0.483). No significant relationship was found between the changes of area communication strength of six brain lobes and the changes of the CRS-R index. CONCLUSIONS The cause of DOC is essential for the outcome of DBS treatment, and brain communication efficiency is a promising functional marker for DOC recovery. SIGNIFICANCE fNIRS-based functional connectivity analysis on brain network signifies changes of consciousness in DOC patients after DBS treatment.
Collapse
Affiliation(s)
- Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Jingchao Wu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Haitao Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jinrui Liu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Jianeng Lin
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Siquan Liang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China.
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Litvak V, Florin E, Tamás G, Groppa S, Muthuraman M. EEG and MEG primers for tracking DBS network effects. Neuroimage 2020; 224:117447. [PMID: 33059051 DOI: 10.1016/j.neuroimage.2020.117447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment method for a range of neurological and psychiatric disorders. It involves implantation of stimulating electrodes in a precisely guided fashion into subcortical structures and, at a later stage, chronic stimulation of these structures with an implantable pulse generator. While the DBS surgery makes it possible to both record brain activity and stimulate parts of the brain that are difficult to reach with non-invasive techniques, electroencephalography (EEG) and magnetoencephalography (MEG) provide complementary information from other brain areas, which can be used to characterize brain networks targeted through DBS. This requires, however, the careful consideration of different types of artifacts in the data acquisition and the subsequent analyses. Here, we review both the technical issues associated with EEG/MEG recordings in DBS patients and the experimental findings to date. One major line of research is simultaneous recording of local field potentials (LFPs) from DBS targets and EEG/MEG. These studies revealed a set of cortico-subcortical coherent networks functioning at distinguishable physiological frequencies. Specific network responses were linked to clinical state, task or stimulation parameters. Another experimental approach is mapping of DBS-targeted networks in chronically implanted patients by recording EEG/MEG responses during stimulation. One can track responses evoked by single stimulation pulses or bursts as well as brain state shifts caused by DBS. These studies have the potential to provide biomarkers for network responses that can be adapted to guide stereotactic implantation or optimization of stimulation parameters. This is especially important for diseases where the clinical effect of DBS is delayed or develops slowly over time. The same biomarkers could also potentially be utilized for the online control of DBS network effects in the new generation of closed-loop stimulators that are currently entering clinical use. Through future studies, the use of network biomarkers may facilitate the integration of circuit physiology into clinical decision making.
Collapse
Affiliation(s)
- Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
11
|
Xiang XJ, Sun LZ, Xu CB, Xie Y, Pan MY, Ran J, Hu Y, Nong BX, Shen Q, Huang H, Huang SH, Yu YZ. The clinical effect of vagus nerve stimulation in the treatment of patients with a minimally conscious state. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: Vagus nerve stimulation (VNS) has recently been used in neurorehabilitation and the recovery of consciousness based on its effects on cortical plasticity. The aim of this study was to examine the therapeutic effects of VNS on patients with a minimally conscious state (MCS). Methods: All patients included in the study were assessed more than 5 months after injury and were receiving regular rehabilitation at our hospital from August 2018 to October 2019. Ten patients diagnosed with MCS by Coma Recovery Scale-Revised (CRS-R) test who underwent VNS surgery were enrolled. The scores on CRS-R evaluation at baseline (before VNS implantation) and 1, 3, and 6 months after VNS treatment were recorded. The stimulation parameters were chosen according to a previous study. All clinical rehabilitation protocols remained unchanged during the study. Furthermore, safety was assessed by analyzing treatment-emergent adverse events (TEAEs). Results: No significant improvement in the total CRS-R scores at the end of the 1-month follow-up was observed (p > 0.05). After 3 months of stimulation, a significant difference (p = 0.0078) was observed in the total CRS-R scores compared with the baseline. After 6 months of VNS treatment, CRS-R assessments showed a continuous significant improvement (p = 0.0039); one patient emerged from the MCS and recovered functional communication and object use. Interestingly, one item of CRS-R scores on visual domain was sensitive to VNS treatment (p = 0.0039). Furthermore, no serious adverse event occurred throughout the study. Conclusion: This exploratory study provides preliminary evidence suggesting that VNS is a safe and effective tool for consciousness recovery in patients with MCS.
