1
|
Jiang R, Xiao Z, Jiang Y, Jiang X. The Neural Mechanisms of Private Speech in Second Language Learners' Oral Production: An fNIRS Study. Brain Sci 2025; 15:451. [PMID: 40426622 PMCID: PMC12110657 DOI: 10.3390/brainsci15050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Background: According to Vygotsky's sociocultural theory, private speech functions both as a tool for thought regulation and as a transitional form between outer and inner speech. However, its role in adult second language (L2) learning-and the neural mechanisms supporting it-remains insufficiently understood. This study thus examined whether private speech facilitates L2 oral production and investigated its underlying neural mechanisms, including the extent to which private speech resembles inner speech in its regulatory function and the transitional nature of private speech. Methods: In Experiment 1, to identify natural users of private speech, 64 Chinese-speaking L2 English learners with varying proficiency levels were invited to complete a picture-description task. In Experiment 2, functional near-infrared spectroscopy (fNIRS) was used to examine the neural mechanisms of private speech in 32 private speech users identified in Experiment 1. Results: Experiment 1 showed that private speech facilitates L2 oral production. Experiment 2 revealed that private and inner speech elicited highly similar patterns of functional connectivity. Among high-proficiency learners, private speech exhibited enhanced connectivity between the language network and the thought-regulation network, indicating involvement of higher-order cognitive processes. In contrast, among low-proficiency learners, connectivity was primarily restricted to language-related regions, suggesting that private speech supports basic linguistic processing at early stages. Furthermore, both private and outer speech showed stronger connectivity in speech-related brain regions. Conclusions: This is the first study to examine the neural mechanisms of private speech in L2 learners by using fNIRS. The findings provide novel neural evidence that private speech serves as both a regulatory scaffold and a transitional form bridging outer and inner speech. Its cognitive function appears to evolve with increasing L2 proficiency.
Collapse
Affiliation(s)
- Rong Jiang
- Research Institute of International Chinese Language Education, Beijing Language and Culture University, Beijing 100083, China
| | - Zhe Xiao
- School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yihan Jiang
- Cognitive Science and Allied Health School, Beijing Language and Culture University, Beijing 100083, China
- Institute of Life and Health Sciences, Beijing Language and Culture University, Beijing 100083, China
- Key Laboratory of Language and Cognitive Science, Ministry of Education, Beijing Language and Culture University, Beijing 100083, China
| | - Xueqing Jiang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing 100083, China
| |
Collapse
|
2
|
Liuzzi AG, Meersmans K, Peeters R, De Deyne S, Dupont P, Vandenberghe R. Semantic representations in inferior frontal and lateral temporal cortex during picture naming, reading, and repetition. Hum Brain Mapp 2024; 45:e26603. [PMID: 38339900 PMCID: PMC10836176 DOI: 10.1002/hbm.26603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Reading, naming, and repetition are classical neuropsychological tasks widely used in the clinic and psycholinguistic research. While reading and repetition can be accomplished by following a direct or an indirect route, pictures can be named only by means of semantic mediation. By means of fMRI multivariate pattern analysis, we evaluated whether this well-established fundamental difference at the cognitive level is associated at the brain level with a difference in the degree to which semantic representations are activated during these tasks. Semantic similarity between words was estimated based on a word association model. Twenty subjects participated in an event-related fMRI study where the three tasks were presented in pseudo-random order. Linear discriminant analysis of fMRI patterns identified a set of regions that allow to discriminate between words at a high level of word-specificity across tasks. Representational similarity analysis was used to determine whether semantic similarity was represented in these regions and whether this depended on the task performed. The similarity between neural patterns of the left Brodmann area 45 (BA45) and of the superior portion of the left supramarginal gyrus correlated with the similarity in meaning between entities during picture naming. In both regions, no significant effects were seen for repetition or reading. The semantic similarity effect during picture naming was significantly larger than the similarity effect during the two other tasks. In contrast, several regions including left anterior superior temporal gyrus and left ventral BA44/frontal operculum, among others, coded for semantic similarity in a task-independent manner. These findings provide new evidence for the dynamic, task-dependent nature of semantic representations in the left BA45 and a more task-independent nature of the representational activation in the lateral temporal cortex and ventral BA44/frontal operculum.
Collapse
Affiliation(s)
- Antonietta Gabriella Liuzzi
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Ronald Peeters
- Radiology DepartmentUniversity Hospitals LeuvenLeuvenBelgium
| | - Simon De Deyne
- School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
- Neurology DepartmentUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
3
|
Kram L, Ohlerth AK, Ille S, Meyer B, Krieg SM. CompreTAP: Feasibility and reliability of a new language comprehension mapping task via preoperative navigated transcranial magnetic stimulation. Cortex 2024; 171:347-369. [PMID: 38086145 DOI: 10.1016/j.cortex.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 09/25/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Stimulation-based language mapping approaches that are used pre- and intraoperatively employ predominantly overt language tasks requiring sufficient language production abilities. Yet, these production-based setups are often not feasible in brain tumor patients with severe expressive aphasia. This pilot study evaluated the feasibility and reliability of a newly developed language comprehension task with preoperative navigated transcranial magnetic stimulation (nTMS). METHODS Fifteen healthy subjects and six brain tumor patients with severe expressive aphasia unable to perform classic overt naming tasks underwent preoperative nTMS language mapping based on an auditory single-word Comprehension TAsk for Perioperative mapping (CompreTAP). Comprehension was probed by button-press responses to auditory stimuli, hence not requiring overt language responses. Positive comprehension areas were identified when stimulation elicited an incorrect or delayed button press. Error categories, case-wise cortical error rate distribution and inter-rater reliability between two experienced specialists were examined. RESULTS Overall, the new setup showed to be feasible. Comprehension-disruptions induced by nTMS manifested in no responses, delayed or hesitant responses, searching behavior or selection of wrong target items across all patients and controls and could be performed even in patients with severe expressive aphasia. The analysis agreement between both specialists was substantial for classifying comprehension-positive and -negative sites. Extensive left-hemispheric individual cortical comprehension sites were identified for all patients. Apart from one case presenting with transient worsening of aphasic symptoms, pre-existing language deficits did not aggravate if results were used for subsequent surgical planning. CONCLUSION Employing this new comprehension-based nTMS setup allowed to identify language relevant cortical sites in all healthy subjects and severely aphasic patients who were thus far precluded from classic production-based mapping. This pilot study, moreover, provides first indications that the CompreTAP mapping results may support the preservation of residual language function if used for subsequent surgical planning.
