1
|
Yuan ZQ, Peng XC, Liu L, Yang FY, Qian F. Olfactory receptors and human diseases. Cell Tissue Res 2025:10.1007/s00441-025-03971-5. [PMID: 40278904 DOI: 10.1007/s00441-025-03971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Olfaction plays a crucial role in distinguishing odors, enabling organisms to seek benefits and evade hazards. Olfactory receptors (ORs), characterized by highly variable binding pockets, facilitate the detection of diverse odorants from both external and internal environments. Nasal ORs, expressed in olfactory sensory neurons (OSNs), are critical for olfactory cognition and associated neuronal plasticity. In contrast, extra-nasal ORs, expressed in extra-olfactory tissues, detect specific chemicals and modulate cellular processes such as proliferation, migration, inflammation, and apoptosis. Aberrant OR expression or dysfunction has been implicated in numerous human diseases, including anosmia, dementia, dermatopathies, obesity, infertility, cancers, respiratory disorders, atherosclerosis and viral infections. Olfactory training, such as aromatherapy, demonstrates significant therapeutic potential for anosmia, dementia and psychological distress. Natural or synthetic odorants have been applied for promoting hair regeneration and cutaneous wound healing. Conversely, overexpression of specific ORs in cancer cells may drive tumor progression. Additionally, ORs may mediate virus-host interactions during infection, owing to their structural variability. Collectively, OR-targeted agonists and antagonists (odorants) represent promising candidates for treating OR-associated pathologies.
Collapse
Affiliation(s)
- Zhong-Qi Yuan
- Department of Neurosurgery, Health Science Center, First Affiliated Hospital of Yangtze University, Yangtze University, Hubei Province, Jingzhou, 434023, China
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Fu-Yuan Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Feng Qian
- Department of Neurosurgery, Health Science Center, First Affiliated Hospital of Yangtze University, Yangtze University, Hubei Province, Jingzhou, 434023, China.
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China.
| |
Collapse
|
2
|
Stevens L, Bregulla M, Scheele D. Out of touch? How trauma shapes the experience of social touch - Neural and endocrine pathways. Neurosci Biobehav Rev 2024; 159:105595. [PMID: 38373642 DOI: 10.1016/j.neubiorev.2024.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Trauma can shape the way an individual experiences the world and interacts with other people. Touch is a key component of social interactions, but surprisingly little is known about how trauma exposure influences the processing of social touch. In this review, we examine possible neurobiological pathways through which trauma can influence touch processing and lead to touch aversion and avoidance in trauma-exposed individuals. Emerging evidence indicates that trauma may affect sensory touch thresholds by modulating activity in the primary sensory cortex and posterior insula. Disturbances in multisensory integration and oxytocin reactivity combined with diminished reward-related and anxiolytic responses may induce a bias towards negative appraisal of touch contexts. Furthermore, hippocampus deactivation during social touch may reflect a dissociative state. These changes depend not only on the type and severity of the trauma but also on the features of the touch. We hypothesise that disrupted touch processing may impair social interactions and confer elevated risk for future stress-related disorders.
Collapse
Affiliation(s)
- Laura Stevens
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Madeleine Bregulla
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Dirk Scheele
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany.
| |
Collapse
|
3
|
Curot J, Servais A, Barbeau EJ. Intracranial electrical brain stimulation as an approach to studying the (dis)continuum of memory experiential phenomena. Behav Brain Sci 2023; 46:e362. [PMID: 37961784 DOI: 10.1017/s0140525x23000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Déjà vu and involuntary autobiographical memories (IAM) can be induced by intracranial electric brain stimulation in epileptic patients, sometimes in the same individual. We suggest that there may be different types of IAM which should be taken into account and provide several ideas to test the hypothesis of a continuity between IAM and déjà vu phenomena.