Collapse
|
12
|
Pace-Schott EF, Amole MC, Aue T, Balconi M, Bylsma LM, Critchley H, Demaree HA, Friedman BH, Gooding AEK, Gosseries O, Jovanovic T, Kirby LA, Kozlowska K, Laureys S, Lowe L, Magee K, Marin MF, Merner AR, Robinson JL, Smith RC, Spangler DP, Van Overveld M, VanElzakker MB. Physiological feelings. Neurosci Biobehav Rev 2019; 103:267-304. [DOI: 10.1016/j.neubiorev.2019.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
13
|
Bourdillon P, Hermann B, Sitt JD, Naccache L. Electromagnetic Brain Stimulation in Patients With Disorders of Consciousness. Front Neurosci 2019; 13:223. [PMID: 30936822 PMCID: PMC6432925 DOI: 10.3389/fnins.2019.00223] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Severe brain injury is a common cause of coma. In some cases, despite vigilance improvement, disorders of consciousness (DoC) persist. Several states of impaired consciousness have been defined, according to whether the patient exhibits only reflexive behaviors as in the vegetative state/unresponsive wakefulness syndrome (VS/UWS) or purposeful behaviors distinct from reflexes as in the minimally conscious state (MCS). Recently, this clinical distinction has been enriched by electrophysiological and neuroimaging data resulting from a better understanding of the physiopathology of DoC. However, therapeutic options, especially pharmacological ones, remain very limited. In this context, electroceuticals, a new category of therapeutic agents which act by targeting the neural circuits with electromagnetic stimulations, started to develop in the field of DoC. We performed a systematic review of the studies evaluating therapeutics relying on the direct or indirect electro-magnetic stimulation of the brain in DoC patients. Current evidence seems to support the efficacy of deep brain stimulation (DBS) and non-invasive brain stimulation (NIBS) on consciousness in some of these patients. However, while the latter is non-invasive and well tolerated, the former is associated with potential major side effects. We propose that all chronic DoC patients should be given the possibility to benefit from NIBS, and that transcranial direct current stimulation (tDCS) should be preferred over repetitive transcranial magnetic stimulation (rTMS), based on the literature and its simple use. Surgical techniques less invasive than DBS, such as vagus nerve stimulation (VNS) might represent a good compromise between efficacy and invasiveness but still need to be further investigated.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurosurgery, Adolphe de Rothschild Foundation, Paris, France
- Sorbonne Université, Faculté de Médecine Pitié-Salpêtrière, Paris, France
- Institut du Cerveau et de la Moelle Épinière, ICM, PICNIC Lab, Paris, France
- Inserm U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Bertrand Hermann
- Sorbonne Université, Faculté de Médecine Pitié-Salpêtrière, Paris, France
- Institut du Cerveau et de la Moelle Épinière, ICM, PICNIC Lab, Paris, France
- Inserm U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Department of Neurology, Neuro ICU, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Jacobo D. Sitt
- Institut du Cerveau et de la Moelle Épinière, ICM, PICNIC Lab, Paris, France
- Inserm U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Lionel Naccache
- Sorbonne Université, Faculté de Médecine Pitié-Salpêtrière, Paris, France
- Institut du Cerveau et de la Moelle Épinière, ICM, PICNIC Lab, Paris, France
- Inserm U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Department of Neurophysiology, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
14
|
Rezaei Haddad A, Lythe V, Green AL. Deep Brain Stimulation for Recovery of Consciousness in Minimally Conscious Patients After Traumatic Brain Injury: A Systematic Review. Neuromodulation 2019; 22:373-379. [DOI: 10.1111/ner.12944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Ali Rezaei Haddad
- Medical Sciences Divisional Office University of Oxford, John Radcliffe Hospital Oxford UK
- Neurosurgical Department Oxford University Hospitals Oxford UK
| | - Vanessa Lythe
- Green Templeton College, University of Oxford Oxford UK
| | - Alexander L. Green
- Neurosurgical Department Oxford University Hospitals Oxford UK
- Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| |
Collapse
|
15
|
Naro A, Bramanti A, Leo A, Cacciola A, Manuli A, Bramanti P, Calabrò RS. Shedding new light on disorders of consciousness diagnosis: The dynamic functional connectivity. Cortex 2018; 103:316-328. [DOI: 10.1016/j.cortex.2018.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
|
16
|
Vanhoecke J, Hariz M. Deep brain stimulation for disorders of consciousness: Systematic review of cases and ethics. Brain Stimul 2017; 10:1013-1023. [PMID: 28966051 DOI: 10.1016/j.brs.2017.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A treatment for patients suffering from prolonged severely altered consciousness is not available. The success of Deep Brain Stimulation (DBS) in diseases such as Parkinson's, dystonia and essential tremor provided a renewed impetus for its application in Disorders of Consciousness (DoC). OBJECTIVE To evaluate the rationale for DBS in patients with DoC, through systematic review of literature containing clinical data and ethical considerations. METHODS Articles from PubMed, Embase, Medline and Web of Science were systematically reviewed. RESULTS The outcomes of 78 individual patients reported in 19 articles from 1968 onwards were pooled and elements of ethical discussions were compared. There is no clear clinical evidence that DBS is a treatment for DoC that can restore both consciousness and the ability to communicate. In patients who benefitted, the outcome of DBS is often confounded by the time frame of spontaneous recovery from DoC. Difficult ethical considerations remain, such as the risk of increasing self-awareness of own limitations, without improving overall wellbeing, and the issues of proxy consent. CONCLUSION DBS is far from being evident as a possible future therapeutic avenue for patients with DoC. Double-blind studies are lacking, and many clinical and ethical issues have to be addressed. In the rare cases when DBS for patients with DoC is considered, this needs to be evaluated meticulously on a case by case basis, with comprehensive overall outcome measures including psychological and quality-of-life assessments, and with the guidance of an ethical and interdisciplinary panel, especially in relation to proxy consent.