Collapse
Affiliation(s)
- Leonie Kram
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Ann-Katrin Ohlerth
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; TUM Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; TUM Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany.
| |
Collapse
|
4
|
Leonard MK, Gwilliams L, Sellers KK, Chung JE, Xu D, Mischler G, Mesgarani N, Welkenhuysen M, Dutta B, Chang EF. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature 2024; 626:593-602. [PMID: 38093008 PMCID: PMC10866713 DOI: 10.1038/s41586-023-06839-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/06/2023] [Indexed: 01/31/2024]
Abstract
Understanding the neural basis of speech perception requires that we study the human brain both at the scale of the fundamental computational unit of neurons and in their organization across the depth of cortex. Here we used high-density Neuropixels arrays1-3 to record from 685 neurons across cortical layers at nine sites in a high-level auditory region that is critical for speech, the superior temporal gyrus4,5, while participants listened to spoken sentences. Single neurons encoded a wide range of speech sound cues, including features of consonants and vowels, relative vocal pitch, onsets, amplitude envelope and sequence statistics. Neurons at each cross-laminar recording exhibited dominant tuning to a primary speech feature while also containing a substantial proportion of neurons that encoded other features contributing to heterogeneous selectivity. Spatially, neurons at similar cortical depths tended to encode similar speech features. Activity across all cortical layers was predictive of high-frequency field potentials (electrocorticography), providing a neuronal origin for macroelectrode recordings from the cortical surface. Together, these results establish single-neuron tuning across the cortical laminae as an important dimension of speech encoding in human superior temporal gyrus.
Collapse
Affiliation(s)
- Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Gwilliams
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kristin K Sellers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jason E Chung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Duo Xu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gavin Mischler
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Nima Mesgarani
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | | | | | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Baurès R, Leblond S, Dewailly A, Cherubini M, Subramanian LD, Kearney JK, Durand JB, Roux FE. Should I stay or should I go? The cerebral bases of street-crossing decision. J Neurosci Res 2024; 102:e25279. [PMID: 38284833 DOI: 10.1002/jnr.25279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
An observer willing to cross a street must first estimate if the approaching cars offer enough time to safely complete the task. The brain areas supporting this perception, known as Time-To-Contact (TTC) perception, have been mainly studied through noninvasive correlational approaches. We carried out an experiment in which patients were tested during an awake brain surgery electrostimulation mapping to examine the causal implication of various brain areas in the street-crossing decision process. Forty patients were tested in a gap acceptance task before their surgery to establish a baseline performance. The task was individually adapted upon this baseline level and carried out during their surgery. We acquired and normalized to MNI space the coordinates of the functional areas that influenced task performance. A total of 103 stimulation sites were tested, allowing to establish a large map of the areas involved in the street-crossing decision. Multiple sites were found to impact the gap acceptance decision. A direct implication was however found mostly for sites within the right parietal lobe, while indirect implication was found for sites within the language, motor, or attentional networks. The right parietal lobe can be considered as causally influencing the gap acceptance decision. Other positive sites were all accompanied with dysfunction in other cognitive functions, and therefore should probably not be considered as the site of TTC estimation.
Collapse
Affiliation(s)
- Robin Baurès
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse, France
| | - Solène Leblond
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse, France
| | - Andrea Dewailly
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse, France
| | - Marta Cherubini
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse, France
| | | | | | | | - Franck Emmanuel Roux
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse, France
- Pôle Neurosciences (Neurochirurgie), Centres Hospitalo-Universitaires, Toulouse, France
| |
Collapse
|
6
|
Sugimoto H, Abe MS, Otake-Matsuura M. Word-producing brain: Contribution of the left anterior middle temporal gyrus to word production patterns in spoken language. BRAIN AND LANGUAGE 2023; 238:105233. [PMID: 36842390 DOI: 10.1016/j.bandl.2023.105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Vocabulary is based on semantic knowledge. The anterior temporal lobe (ATL) has been considered an essential region for processing semantic knowledge; nonetheless, the association between word production patterns and the structural and functional characteristics of the ATL remains unclear. To examine this, we analyzed over one million words from group conversations among community-dwelling older adults and their multimodal magnetic resonance imaging data. A quantitative index for the word production patterns, namely the exponent β of Heaps' law, positively correlated with the left anterior middle temporal gyrus volume. Moreover, β negatively correlated with its resting-state functional connectivity with the precuneus. There was no significant correlation with the diffusion tensor imaging metrics in any fiber. These findings suggest that the vocabulary richness in spoken language depends on the brain status characterized by the semantic knowledge-related brain structure and its activation dissimilarity with the precuneus, a core region of the default mode network.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Masato S Abe
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; Faculty of Culture and Information Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto-fu 610-0394, Japan.
| | - Mihoko Otake-Matsuura
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| |
Collapse
|
7
|
Le Lann F, Cristante J, De Schlichting E, Quehan R, Réhault E, Lotterie JA, Roux FE. Variability of Intraoperative Electrostimulation Parameters in Conscious Individuals: Language Fasciculi. World Neurosurg 2022; 164:e194-e202. [PMID: 35472645 DOI: 10.1016/j.wneu.2022.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The authors analyzed the current-intensity thresholds for electrostimulation of language fasciculi and the possible consequences of threshold variability on brain mapping. METHODS A prospective protocol of subcortical electrostimulation was used in 50 patients undergoing brain mapping, directly stimulating presumed language fasciculi identified by diffusion tensor imaging. RESULTS The stimulation-intensity thresholds for identification of language fasciculi varied among patients (mean minimum current intensity of 4.4 mA, range = 1.5-10 mA, standard deviation = 1.1 mA), and 23% of fascicular interferences were detected only above 5 mA. Repeated stimulation of the same site with the same intensity led to different types of interferences in 20% of patients, and a higher current intensity led to changes in the type of response in 27%. The mean minimum stimulation intensities did not differ significantly between different fasciculi, between the different types of interference obtained, or with age, sex, or type of tumor. Positive results on cortical mapping were significantly associated with positive results on subcortical mapping (P < 0.001). Subcortical intensity thresholds were slightly lower than cortical ones (mean = 4.43 vs. 5.25 mA, P = 0.034). In 23 of 50 subcortical mappings, fascicular stimulation produced no language interference. CONCLUSIONS Individual variability of minimum stimulation-intensity thresholds for identification of language fasciculi is frequent. Nevertheless, even when a high current intensity was used, many stimulations on language fasciculi remained negative for various hypothetic reasons. Finding the optimal current intensity for identifying language fasciculi is of paramount importance to refine the clinical results and scientific data derived from brain mapping.
Collapse
Affiliation(s)
- Florian Le Lann
- Pole Neurosciences (Neurochirurgie), Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; Université de Toulouse, UPS, Toulouse, France.