Collapse
Affiliation(s)
- Jonathan Curot
- Brain and Cognition Research Center, CerCo, CNRS, UMR 5549, Toulouse, France
- Department of Neurology, Toulouse University Hospital, Toulouse, France
- Faculty of Health, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Anaïs Servais
- Brain and Cognition Research Center, CerCo, CNRS, UMR 5549, Toulouse, France
- Faculty of Health, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Emmanuel J Barbeau
- Brain and Cognition Research Center, CerCo, CNRS, UMR 5549, Toulouse, France
- Faculty of Health, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
4
|
Dary Z, Lopez C. Understanding the neural bases of bodily self-consciousness: recent achievements and main challenges. Front Integr Neurosci 2023; 17:1145924. [PMID: 37404707 PMCID: PMC10316713 DOI: 10.3389/fnint.2023.1145924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
The last two decades have seen a surge of interest in the mechanisms underpinning bodily self-consciousness (BSC). Studies showed that BSC relies on several bodily experiences (i.e., self-location, body ownership, agency, first-person perspective) and multisensory integration. The aim of this literature review is to summarize new insights and novel developments into the understanding of the neural bases of BSC, such as the contribution of the interoceptive signals to the neural mechanisms of BSC, and the overlap with the neural bases of conscious experience in general and of higher-level forms of self (i.e., the cognitive self). We also identify the main challenges and propose future perspectives that need to be conducted to progress into the understanding of the neural mechanisms of BSC. In particular, we point the lack of crosstalk and cross-fertilization between subdisciplines of integrative neuroscience to better understand BSC, especially the lack of research in animal models to decipher the neural networks and systems of neurotransmitters underpinning BSC. We highlight the need for more causal evidence that specific brain areas are instrumental in generating BSC and the need for studies tapping into interindividual differences in the phenomenal experience of BSC and their underlying mechanisms.
Collapse
|
5
|
Green JD, Reid CA, Kneuer MA, Hedgebeth MV. The proust effect: Scents, food, and nostalgia. Curr Opin Psychol 2023; 50:101562. [PMID: 36863096 DOI: 10.1016/j.copsyc.2023.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Autobiographical memories activated by the senses, particularly smell and taste, can be among the most potent and influential, an experience labelled the Proust Effect. Contemporary research has helped to explain the physiological, neurological, and psychological reasons underlying this phenomenon. Nostalgic memories triggered by taste and smell are especially self-relevant, arousing, and familiar. These memories have an even more positive emotional profile than nostalgic memories elicited by other means, with individuals reporting lower levels of negative or ambivalent emotions. Scent-evoked and food-evoked nostalgia also confer numerous psychological benefits, including enhanced self-esteem, feelings of social connectedness, and deeper meaning in life. Such memories might be harnessed in clinical or other settings.
Collapse
|
6
|
Frost RO, Steketee G. Hoarding mysteries Jack would appreciate. J Behav Ther Exp Psychiatry 2022; 77:101766. [PMID: 36113903 DOI: 10.1016/j.jbtep.2022.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022]
Abstract
Hoarding disorder (HD) is a multifaceted problem that presents challenges both for understanding its dimensions and for developing effective treatments. We are grateful to have known Dr. Stanley J. Rachman and his incredibly thoughtful approach to clinical psychology and research on anxiety, obsessive-compulsive disorders (OCD) and their treatment. His work has helped set the stage for our own efforts to study this challenging condition. The discussion below reviews a range of mysteries we and others have encountered in working with people who exhibit HD symptoms. Of particular interest to us are questions about biological vulnerabilities like heritability and the high rate of concurrent health problems and whether hoarded objects might serve as safety signals that protect people from traumatic life events. We are curious about the attachment process in HD and whether attachment to objects is related to early parental experiences that affect self-concept. We raise questions about the several information processing problems often seen in people with HD - attention focusing, memory, and associative responses to objects and information. Raising many questions are observations about strong emotional attachments to objects and multiple reasons given for saving them, as well as what sometimes appears to be remarkable aesthetic appreciation and creative interest in objects. Emotions in HD seem to range more widely than in some psychological disorders as both positive and negative reactions appear to reinforce excessive acquisition and difficulty discarding. Clutter blindness may be an effort to avoid confrontation with overwhelming clutter in the home. Finally, we comment on difficulty achieving more positive outcomes following a carefully designed cognitive and behavioral treatment for HD and encourage the next generation of researchers to follow in Jack Rachman's footsteps as they try to unravel these mysteries.
Collapse
|
7
|
Gentsch A, Kuehn E. Clinical Manifestations of Body Memories: The Impact of Past Bodily Experiences on Mental Health. Brain Sci 2022; 12:594. [PMID: 35624981 PMCID: PMC9138975 DOI: 10.3390/brainsci12050594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
Bodily experiences such as the feeling of touch, pain or inner signals of the body are deeply emotional and activate brain networks that mediate their perception and higher-order processing. While the ad hoc perception of bodily signals and their influence on behavior is empirically well studied, there is a knowledge gap on how we store and retrieve bodily experiences that we perceived in the past, and how this influences our everyday life. Here, we explore the hypothesis that negative body memories, that is, negative bodily experiences of the past that are stored in memory and influence behavior, contribute to the development of somatic manifestations of mental health problems including somatic symptoms, traumatic re-experiences or dissociative symptoms. By combining knowledge from the areas of cognitive neuroscience and clinical neuroscience with insights from psychotherapy, we identify Clinical Body Memory (CBM) mechanisms that specify how mental health problems could be driven by corporeal experiences stored in memory. The major argument is that the investigation of the neuronal mechanisms that underlie the storage and retrieval of body memories provides us with empirical access to reduce the negative impact of body memories on mental health.
