3
|
Walker LAS, Berard JA, Islam T, Pilutti LA, Morrow SA, Finlayson M. Development of a behavioural intervention for cognitive fatigability in multiple sclerosis: Protocol for a pilot and feasibility study. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:999266. [DOI: 10.3389/fresc.2022.999266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
BackgroundUp to 90% of people with multiple sclerosis (PwMS) subjectively report fatigue as one of their worst symptoms. Fatigability is an objectively measured component of fatigue. Cognitive fatigability (CF) is a breakdown in task performance following sustained cognitive effort. There is a paucity of interventions targeting CF in MS. The prior success of behavioural interventions at improving subjective fatigue suggests that their adaptation may yield similar results for CF. Given the relationship between CF, sleep quality, and mood, a behavioural intervention targeting these factors, such as cognitive behavioural therapy (CBT), is warranted. Given the multidimensional nature of fatigue, a multifaceted approach targeting lifestyle factors and coping (e.g., fatigue management education supplemented by CBT for insomnia and exercise) might prove efficacious.AimWe describe a protocol for a pilot feasibility study to design and implement a multi-dimensional behavioural intervention to improve CF in PwMS.MethodsStage 1: development of a multi-dimensional group-based videoconference-delivered behavioural intervention based on a previously successful fatigue management program for PwMS. A facilitator manual will be drafted. Course material will focus on four themes: body (sleep and physical activity), mood (impact of depression and anxiety), mind (cognitive contributions), and context (pacing and communication). Stage 2: a needs assessment survey will be completed by 100 PwMS for input on what factors are important contributors to their CF. Modifications will be made to the course material and manual. Stage 3: the facilitator-delivered intervention will include 20 PwMS. After baseline assessment, participants will attend weekly 70-min videoconference group sessions for 8 weeks, including homework assignments. Follow-up assessment will re-evaluate outcomes. Stage 4: analysis and dissemination of results. The primary outcome is improvement in CF. Additional feasibility outcomes will determine if a randomized control trial (RCT) is pursued. Stage 5: refine the intervention based on outcomes and feedback from participants. Determining which aspects participants felt were most effective will help inform RCT design.ConclusionThe long-term goal is to ensure that PwMS have access to effective interventions in real-world settings to improve quality of life and enhance their ability to participate in cognitively demanding activities that they enjoy.
Collapse
|
6
|
Walker LAS, Lindsay-Brown AP, Berard JA. Cognitive Fatigability Interventions in Neurological Conditions: A Systematic Review. Neurol Ther 2019; 8:251-271. [PMID: 31586303 PMCID: PMC6858900 DOI: 10.1007/s40120-019-00158-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Although fatigue is a well-studied concept in neurological disease, cognitive fatigability (CF) is less understood. While most studies measure fatigue using subjective self-report, fewer have measured CF objectively. Given the negative impact of CF on quality-of-life, there is a need for targeted interventions. The objective of this review was to determine which procedural, behavioural and pharmacological treatments for objectively measured CF are available to people living with neurological conditions. METHODS In accordance with the PRISMA guidelines, systematic searches for randomized control trials (RCTs), case-controlled studies and case reports/series were conducted across the Ovid Medline, PsycInfo, EMBASE and Cochrane Library databases. English-language articles published between 1980 and February 2019 were considered for eligibility. Included were those that objectively measured CF in individuals with neurological disease/disorder/dysfunction between the ages of 18 and 65 years. Studies were reviewed using a modified Cochrane Data Extraction Template. Risk of bias was assessed using the Cochrane Risk of Bias tool. The review process was facilitated using Covidence software (www.covidence.org). Two authors reviewed articles independently, with a third resolving conflicts regarding article inclusion. RESULTS The search identified 450 records. After duplicates were removed and remaining titles/abstracts were screened for eligibility, 28 full-text articles were assessed, and two studies were included in the qualitative synthesis. Studies were a priori divided into those with pharmacological, procedural or behavioural interventions. Two studies met eligibility criteria; both of these included participants with multiple sclerosis. One study utilized a procedural intervention (i.e. transcranial direct current stimulation), while the other utilized a pharmacological intervention (i.e. fampridine-SR). Studies were evaluated for risk of bias, and evidence from both eligible studies was discussed. CONCLUSION Despite the positive results of the procedural intervention, the paucity of eligible studies and the nascent nature of the field suggests that more studies are required before firm conclusions can be drawn regarding the amenability of CF to treatment. TRIAL REGISTRATION The review was registered with PROSPERO (CRD42019118706).