| | | | - Emmanuel De Schlichting
- Université Grenoble Alpes, Faculté de Médecine, Grenoble, France; Neurochirurgie, Centre Hospitalo-Universitaire de Grenoble, Toulouse, France
| | - Romain Quehan
- Pole Neurosciences (Neurochirurgie), Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; Université de Toulouse, UPS, Toulouse, France
| | - Emilie Réhault
- Pole Neurosciences (Neurochirurgie), Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Jean-Albert Lotterie
- Pole Neurosciences (Neurochirurgie), Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; Université de Toulouse, UPS, Toulouse, France
| | - Franck-Emmanuel Roux
- Pole Neurosciences (Neurochirurgie), Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; Université de Toulouse, UPS, Toulouse, France; Centre de Recherche Cerveau et Cognition (CNRS; CerCo), Toulouse, France
| |
Collapse
|
8
|
Giampiccolo D, Duffau H. Controversy over the temporal cortical terminations of the left arcuate fasciculus: a reappraisal. Brain 2022; 145:1242-1256. [PMID: 35142842 DOI: 10.1093/brain/awac057] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
The arcuate fasciculus has been considered a major dorsal fronto-temporal white matter pathway linking frontal language production regions with auditory perception in the superior temporal gyrus, the so-called Wernicke's area. In line with this tradition, both historical and contemporary models of language function have assigned primacy to superior temporal projections of the arcuate fasciculus. However, classical anatomical descriptions and emerging behavioural data are at odds with this assumption. On one hand, fronto-temporal projections to Wernicke's area may not be unique to the arcuate fasciculus. On the other hand, dorsal stream language deficits have been reported also for damage to middle, inferior and basal temporal gyri which may be linked to arcuate disconnection. These findings point to a reappraisal of arcuate projections in the temporal lobe. Here, we review anatomical and functional evidence regarding the temporal cortical terminations of the left arcuate fasciculus by incorporating dissection and tractography findings with stimulation data using cortico-cortical evoked potentials and direct electrical stimulation mapping in awake patients. Firstly, we discuss the fibers of the arcuate fasciculus projecting to the superior temporal gyrus and the functional rostro-caudal gradient in this region where both phonological encoding and auditory-motor transformation may be performed. Caudal regions within the temporoparietal junction may be involved in articulation and associated with temporoparietal projections of the third branch of the superior longitudinal fasciculus, while more rostral regions may support encoding of acoustic phonetic features, supported by arcuate fibres. We then move to examine clinical data showing that multimodal phonological encoding is facilitated by projections of the arcuate fasciculus to superior, but also middle, inferior and basal temporal regions. Hence, we discuss how projections of the arcuate fasciculus may contribute to acoustic (middle-posterior superior and middle temporal gyri), visual (posterior inferior temporal/fusiform gyri comprising the visual word form area) and lexical (anterior-middle inferior temporal/fusiform gyri in the basal temporal language area) information in the temporal lobe to be processed, encoded and translated into a dorsal phonological route to the frontal lobe. Finally, we point out surgical implications for this model in terms of the prediction and avoidance of neurological deficit.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy.,Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Abstract
Human speech perception results from neural computations that transform external acoustic speech signals into internal representations of words. The superior temporal gyrus (STG) contains the nonprimary auditory cortex and is a critical locus for phonological processing. Here, we describe how speech sound representation in the STG relies on fundamentally nonlinear and dynamical processes, such as categorization, normalization, contextual restoration, and the extraction of temporal structure. A spatial mosaic of local cortical sites on the STG exhibits complex auditory encoding for distinct acoustic-phonetic and prosodic features. We propose that as a population ensemble, these distributed patterns of neural activity give rise to abstract, higher-order phonemic and syllabic representations that support speech perception. This review presents a multi-scale, recurrent model of phonological processing in the STG, highlighting the critical interface between auditory and language systems.
Collapse
Affiliation(s)
- Ilina Bhaya-Grossman
- Department of Neurological Surgery, University of California, San Francisco, California 94143, USA;
- Joint Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, California 94720, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
10
|
Hirsch JA, Cuesta GM, Fonzetti P, Comaty J, Jordan BD, Cirio R, Levin L, Abrahams A, Fry KM. Expanded Exploration of the Auditory Naming Test in Patients with Dementia. J Alzheimers Dis 2021; 81:1763-1779. [PMID: 33998546 DOI: 10.3233/jad-210322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Auditory naming tests are superior to visual confrontation naming tests in revealing word-finding difficulties in many neuropathological conditions. OBJECTIVE To delineate characteristics of auditory naming most likely to reveal anomia in patients with dementia, and possibly improve diagnostic utility, we evaluated a large sample of patients referred with memory impairment complaints. METHODS Patients with dementia (N = 733) or other cognitive impairments and normal individuals (N = 69) were evaluated for frequency of impairment on variables of the Auditory Naming Test (ANT) of Hamberger & Seidel versus the Boston Naming Test (BNT). RESULTS Naming impairment occurred more frequently using the ANT total score (φ= 0.41) or ANT tip-of-the tongue score (TOT; φ= 0.19) but not ANT mean response time compared to the BNT in patients with dementia (p < 0.001). Significantly more patients were impaired on ANT variables than on the BNT in Alzheimer's disease (AD), vascular dementia (VaD), mixed AD/VaD, and multiple domain mild cognitive impairment (mMCI) but not in other dementias or amnestic MCI (aMCI). This differential performance of patients on auditory versus visual naming tasks was most pronounced in older, well-educated, male patients with the least cognitive impairment. Impaired verbal comprehension was not contributory. Inclusion of an ANT index score increased sensitivity in the dementia sample (92%). Poor specificity (41%) may be secondary to the inherent limitation of using the BNT as a control variable. CONCLUSION The ANT index score adds diagnostic utility to the assessment of naming difficulties in patients with suspected dementia.
Collapse
Affiliation(s)
- Joseph A Hirsch
- Department of Psychiatry, Lenox Hill Hospital, Northwell Health, New York, NY, USA.,Department of Psychology, Pace University, New York, NY, USA
| | - George M Cuesta
- New York Harbor Healthcare System, Veterans Health Administration, New York, NY, USA.,New York University Langone Medical Center, New York, NY, USA
| | | | | | - Barry D Jordan
- Rancho Los Amigos National Rehabilitation Hospital, Downey, CA, USA
| | | | - Leanne Levin
- New York Medical College, Department of Medicine, Valhalla, NY, USA
| | | | - Kathleen M Fry
- George E. Wahlen Department of Veterans Affairs Medical Center, Department of Psychology, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Minkin K, Gabrovski K, Karazapryanov P, Milenova Y, Sirakov S, Karakostov V, Romanski K, Dimova P. Awake Epilepsy Surgery in Patients with Focal Cortical Dysplasia. World Neurosurg 2021; 151:e257-e264. [PMID: 33872840 DOI: 10.1016/j.wneu.2021.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Awake craniotomy (AC) and direct electric stimulation emerged together with epilepsy surgery >80 years ago. The goal of our study was to evaluate the benefits of awake surgery in patients with drug-resistant epilepsy caused by focal cortical dysplasia (FCD) affecting eloquent areas. METHODS Our material included 95 patients with drug-resistant epilepsy and FCD, who were operated on between January 2009 and December 2018. These 95 patients were assigned into 3 groups: AC; general anesthesia (GA) with intraoperative neuromonitoring; and GA without intraoperative neuromonitoring. We investigated the following variables: age at surgery, lesion side, eloquent cortex involvement, brain mapping success rate, epilepsy surgery success rate, intraoperative complications, postoperative complications, and intraoperative changes of the preoperative resection plan according to results of the brain mapping by direct electric stimulation. RESULTS We found statistically significant differences between the AC and GA groups in the mean age at operation, lesion side, eloquent localization, and postoperative transient neurologic deficit. Seizure outcome in the AC was satisfactory (71% complete seizure control) and comparable to the seizure outcome in the GA groups. Our preoperative plan was changed because of functional constraints in 6 patients (43%) operated on during AC. CONCLUSIONS AC during epilepsy surgery for FCD in eloquent areas may change the preoperative plan. The good rate of postoperative seizure control and the absence of permanent postoperative neurologic deficit in our series is the main proof that AC is a useful tool in patients with FCD involving the eloquent cortex.