Collapse
Affiliation(s)
- Antje Gentsch
- Department of Psychology, General and Experimental Psychology, LMU Munich, 80802 Munich, Germany;
- Institute for Psychoanalysis, Psychotherapy and Psychosomatics (IPB), 10557 Berlin, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Hertie Institute for Clinical Brain Research (HIH), 72076 Tübingen, Germany
| |
Collapse
|
8
|
Affiliation(s)
- Jeffrey K Aronson
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford
| |
Collapse
|
9
|
Bratu FI, Oane I, Barborica A, Donos C, Pistol C, Daneasa A, Lentoiu C, Mindruta I. Network of autoscopic hallucinations elicited by intracerebral stimulations of periventricular nodular heterotopia: An SEEG study. Cortex 2021; 145:285-294. [PMID: 34775265 DOI: 10.1016/j.cortex.2021.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/25/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022]
Abstract
Periventricular nodular heterotopias (PVNH) are areas of neurons abnormally located in the white matter that might be involved in physiological cortical functions. Autoscopic hallucinations are changes in self-consciousness determined by a mismatch in integration of multiple sensory inputs. Our goal is to highlight the brain network involved in generation of autoscopic hallucination elicited by electrical stimulation of a PVNH in a drug resistant epilepsy patient. Our patient was explored using stereo-electroencephalography with electrodes covering the right posterior temporal PVNH and the adjacent cortex. Direct electrical high frequency stimulation of the PVNH elicited autoscopic hallucinations mainly involving the face and upper trunk. We then used multiple modalities to determine brain connectivity: single pulse electrical stimulation of the PVNH and stimulation-evoked potentials were used to highlight resting state effective connectivity. High-frequency stimulation using alternating polarity pulses enabled us to identify the network involved, time-locked to the clinical effect and to map symptom-related effective connectivity. Functional connectivity using a non-linear regression method was used to determine dependencies between different cortical regions following the stimulation. Finally, structural connectivity was highlighted using deterministic fiber tracking. Multi-modal connectivity analysis identified a network involving the PVNH, occipital and temporal neocortex, fusiform gyrus and parietal cortex.
Collapse
Affiliation(s)
| | - Irina Oane
- Epilepsy Monitoring Unit, Emergency University Hospital Bucharest, Romania.
| | | | | | | | - Andrei Daneasa
- Epilepsy Monitoring Unit, Emergency University Hospital Bucharest, Romania.
| | - Camelia Lentoiu
- Epilepsy Monitoring Unit, Emergency University Hospital Bucharest, Romania.
| | - Ioana Mindruta
- Epilepsy Monitoring Unit, Emergency University Hospital Bucharest, Romania; Neurology Department, Carol Davila University of Medicine and Pharmacy, Romania.
| |
Collapse
|
10
|
Picard F, Bossaerts P, Bartolomei F. Epilepsy and Ecstatic Experiences: The Role of the Insula. Brain Sci 2021; 11:brainsci11111384. [PMID: 34827383 PMCID: PMC8615543 DOI: 10.3390/brainsci11111384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Ecstatic epilepsy is a rare form of focal epilepsy in which the aura (beginning of the seizures) consists of a blissful state of mental clarity/feeling of certainty. Such a state has also been described as a “religious” or mystical experience. While this form of epilepsy has long been recognized as a temporal lobe epilepsy, we have accumulated evidence converging toward the location of the symptomatogenic zone in the dorsal anterior insula during the 10 last years. The neurocognitive hypothesis for the genesis of a mental clarity is the suppression of the interoceptive prediction errors and of the unexpected surprise associated with any incoming internal or external signal, usually processed by the dorsal anterior insula. This mimics a perfect prediction of the world and induces a feeling of certainty. The ecstatic epilepsy is thus an amazing model for the role of anterior insula in uncertainty and surprise.