Collapse
Affiliation(s)
- Jojo Vanhoecke
- Unit of Functional Neurosurgery, Institute of Neurology, University College London, Queen Square, WC1N 3BG, London, UK.
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Institute of Neurology, University College London, Queen Square, WC1N 3BG, London, UK; Department of Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
17
|
Zhang Y, Song W. Transcranial direct current stimulation in disorders of consciousness: a review. Int J Neurosci 2017; 128:255-261. [PMID: 28918680 DOI: 10.1080/00207454.2017.1381094] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ye Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Trenado C, Elben S, Petri D, Hirschmann J, Groiss SJ, Vesper J, Schnitzler A, Wojtecki L. Combined Invasive Subcortical and Non-invasive Surface Neurophysiological Recordings for the Assessment of Cognitive and Emotional Functions in Humans. J Vis Exp 2016. [PMID: 27286467 DOI: 10.3791/53466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In spite of the success in applying non-invasive electroencephalography (EEG), magneto-encephalography (MEG) and functional magnetic resonance imaging (fMRI) for extracting crucial information about the mechanism of the human brain, such methods remain insufficient to provide information about physiological processes reflecting cognitive and emotional functions at the subcortical level. In this respect, modern invasive clinical approaches in humans, such as deep brain stimulation (DBS), offer a tremendous possibility to record subcortical brain activity, namely local field potentials (LFPs) representing coherent activity of neural assemblies from localized basal ganglia or thalamic regions. Notwithstanding the fact that invasive approaches in humans are applied only after medical indication and thus recorded data correspond to altered brain circuits, valuable insight can be gained regarding the presence of intact brain functions in relation to brain oscillatory activity and the pathophysiology of disorders in response to experimental cognitive paradigms. In this direction, a growing number of DBS studies in patients with Parkinson's disease (PD) target not only motor functions but also higher level processes such as emotions, decision-making, attention, memory and sensory perception. Recent clinical trials also emphasize the role of DBS as an alternative treatment in neuropsychiatric disorders ranging from obsessive compulsive disorder (OCD) to chronic disorders of consciousness (DOC). Consequently, we focus on the use of combined invasive (LFP) and non-invasive (EEG) human brain recordings in assessing the role of cortical-subcortical structures in cognitive and emotional processing trough experimental paradigms (e.g. speech stimuli with emotional connotation or paradigms of cognitive control such as the Flanker task), for patients undergoing DBS treatment.
Collapse
Affiliation(s)
- Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University
| | - Saskia Elben
- Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - David Petri
- Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Jan Hirschmann
- Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Stefan J Groiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University; Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Jan Vesper
- Department of Neurosurgery, Functional Neurosurgery and Stereotaxy, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University; Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University; Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf;
| |
Collapse
|
19
|
Jerath R, Crawford MW, Barnes VA. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience. Front Psychol 2015; 6:1204. [PMID: 26379573 PMCID: PMC4550793 DOI: 10.3389/fpsyg.2015.01204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/29/2015] [Indexed: 12/28/2022] Open
Abstract
The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.
Collapse
Affiliation(s)
| | | | - Vernon A Barnes
- Department of Pediatrics, Georgia Prevention Institute, Georgia Regents University Augusta, GA, USA
| |
Collapse
|