Collapse
Affiliation(s)
- Krasimir Minkin
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria.
| | - Kaloyan Gabrovski
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Petar Karazapryanov
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Yoana Milenova
- Department of Neurology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Stanimir Sirakov
- Department of Interventional Radiology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Vasil Karakostov
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Kiril Romanski
- Department of Neurosurgery, Military Medical Academy, Sofia, Bulgaria
| | - Petia Dimova
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| |
Collapse
|
12
|
Curot J, Roux FE, Sol JC, Valton L, Pariente J, Barbeau EJ. Awake Craniotomy and Memory Induction Through Electrical Stimulation: Why Are Penfield's Findings Not Replicated in the Modern Era? Neurosurgery 2021; 87:E130-E137. [PMID: 31914177 DOI: 10.1093/neuros/nyz553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/13/2019] [Indexed: 01/21/2023] Open
Abstract
From the 1930s through the early 1960s, Wilder Penfield12 collected a large number of memories induced by electrical brain stimulation (EBS) during awake craniotomy. As a result, he was a major contributor to several neuroscientific and neuropsychological concepts of long-term memory. His 1963 paper, which recorded all the cases of memories he induced in his operating room, remains a substantial point of reference in neuroscience in 2019, although some of his interpretations are now debatable. However, it is highly surprising that, since Penfield's12 reports, there has been no other surgical publication on memories induced during awake surgery. In this review, we explore this phenomenon and analyze some of the reasons that might explain it. We hypothesize that the main reasons for lack of subsequent reports are related to changes in operative procedures (ie, use of anesthetics, time constraints, and insufficient debriefings) and changes in EBS parameters, rather than to the sites that are stimulated, the pathology treated, or the tasks used. If reminiscences are still induced, they should be reported in detail to add valuable contributions to the understanding of long-term memory networks, especially memories that are difficult to reproduce in the laboratory, such as autobiographical memories.
Collapse
Affiliation(s)
- Jonathan Curot
- Department of Neurophysiological Explorations, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Centre de Recherche Cerveau et Cognition CerCo, CNRS, UMR5549, Toulouse, France.,Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Franck-Emmanuel Roux
- Centre de Recherche Cerveau et Cognition CerCo, CNRS, UMR5549, Toulouse, France.,Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France.,Department of Neurosurgery, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jean-Christophe Sol
- Department of Neurosurgery, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, Toulouse, France
| | - Luc Valton
- Department of Neurophysiological Explorations, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, Toulouse, France.,Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Jéremie Pariente
- Department of Cognitive Neurology, Hôpital Pierre Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, Toulouse, France
| | - Emmanuel J Barbeau
- Centre de Recherche Cerveau et Cognition CerCo, CNRS, UMR5549, Toulouse, France.,Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
13
|
Baurès R, Fourteau M, Thébault S, Gazard C, Pasquio L, Meneghini G, Perrin J, Rosito M, Durand JB, Roux FE. Time-to-contact perception in the brain. J Neurosci Res 2020; 99:455-466. [PMID: 33070400 DOI: 10.1002/jnr.24740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022]
Abstract
Time-to-contact (TTC) perception refers to the ability of an observer to estimate the remaining time before an object reaches a point in the environment, and is of crucial importance in daily life. Noninvasive correlational approaches have identified several brain areas sensitive to TTC information. Here we report the results of two studies, including one during an awake brain surgery, that aimed to identify the specific areas causally engaged in the TTC estimation process. In Study 1, we tested 40 patients with brain tumor in a TTC estimation task. The results showed that four of the six patients with impaired performance had tumors in right upper parietal cortex, although this tumoral location represented only six over 40 patients. In Study 2, 15 patients underwent awake brain surgery electrostimulation mapping to examine the implication of various brain areas in the TTC estimation process. We acquired and normalized to MNI space the coordinates of the functional areas that influenced task performance. Our results seem to demonstrate that the early stage of the TTC estimation process involved specific cortical territories in the ventral region of the right intraparietal sulcus. Downstream processing of TTC could also involve the frontal eye field (middle frontal gyrus) related to ocular search. We also found that deactivating language areas in the left hemisphere interfered with the TTC estimation process. These findings demonstrate a fine grained, cortical representation of TTC processing close to the ventral right intraparietal sulcus and complement those described in other human studies.
Collapse
Affiliation(s)
- Robin Baurès
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse Cedex 9, France
| | - Marie Fourteau
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse Cedex 9, France
| | - Salomé Thébault
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse Cedex 9, France
| | - Chloé Gazard
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse Cedex 9, France
| | - Léa Pasquio
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse Cedex 9, France
| | - Giulia Meneghini
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse Cedex 9, France
| | - Juliette Perrin
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse Cedex 9, France
| | - Maxime Rosito
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse Cedex 9, France
| | | | - Franck-Emmanuel Roux
- CerCo, Université de Toulouse, CNRS, UPS, CHU Purpan, Toulouse Cedex 9, France.,Pôle Neurosciences (Neurochirurgie), Centres Hospitalo-Universitaires, Toulouse, France
| |
Collapse
|
14
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
15
|
Perrone-Bertolotti M, Alexandre S, Jobb AS, De Palma L, Baciu M, Mairesse MP, Hoffmann D, Minotti L, Kahane P, David O. Probabilistic mapping of language networks from high frequency activity induced by direct electrical stimulation. Hum Brain Mapp 2020; 41:4113-4126. [PMID: 32697353 PMCID: PMC7469846 DOI: 10.1002/hbm.25112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022] Open
Abstract
Direct electrical stimulation (DES) at 50 Hz is used as a gold standard to map cognitive functions but little is known about its ability to map large‐scale networks and specific subnetwork. In the present study, we aim to propose a new methodological approach to evaluate the specific hypothesis suggesting that language errors/dysfunction induced by DES are the result of large‐scale network modification rather than of a single cortical region, which explains that similar language symptoms may be observed after stimulation of different cortical regions belonging to this network. We retrospectively examined 29 patients suffering from focal drug‐resistant epilepsy who benefitted from stereo‐electroencephalographic (SEEG) exploration and exhibited language symptoms during a naming task following 50 Hz DES. We assessed the large‐scale language network correlated with behavioral DES‐induced responses (naming errors) by quantifying DES‐induced changes in high frequency activity (HFA, 70–150 Hz) outside the stimulated cortical region. We developed a probabilistic approach to report the spatial pattern of HFA modulations during DES‐induced language errors. Similarly, we mapped the pattern of after‐discharges (3–35 Hz) occurring after DES. HFA modulations concurrent to language symptoms revealed a brain network similar to our current knowledge of language gathered from standard brain mapping. In addition, specific subnetworks could be identified within the global language network, related to different language processes, generally described in relation to the classical language regions. Spatial patterns of after‐discharges were similar to HFA induced during DES. Our results suggest that this new methodological DES‐HFA mapping is a relevant approach to map functional networks during SEEG explorations, which would allow to shift from “local” to “network” perspectives.