Collapse
Affiliation(s)
- Fabienne Picard
- Department of Clinical Neurosciences, University Hospitals and Medical School of Geneva, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-37-25-258
| | - Peter Bossaerts
- Department of Finance, University of Melbourne, Parkville 3010, Australia;
- Faculty of Economics, University of Cambridge, Cambridge CB3 9DD, UK
| | - Fabrice Bartolomei
- Clinical Neurophysiology and Epileptology Department, Timone Hospitals, 13360 Marseille, France;
| |
Collapse
|
11
|
Oane I, Barborica A, Chetan F, Donos C, Maliia MD, Arbune AA, Daneasa A, Pistol C, Nica AE, Bajenaru OA, Mindruta I. Cingulate cortex function and multi-modal connectivity mapped using intracranial stimulation. Neuroimage 2020; 220:117059. [PMID: 32562780 DOI: 10.1016/j.neuroimage.2020.117059] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
The cingulate cortex is part of the limbic system. Its function and connectivity are organized in a rostro-caudal and ventral-dorsal manner which was addressed by various other studies using rather coarse cortical parcellations. In this study, we aim at describing its function and connectivity using invasive recordings from patients explored for focal drug-resistant epilepsy. We included patients that underwent stereo-electroencephalographic recordings using intracranial electrodes in the University Emergency Hospital Bucharest between 2012 and 2019. We reviewed all high frequency stimulations (50 Hz) performed for functional mapping of the cingulate cortex. We used two methods to characterize brain connectivity. Effective connectivity was inferred based on the analysis of cortico-cortical potentials (CCEPs) evoked by single pulse electrical stimulation (SPES) (15 s inter-pulse interval). Functional connectivity was estimated using the non-linear regression method applied to 60 s spontaneous electrical brain signal intervals. The effective (stimulation-evoked) and functional (non-evoked) connectivity analyses highlight brain networks in a different way. While non-evoked connectivity evidences areas having related activity, often in close proximity to each other, evoked connectivity highlights spatially extended networks. To highlight in a comprehensive way the cingulate cortex's network, we have performed a bi-modal connectivity analysis that combines the resting-state broadband h2 non-linear correlation with cortico-cortical evoked potentials. We co-registered the patient's anatomy with the fsaverage FreeSurfer template to perform the automatic labeling based on HCP-MMP parcellation. At a group level, connectivity was estimated by averaging responses over stimulated/recorded or recorded sites in each pair of parcels. Finally, for multiple regions that evoked a clinical response during high frequency stimulation, we combined the connectivity of individual pairs using maximum intensity projection. Connectivity was assessed by applying SPES on 2094 contact pairs and recording CCEPs on 3580 contacts out of 8582 contacts of 660 electrodes implanted in 47 patients. Clinical responses elicited by high frequency stimulations in 107 sites (pairs of contacts) located in the cingulate cortex were divided in 10 groups: affective, motor behavior, motor elementary, versive, speech, vestibular, autonomic, somatosensory, visual and changes in body perception. Anterior cingulate cortex was shown to be connected to the mesial temporal, orbitofrontal and prefrontal cortex. In the middle cingulate cortex, we located affective, motor behavior in the anterior region, and elementary motor and somatosensory in the posterior part. This region is connected to the prefrontal, premotor and primary motor network. Finally, the posterior cingulate was shown to be connected with the visual areas, mesial and lateral parietal and temporal cortex.
Collapse
Affiliation(s)
- Irina Oane
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania.
| | - Andrei Barborica
- Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Filip Chetan
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania.
| | - Cristian Donos
- Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Mihai Dragos Maliia
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Anca Adriana Arbune
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania.
| | - Andrei Daneasa
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania.
| | - Constantin Pistol
- Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Adriana Elena Nica
- Intensive Care Unit Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania.
| | - Ovidiu Alexandru Bajenaru
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania; Brain Research Group, Romanian Academy, 125 Calea Victoriei Street, Bucharest, Romania.
| | - Ioana Mindruta
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania; Brain Research Group, Romanian Academy, 125 Calea Victoriei Street, Bucharest, Romania.
| |
Collapse
|
12
|
George DD, Ojemann SG, Drees C, Thompson JA. Stimulation Mapping Using Stereoelectroencephalography: Current and Future Directions. Front Neurol 2020; 11:320. [PMID: 32477236 PMCID: PMC7238877 DOI: 10.3389/fneur.2020.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Electrical stimulation mapping (ESM) using stereoelectroencephalography (SEEG) is an essential component in the workup of surgical epilepsy. Since the initial application of ESM in the mid-1960s, it remains unparalleled in defining eloquent brain areas and delimiting seizure foci for the purposes of surgical planning. Here, we briefly review the current state of SEEG stimulation, with a focus on the techniques used for identifying the epileptogenic zone and eloquent cortex. We also summarize clinical data on the efficacy of SEEG stimulation in surgical outcomes and functional mapping. Finally, we briefly highlight future applications of SEEG ESM, including novel functional mapping approaches, identifying rare seizure semiologies, neurophysiologic investigations for understanding cognitive function, and its role in SEEG-guided radiofrequency thermal coagulation.