Collapse
Affiliation(s)
- Lisa A S Walker
- Ottawa Hospital Research Institute, Ottawa, Canada.
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada.
- Carleton University, Ottawa, Canada.
| | | | | |
Collapse
|
9
|
Salamone PC, Esteves S, Sinay VJ, García-Cordero I, Abrevaya S, Couto B, Adolfi F, Martorell M, Petroni A, Yoris A, Torquati K, Alifano F, Legaz A, Cassará FP, Bruno D, Kemp AH, Herrera E, García AM, Ibáñez A, Sedeño L. Altered neural signatures of interoception in multiple sclerosis. Hum Brain Mapp 2018; 39:4743-4754. [PMID: 30076770 DOI: 10.1002/hbm.24319] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/12/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) patients present several alterations related to sensing of bodily signals. However, no specific neurocognitive impairment has yet been proposed as a core deficit underlying such symptoms. We aimed to determine whether MS patients present changes in interoception-that is, the monitoring of autonomic bodily information-a process that might be related to various bodily dysfunctions. We performed two studies in 34 relapsing-remitting, early-stage MS patients and 46 controls matched for gender, age, and education. In Study 1, we evaluated the heartbeat-evoked potential (HEP), a cortical signature of interoception, via a 128-channel EEG system during a heartbeat detection task including an exteroceptive and an interoceptive condition. Then, we obtained whole-brain MRI recordings. In Study 2, participants underwent fMRI recordings during two resting-state conditions: mind wandering and interoception. In Study 1, controls exhibited greater HEP modulation during the interoceptive condition than the exteroceptive one, but no systematic differences between conditions emerged in MS patients. Patients presented atrophy in the left insula, the posterior part of the right insula, and the right anterior cingulate cortex, with abnormal associations between neurophysiological and neuroanatomical patterns. In Study 2, controls showed higher functional connectivity and degree for the interoceptive state compared with mind wandering; however, this pattern was absent in patients, who nonetheless presented greater connectivity and degree than controls during mind wandering. MS patients were characterized by atypical multimodal brain signatures of interoception. This finding opens a new agenda to examine the role of inner-signal monitoring in the body symptomatology of MS.
Collapse
Affiliation(s)
- Paula C Salamone
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sol Esteves
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Vladimiro J Sinay
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Indira García-Cordero
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sofía Abrevaya
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Blas Couto
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Federico Adolfi
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Miguel Martorell
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Agustín Petroni
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Institute of Biomedical Engineering, Buenos Aires University, Argentina.,Applied Artificial Intelligence Laboratory, Computer Science Department, Buenos Aires University. ICC-CONICET, Argentina
| | - Adrián Yoris
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Kathya Torquati
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Florencia Alifano
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Agustina Legaz
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Fátima P Cassará
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Diana Bruno
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Andrew H Kemp
- School of Psychology and Discipline of Psychiatry, University of Sydney, Sydney, New South Wales, Australia
| | - Eduar Herrera
- Department of Psychological Studies, ICESI University, Cali, Colombia
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo (UNCuyo), Centro Universitario, Mendoza, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Neuroscience Research Australia, Sydney, Australia and School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia.,Australian Research Council (ACR) Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, New South Wales, Australia.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Department of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Künstler ECS, Finke K, Günther A, Klingner C, Witte O, Bublak P. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity. PSYCHOLOGICAL RESEARCH 2017; 82:177-185. [PMID: 29196834 PMCID: PMC5816117 DOI: 10.1007/s00426-017-0951-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 11/22/2017] [Indexed: 11/26/2022]
Abstract
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Collapse
Affiliation(s)
- E C S Künstler
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| | - K Finke
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - A Günther
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - C Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - O Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - P Bublak
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|