Collapse
Affiliation(s)
- Marcela Perrone-Bertolotti
- CNRC, Laboratoire de Psychologie et NeuroCognition, University of Grenoble Alpes, University of Savoie Mont Blanc, Grenoble, France.,Institut Universitaire de, Paris, France
| | - Sarah Alexandre
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France
| | - Anne-Sophie Jobb
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France.,University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| | - Luca De Palma
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France
| | - Monica Baciu
- CNRC, Laboratoire de Psychologie et NeuroCognition, University of Grenoble Alpes, University of Savoie Mont Blanc, Grenoble, France.,Institut Universitaire de, Paris, France
| | | | | | - Lorella Minotti
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France.,University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| | - Philippe Kahane
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France.,University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| | - Olivier David
- University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| |
Collapse
|
16
|
Abstract
Syntax, the structure of sentences, enables humans to express an infinite range of meanings through finite means. The neurobiology of syntax has been intensely studied but with little consensus. Two main candidate regions have been identified: the posterior inferior frontal gyrus (pIFG) and the posterior middle temporal gyrus (pMTG). Integrating research in linguistics, psycholinguistics, and neuroscience, we propose a neuroanatomical framework for syntax that attributes distinct syntactic computations to these regions in a unified model. The key theoretical advances are adopting a modern lexicalized view of syntax in which the lexicon and syntactic rules are intertwined, and recognizing a computational asymmetry in the role of syntax during comprehension and production. Our model postulates a hierarchical lexical-syntactic function to the pMTG, which interconnects previously identified speech perception and conceptual-semantic systems in the temporal and inferior parietal lobes, crucial for both sentence production and comprehension. These relational hierarchies are transformed via the pIFG into morpho-syntactic sequences, primarily tied to production. We show how this architecture provides a better account of the full range of data and is consistent with recent proposals regarding the organization of phonological processes in the brain.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Language Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
17
|
Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G. Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 2019; 225:85-119. [PMID: 31773331 DOI: 10.1007/s00429-019-01987-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Τhe middle longitudinal fasciculus (MdLF) was initially identified in humans as a discrete subcortical pathway connecting the superior temporal gyrus (STG) to the angular gyrus (AG). Further anatomo-imaging studies, however, proposed more sophisticated but conflicting connectivity patterns and have created a vague perception on its functional anatomy. Our aim was, therefore, to investigate the ambiguous structural architecture of this tract through focused cadaveric dissections augmented by a tailored DTI protocol in healthy participants from the Human Connectome dataset. Three segments and connectivity patterns were consistently recorded: the MdLF-I, connecting the dorsolateral Temporal Pole (TP) and STG to the Superior Parietal Lobule/Precuneus, through the Heschl's gyrus; the MdLF-II, connecting the dorsolateral TP and the STG with the Parieto-occipital area through the posterior transverse gyri and the MdLF-III connecting the most anterior part of the TP to the posterior border of the occipital lobe through the AG. The lack of an established termination pattern to the AG and the fact that no significant leftward asymmetry is disclosed tend to shift the paradigm away from language function. Conversely, the theory of "where" and "what" auditory pathways, the essential relationship of the MdLF with the auditory cortex and the functional role of the cortical areas implicated in its connectivity tend to shift the paradigm towards auditory function. Allegedly, the MdLF-I and MdLF-II segments could underpin the perception of auditory representations; whereas, the MdLF-III could potentially subserve the integration of auditory and visual information.
Collapse
Affiliation(s)
- Aristotelis Kalyvas
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece. .,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece. .,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios P Skandalakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Liouta
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| | - Olympia Papakonstantinou
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| |
Collapse
|
18
|
Dondé C, Martinez A, Sehatpour P, Patel GH, Kraut R, Kantrowitz JT, Javitt DC. Neural and functional correlates of impaired reading ability in schizophrenia. Sci Rep 2019; 9:16022. [PMID: 31690846 PMCID: PMC6831596 DOI: 10.1038/s41598-019-52669-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/22/2019] [Indexed: 01/14/2023] Open
Abstract
Deficits in early auditory processing (EAP) are a core component of schizophrenia (SZ) and contribute significantly to impaired overall function. Here, we evaluate the potential contributions of EAP-related impairments in reading to functional capacity and outcome, relative to effects of auditory social cognitive and general neurocognitive dysfunction. Participants included 30-SZ and 28-controls of similar age, sex, and educational achievement. EAP was assessed using an auditory working memory (tone-matching) task. Phonological processing and reading Fluency were assessed using the Comprehensive Test of Phonological Processing and Woodcock-Johnson reading batteries, respectively. Auditory-related social cognition was assessed using measures of emotion/sarcasm recognition. Functional capacity and outcome were assessed using the UCSD Performance-based Skills Assessment and Specific Level of Functioning scale, respectively. fMRI resting-state functional-connectivity (rsFC) was used to evaluate potential underlying substrates. As predicted, SZ patients showed significant and interrelated deficits in both phonological processing (d = 0.74, p = 0.009) and reading fluency (d = 1.24, p < 0.00005). By contrast, single word reading (d = 0.35, p = 0.31) was intact. In SZ, deficits in EAP and phonological reading ability significantly predicted reduced functional capacity, but not functional outcome. By contrast, deficits in reading fluency significantly predicted impairments in both functional capacity and functional outcome. Moreover, deficits in reading fluency correlated with rsFC alterations among auditory thalamus, early auditory and auditory association regions. These findings indicate significant contributions of EAP deficits and functional connectivity changes in subcortical and early auditory regions to reductions in reading fluency, and of impaired reading ability to impaired functional outcome in SZ.
Collapse
Affiliation(s)
- Clément Dondé
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, F-69000, France. .,University Lyon 1, Villeurbanne, F-69000, France. .,Centre Hospitalier Le Vinatier, Bron, France. .,Nathan Kline Institute, Orangeburg, NY, USA. .,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA.
| | - Antigona Martinez
- Nathan Kline Institute, Orangeburg, NY, USA.,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA
| | - Pejman Sehatpour
- Nathan Kline Institute, Orangeburg, NY, USA.,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA
| | - Gaurav H Patel
- Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Kraut
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Joshua T Kantrowitz
- Nathan Kline Institute, Orangeburg, NY, USA.,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA
| | - Daniel C Javitt
- Nathan Kline Institute, Orangeburg, NY, USA. .,Dept. of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
19
|
Yi HG, Leonard MK, Chang EF. The Encoding of Speech Sounds in the Superior Temporal Gyrus. Neuron 2019; 102:1096-1110. [PMID: 31220442 PMCID: PMC6602075 DOI: 10.1016/j.neuron.2019.04.023] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023]
Abstract
The human superior temporal gyrus (STG) is critical for extracting meaningful linguistic features from speech input. Local neural populations are tuned to acoustic-phonetic features of all consonants and vowels and to dynamic cues for intonational pitch. These populations are embedded throughout broader functional zones that are sensitive to amplitude-based temporal cues. Beyond speech features, STG representations are strongly modulated by learned knowledge and perceptual goals. Currently, a major challenge is to understand how these features are integrated across space and time in the brain during natural speech comprehension. We present a theory that temporally recurrent connections within STG generate context-dependent phonological representations, spanning longer temporal sequences relevant for coherent percepts of syllables, words, and phrases.
Collapse
Affiliation(s)
- Han Gyol Yi
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Milot MH, Marchal-Crespo L, Beaulieu LD, Reinkensmeyer DJ, Cramer SC. Neural circuits activated by error amplification and haptic guidance training techniques during performance of a timing-based motor task by healthy individuals. Exp Brain Res 2018; 236:3085-3099. [PMID: 30132040 PMCID: PMC6223879 DOI: 10.1007/s00221-018-5365-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/17/2018] [Indexed: 01/07/2023]
Abstract
To promote motor learning, robotic devices have been used to improve subjects' performance by guiding desired movements (haptic guidance-HG) or by artificially increasing movement errors to foster a more rapid learning (error amplification-EA). To better understand the neurophysiological basis of motor learning, a few studies have evaluated brain regions activated during EA/HG, but none has compared both approaches. The goal of this study was to investigate using fMRI which brain networks were activated during a single training session of HG/EA in healthy adults learning to play a computerized pinball-like timing task. Subjects had to trigger a robotic device by flexing their wrist at the correct timing to activate a virtual flipper and hit a falling ball towards randomly positioned targets. During training with HG/EA, subjects' timing errors were decreased/increased, respectively, by the robotic device to delay or accelerate their wrist movement. The results showed that at the beginning of the training period with HG/EA, an error-detection network, including cerebellum and angular gyrus, was activated, consistent with subjects recognizing discrepancies between their intended actions and the actual movement timing. At the end of the training period, an error-detection network was still present for EA, while a memory consolidation/automatization network (caudate head and parahippocampal gyrus) was activated for HG. The results indicate that training movement with various kinds of robotic input relies on different brain networks. Better understanding the neurophysiological underpinnings of brain processes during HG/EA could prove useful for optimizing rehabilitative movement training for people with different patterns of brain damage.
Collapse
Affiliation(s)
- Marie-Hélène Milot
- École de réadaptation, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Pavillon Gérald-Lasalle, 3001, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.
| | - Laura Marchal-Crespo
- Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems IRIS, ETH Zurich, TAN E3 Tannenstrasse 1, 8092, Zurich, Switzerland.,Gerontechnology and Rehabilitation Research Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008, Bern, Switzerland
| | - Louis-David Beaulieu
- École de réadaptation, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Pavillon Gérald-Lasalle, 3001, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - David J Reinkensmeyer
- Department of Mechanical and Aerospace Engineering, University of California, 4200 Engineering Gateway, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Steven C Cramer
- Department of Mechanical and Aerospace Engineering, University of California, 4200 Engineering Gateway, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, 3120 Natural Sciences II, Irvine, CA, 92697, USA.,Department of Anatomy and Neurobiology, University of California, 364 Med Surge II, Irvine, CA, 92697, USA.,Department of Neurology, University of California, 200 S. Manchester AVE, Orange, CA, 92868, USA
| |
Collapse
|
21
|
Ruis C. Monitoring cognition during awake brain surgery in adults: A systematic review. J Clin Exp Neuropsychol 2018; 40:1081-1104. [DOI: 10.1080/13803395.2018.1469602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Carla Ruis
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Hamilton LS, Edwards E, Chang EF. A Spatial Map of Onset and Sustained Responses to Speech in the Human Superior Temporal Gyrus. Curr Biol 2018; 28:1860-1871.e4. [DOI: 10.1016/j.cub.2018.04.033] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/04/2018] [Accepted: 04/10/2018] [Indexed: 01/05/2023]
|
23
|
Rauschecker JP. Where did language come from? Precursor mechanisms in nonhuman primates. Curr Opin Behav Sci 2018; 21:195-204. [PMID: 30778394 PMCID: PMC6377164 DOI: 10.1016/j.cobeha.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
At first glance, the monkey brain looks like a smaller version of the human brain. Indeed, the anatomical and functional architecture of the cortical auditory system in monkeys is very similar to that of humans, with dual pathways segregated into a ventral and a dorsal processing stream. Yet, monkeys do not speak. Repeated attempts to pin this inability on one particular cause have failed. A closer look at the necessary components of language, according to Darwin, reveals that all of them got a significant boost during evolution from nonhuman to human primates. The vocal-articulatory system, in particular, has developed into the most sophisticated of all human sensorimotor systems with about a dozen effectors that, in combination with each other, result in an auditory communication system like no other. This sensorimotor network possesses all the ingredients of an internal model system that permits the emergence of sequence processing, as required for phonology and syntax in modern languages.
Collapse
Affiliation(s)
- Josef P Rauschecker
- Department of Neuroscience, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
24
|
|
25
|
Roux FE, Djidjeli I, Durand JB. Functional architecture of the somatosensory homunculus detected by electrostimulation. J Physiol 2018; 596:941-956. [PMID: 29285773 DOI: 10.1113/jp275243] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS We performed a prospective electrostimulation study, based on 50 operated intact patients, to acquire accurate MNI coordinates of the functional areas of the somatosensory homunculus. In the contralateral BA1, the hand representation displayed not only medial-to-lateral, little-finger-to-thumb, but also rostral-to-caudal discrete somatotopy, with the tip of each finger located more caudally than the proximal phalanx. The analysis of the MNI body coordinates showed rare inter-individual variations in the medial-to-lateral somatotopic organization in these patients with rather different intensity thresholds needed to elicit sensations in different body parts. We found some similarities but also substantial differences with the previous, seminal works of Penfield and his colleagues. We propose a new drawing of the human somatosensory homunculus according to MNI space. ABSTRACT In this prospective electrostimulation study, based on 50 operated patients with no sensory deficit and no brain lesion in the postcentral gyrus, we acquired coordinates in the standard MNI space of the functional areas of the somatosensory homunculus. The 3D brain volume of each patient was normalized to that space to obtain the MNI coordinates of the stimulation site locations. For 647 sites stimulated on Brodmann Area 1 (and 1025 in gyri nearby), 258 positive points for somatosensory response (40%) were found in the postcentral gyrus. In the contralateral BA1, the hand representation displayed not only medial-to-lateral and little-finger-to-thumb somatotopy, but also rostral-to-caudal discrete somatotopy, with the tip of each finger located more caudally than the proximal phalanx. We detected a medial-to-lateral, tip-to-base tongue organization but no rostral-to-caudal functional organization. The analysis of the MNI body coordinates showed rare inter-individual variations in the medial-to-lateral somatotopic organization in these patients with intact somatosensory cortex. Positive stimulations were detected through the 'on/off' outbreak effect and discriminative touch sensations were the sensations reported almost exclusively by all patients during stimulation. Mean hand (2.39 mA) and tongue (2.60 mA) positive intensity thresholds were lower (P < 0.05) than the intensities required to elicit sensations in the other parts of the body. Unlike the previous, seminal works of Penfield and colleagues, we detected no sensations such as sense of movement or desire to move, no somatosensory responses outside the postcentral gyrus, and no bilateral responses for face/tongue stimulations. We propose a rationalization of the standard drawing of the somatosensory homunculus according to MNI space.
Collapse
Affiliation(s)
- Franck-Emmanuel Roux
- CNRS (CERCO) UMR Unité 5549, Université Paul Sabatier, Toulouse, 31059, France.,Pôle NeuroSciences (Neurochirurgie), Centres Hospitalo-Universitaires, Toulouse, 31059, France
| | - Imène Djidjeli
- CNRS (CERCO) UMR Unité 5549, Université Paul Sabatier, Toulouse, 31059, France.,Pôle NeuroSciences (Neurochirurgie), Centres Hospitalo-Universitaires, Toulouse, 31059, France
| | | |
Collapse
|
26
|
Chang EF, Kurteff G, Wilson SM. Selective Interference with Syntactic Encoding during Sentence Production by Direct Electrocortical Stimulation of the Inferior Frontal Gyrus. J Cogn Neurosci 2017; 30:411-420. [PMID: 29211650 DOI: 10.1162/jocn_a_01215] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cortical stimulation mapping (CSM) has provided important insights into the neuroanatomy of language because of its high spatial and temporal resolution, and the causal relationships that can be inferred from transient disruption of specific functions. Almost all CSM studies to date have focused on word-level processes such as naming, comprehension, and repetition. In this study, we used CSM to identify sites where stimulation interfered selectively with syntactic encoding during sentence production. Fourteen patients undergoing left-hemisphere neurosurgery participated in the study. In 7 of the 14 patients, we identified nine sites where cortical stimulation interfered with syntactic encoding but did not interfere with single word processing. All nine sites were localized to the inferior frontal gyrus, mostly to the pars triangularis and opercularis. Interference with syntactic encoding took several different forms, including misassignment of arguments to grammatical roles, misassignment of nouns to verb slots, omission of function words and inflectional morphology, and various paragrammatic constructions. Our findings suggest that the left inferior frontal gyrus plays an important role in the encoding of syntactic structure during sentence production.
Collapse
|
27
|
Papagno C. Studying cognitive functions by means of direct electrical stimulation: a review. Neurol Sci 2017; 38:2079-2087. [DOI: 10.1007/s10072-017-3095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 12/01/2022]
|
28
|
Sierpowska J, Gabarrós A, Fernandez-Coello A, Camins À, Castañer S, Juncadella M, Morís J, Rodríguez-Fornells A. Words are not enough: nonword repetition as an indicator of arcuate fasciculus integrity during brain tumor resection. J Neurosurg 2017; 126:435-445. [DOI: 10.3171/2016.2.jns151592] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Subcortical electrical stimulation during brain surgery may allow localization of functionally crucial white matter fibers and thus tailoring of the tumor resection according to its functional limits. The arcuate fasciculus (AF) is a white matter bundle connecting frontal, temporal, and parietal cortical areas that is often disrupted by left brain lesions. It plays a critical role in several cognitive functions related to phonological processing, but current intraoperative monitoring methods do not yet allow mapping of this tract with sufficient precision. In the present study the authors aimed to test a new paradigm for the intraoperative monitoring of the AF.
METHODS
In this report, the authors studied 12 patients undergoing awake brain surgery for tumor resection with a related risk of AF damage. To preserve AF integrity and the cognitive processes sustained by this tract in the intraoperative context, the authors used real word repetition (WR) and nonword repetition (NWR) tasks as complements to standard picture naming.
RESULTS
Compared with the errors identified by WR or picture naming, the NWR task allowed the detection of subtle errors possibly related to AF alterations. Moreover, only 3 patients demonstrated phonological paraphasias in standard picture naming, and in 2 of these patients the paraphasias co-occurred with the total loss of WR and NWR ability. Before surgery, lesion volume predicted a patient's NWR performance.
CONCLUSIONS
The authors suggest that monitoring NWR intraoperatively may complement the standard naming tasks and could permit better preservation of the important language production functions subserved by the AF.
Collapse
Affiliation(s)
- Joanna Sierpowska
- 1Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat
- 2Department of Basic Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat
| | - Andreu Gabarrós
- 3Hospital Universitari de Bellvitge, Neurosurgery Section, Campus Bellvitge, University of Barcelona, IDIBELL, L'Hospitalet de Llobregat
| | - Alejandro Fernandez-Coello
- 3Hospital Universitari de Bellvitge, Neurosurgery Section, Campus Bellvitge, University of Barcelona, IDIBELL, L'Hospitalet de Llobregat
- 4CIBER de Bioingeniería, Biomateriales y Nanomedicina
| | - Àngels Camins
- 5Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat
| | - Sara Castañer
- 5Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat
| | - Montserrat Juncadella
- 6Hospital Universitari de Bellvitge, Neurology Section, Campus Bellvitge, University of Barcelona, IDIBELL, L'Hospitalet de Llobregat; and
| | - Joaquín Morís
- 1Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat
- 2Department of Basic Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat
| | - Antoni Rodríguez-Fornells
- 1Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat
- 2Department of Basic Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat
- 7Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| |
Collapse
|
29
|
Hou Z, Sui Y, Song X, Yuan Y. Disrupted Interhemispheric Synchrony in Default Mode Network Underlying the Impairment of Cognitive Flexibility in Late-Onset Depression. Front Aging Neurosci 2016; 8:230. [PMID: 27729858 PMCID: PMC5037230 DOI: 10.3389/fnagi.2016.00230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022] Open
Abstract
The intuitive association between cognitive impairment and aberrant functional activity in the brain network has prompted interest in exploring the role of functional connectivity in late-onset depression (LOD). The relationship of altered voxel-mirrored homotopic connectivity (VMHC) and cognitive dysfunction in LOD is not yet well understood. This study was designed to examine the implicit relationship between the disruption of interhemispheric functional coordination and cognitive impairment in LOD. LOD patients (N = 31) and matched healthy controls (HCs; N = 37) underwent neuropsychological tests and functional magnetic resonance imaging (fMRI) in this study. The intergroup difference of interhemispheric coordination was determined by calculating VMHC value in the whole brain. The neuro-behavioral relevancy approach was applied to explore the association between disrupted VMHC and cognitive measures. Receiver operating characteristic (ROC) curve analysis was used to determine the capability of disrupted regional VMHC to distinguish LOD. Compared to the HC group, significantly attenuated VMHC in the superior frontal gyrus (SFG), superior temporal gyrus (STG), posterior cerebellar lobe (CePL) and post- and precentral gyri were observed in the bilateral brain of LOD patients. The interhemispheric asynchrony in bilateral CePLs was positively correlated with the performance of trail making test B (TMT-B) in LOD patients (r = 0.367, P = 0.040). ROC analysis revealed that regions with abnormal VMHC could efficiently distinguish LOD from HCs (Area Under Curve [AUC] = 0.90, P < 0.001). Altered linkage patterns of intrinsic homotopic connectivity and impaired cognitive flexibility was first investigated in LOD, and it would provide a novel clue for revealing the neural substrates underlying cognitive impairment in LOD.
Collapse
Affiliation(s)
- Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatics, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University Nanjing, China
| | - Xiaopeng Song
- Department of Biomedical Engineering, College of Engineering, Peking University Beijing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatics, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| |
Collapse
|
30
|
Roux FE, Durand JB, Djidjeli I, Moyse E, Giussani C. Variability of intraoperative electrostimulation parameters in conscious individuals: language cortex. J Neurosurg 2016; 126:1641-1652. [PMID: 27419823 DOI: 10.3171/2016.4.jns152434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Electrostimulation in awake brain mapping is widely used to guide tumor removal, but methodologies can differ substantially across institutions. The authors studied electrostimulation brain mapping data to characterize the variability of the current intensity threshold across patients and the effect of its variations on the number, type, and surface area of the essential language areas detected. METHODS Over 7 years, the authors prospectively studied 100 adult patients who were undergoing intraoperative brain mapping during resection of left hemisphere tumors. In all 100 cases, the same protocol of electrostimulation brain mapping (a controlled naming task-bipolar stimulation with biphasic square wave pulses of 1-msec duration and 60-Hz trains, maximum train duration 6 sec) and electrocorticography was used to detect essential language areas. RESULTS The minimum positive thresholds of stimulation varied from patient to patient; the mean minimum intensity required to detect interference was 4.46 mA (range 1.5-9 mA), and in a substantial proportion of sites (13.5%) interference was detected only at intensities above 6 mA. The threshold varied within a given patient for different naming areas in 22% of cases. Stimulation of the same naming area with greater intensities led to slight changes in the type of response in 19% of cases and different types of responses in 4.5%. Naming sites detected were located in subcentimeter cortical areas (50% were less than 20 mm2), but their extent varied with the intensity of stimulation. During a brain mapping session, the same intensity of stimulation reproduced the same type of interference in 94% of the cases. There was no statistically significant difference between the mean stimulation intensities required to produce interfereince in the left inferior frontal lobe (Broca's area), the supramarginal gyri, and the posterior temporal region. CONCLUSIONS Intrasubject and intersubject variations of the minimum thresholds of positive naming areas and changes in the type of response and in the size of these areas according to the intensity used may limit the interpretation of data from electrostimulation in awake brain mapping. To optimize the identification of language areas during electrostimulation brain mapping, it is important to use different intensities of stimulation at the maximum possible currents, avoiding afterdischarges. This could refine the clinical results and scientific data derived from these mapping sessions.
Collapse
Affiliation(s)
- Franck-Emmanuel Roux
- Pôle Neuroscience (Neurochirurgie), Centre Hospitalo-Universitaire de Toulouse.,Centre de Recherche Cerveau et Cognition (CNRS; CerCo), Toulouse, France; and
| | | | - Imène Djidjeli
- Pôle Neuroscience (Neurochirurgie), Centre Hospitalo-Universitaire de Toulouse.,Centre de Recherche Cerveau et Cognition (CNRS; CerCo), Toulouse, France; and
| | - Emmanuel Moyse
- Pôle Neuroscience (Neurochirurgie), Centre Hospitalo-Universitaire de Toulouse.,Université de Toulouse, UPS
| | - Carlo Giussani
- Neurosurgery, Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Ospedale San, Gerardo, Monza, Italy
| |
Collapse
|
31
|
Poliva O. From Mimicry to Language: A Neuroanatomically Based Evolutionary Model of the Emergence of Vocal Language. Front Neurosci 2016; 10:307. [PMID: 27445676 PMCID: PMC4928493 DOI: 10.3389/fnins.2016.00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/17/2016] [Indexed: 11/24/2022] Open
Abstract
The auditory cortex communicates with the frontal lobe via the middle temporal gyrus (auditory ventral stream; AVS) or the inferior parietal lobule (auditory dorsal stream; ADS). Whereas the AVS is ascribed only with sound recognition, the ADS is ascribed with sound localization, voice detection, prosodic perception/production, lip-speech integration, phoneme discrimination, articulation, repetition, phonological long-term memory and working memory. Previously, I interpreted the juxtaposition of sound localization, voice detection, audio-visual integration and prosodic analysis, as evidence that the behavioral precursor to human speech is the exchange of contact calls in non-human primates. Herein, I interpret the remaining ADS functions as evidence of additional stages in language evolution. According to this model, the role of the ADS in vocal control enabled early Homo (Hominans) to name objects using monosyllabic calls, and allowed children to learn their parents' calls by imitating their lip movements. Initially, the calls were forgotten quickly but gradually were remembered for longer periods. Once the representations of the calls became permanent, mimicry was limited to infancy, and older individuals encoded in the ADS a lexicon for the names of objects (phonological lexicon). Consequently, sound recognition in the AVS was sufficient for activating the phonological representations in the ADS and mimicry became independent of lip-reading. Later, by developing inhibitory connections between acoustic-syllabic representations in the AVS and phonological representations of subsequent syllables in the ADS, Hominans became capable of concatenating the monosyllabic calls for repeating polysyllabic words (i.e., developed working memory). Finally, due to strengthening of connections between phonological representations in the ADS, Hominans became capable of encoding several syllables as a single representation (chunking). Consequently, Hominans began vocalizing and mimicking/rehearsing lists of words (sentences).
Collapse
|
32
|
DeWitt I, Rauschecker JP. Convergent evidence for the causal involvement of anterior superior temporal gyrus in auditory single-word comprehension. Cortex 2015; 77:164-166. [PMID: 26387007 DOI: 10.1016/j.cortex.2015.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Iain DeWitt
- Brain Imaging and Modeling Section, NIH/NIDCD, Bethesda, MD, USA.
| | - Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
33
|
Poliva O. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans. F1000Res 2015; 4:67. [PMID: 28928931 PMCID: PMC5600004 DOI: 10.12688/f1000research.6175.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 12/28/2022] Open
Abstract
In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobe (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and integration of calls with faces. I propose that the primary role of the ADS in non-human primates is the detection and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Detection of contact calls occurs by the ADS identifying a voice, localizing it, and verifying that the corresponding face is out of sight. Once a contact call is detected, the primate produces a contact call in return via descending connections from the frontal lobe to a network of limbic and brainstem regions. Because the ADS of present day humans also performs speech production, I further propose an evolutionary course for the transition from contact call exchange to an early form of speech. In accordance with this model, structural changes to the ADS endowed early members of the genus Homo with partial vocal control. This development was beneficial as it enabled offspring to modify their contact calls with intonations for signaling high or low levels of distress to their mother. Eventually, individuals were capable of participating in yes-no question-answer conversations. In these conversations the offspring emitted a low-level distress call for inquiring about the safety of objects (e.g., food), and his/her mother responded with a high- or low-level distress call to signal approval or disapproval of the interaction. Gradually, the ADS and its connections with brainstem motor regions became more robust and vocal control became more volitional. Speech emerged once vocal control was sufficient for inventing novel calls.
Collapse
|
34
|
Poliva O. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans. F1000Res 2015; 4:67. [PMID: 28928931 PMCID: PMC5600004.2 DOI: 10.12688/f1000research.6175.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2016] [Indexed: 03/28/2024] Open
Abstract
In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobe (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and integration of calls with faces. I propose that the primary role of the ADS in non-human primates is the detection and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Detection of contact calls occurs by the ADS identifying a voice, localizing it, and verifying that the corresponding face is out of sight. Once a contact call is detected, the primate produces a contact call in return via descending connections from the frontal lobe to a network of limbic and brainstem regions. Because the ADS of present day humans also performs speech production, I further propose an evolutionary course for the transition from contact call exchange to an early form of speech. In accordance with this model, structural changes to the ADS endowed early members of the genus Homo with partial vocal control. This development was beneficial as it enabled offspring to modify their contact calls with intonations for signaling high or low levels of distress to their mother. Eventually, individuals were capable of participating in yes-no question-answer conversations. In these conversations the offspring emitted a low-level distress call for inquiring about the safety of objects (e.g., food), and his/her mother responded with a high- or low-level distress call to signal approval or disapproval of the interaction. Gradually, the ADS and its connections with brainstem motor regions became more robust and vocal control became more volitional. Speech emerged once vocal control was sufficient for inventing novel calls.
Collapse
|