Collapse
Affiliation(s)
- Derek D George
- School of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Cornelia Drees
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
13
|
An in-depth review of the methods, findings, and theories associated with odor-evoked autobiographical memory. Psychon Bull Rev 2019; 26:401-429. [PMID: 30406397 DOI: 10.3758/s13423-018-1545-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past nearly 35 years, there has been sporadic interest in what has commonly come to be known as the Proust phenomenon, whereby autobiographical memories are retrieved and experienced differently when evoked by odors as compared with other types of cues, such as words, images or sounds. The purpose of this review is threefold. First, we provide a detailed analysis of the methods used to investigate Proust effects. Second, we review and analyze the various findings from the literature and determine what we feel to be the most important and stable findings. Third, we provide a series of previously postulated and new hypotheses that attempt to account for the various findings. Given the early stage of research, the current review aims to provide a measure of organization to the field, as well serve as a guide for how future investigations may address the topic. We conclude with the recommendation that research in this area shift its focus from establishing the phenomenon towards explaining its causes.
Collapse
|
14
|
Popa I, Barborica A, Scholly J, Donos C, Bartolomei F, Lagarde S, Hirsch E, Valenti‐Hirsch M, Maliia MD, Arbune AA, Daneasa A, Ciurea J, Bajenaru O, Mindruta I. Illusory own body perceptions mapped in the cingulate cortex-An intracranial stimulation study. Hum Brain Mapp 2019; 40:2813-2826. [PMID: 30868705 PMCID: PMC6865384 DOI: 10.1002/hbm.24563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/07/2022] Open
Abstract
Body awareness is the result of sensory integration in the posterior parietal cortex; however, other brain structures are part of this process. Our goal is to determine how the cingulate cortex is involved in the representation of our body. We retrospectively selected patients with drug-resistant epilepsy, explored by stereo-electroencephalography, that had the cingulate cortex sampled outside the epileptogenic zone. The clinical effects of high-frequency electrical stimulation were reviewed and only those sites that elicited changes related to body perception were included. Connectivity of the cingulate cortex and other cortical structures was assessed using the h2 coefficient, following a nonlinear regression analysis of the broadband EEG signal. Poststimulation changes in connectivity were compared between two sets of stimulations eliciting or not eliciting symptoms related to body awareness (interest and control groups). We included 17 stimulations from 12 patients that reported different types of body perception changes such as sensation of being pushed toward right/left/up, one limb becoming heavier/lighter, illusory sensation of movement, sensation of pressure, sensation of floating or detachment of one hemi-body. High-frequency stimulation in the cingulate cortex (1 anterior, 15 middle, 1 posterior part) elicits body perception changes, associated with a decreased connectivity of the dominant posterior insula and increased coupling between other structures, located particularly in the nondominant hemisphere.
Collapse
Grants
- COFUND-FLAGERA II-CAUSALTOMICS Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- COFUND-FLAGERA II-SCALES Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P1-1.1-TE-2016-0706 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2016-0588 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- European Commission
- Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- European Commission
Collapse
Affiliation(s)
- Irina Popa
- Neurology DepartmentUniversity Emergency Hospital BucharestBucharestRomania
- Neurology DepartmentUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania
| | - Andrei Barborica
- Physics DepartmentUniversity of BucharestBucharestRomania
- FHC Inc.BowdoinMaine
| | - Julia Scholly
- Neurology DepartmentStrasbourg University HospitalStrasbourgFrance
| | - Cristian Donos
- Physics DepartmentUniversity of BucharestBucharestRomania
| | - Fabrice Bartolomei
- Aix Marseille Univ, APHM, INSERM, INS, Inst Neurosci SystTimone Hospital, Clinical NeurophysiologyMarseilleFrance
| | - Stanislas Lagarde
- Aix Marseille Univ, APHM, INSERM, INS, Inst Neurosci SystTimone Hospital, Clinical NeurophysiologyMarseilleFrance
| | - Edouard Hirsch
- Neurology DepartmentStrasbourg University HospitalStrasbourgFrance
| | | | | | | | - Andrei Daneasa
- Neurology DepartmentUniversity Emergency Hospital BucharestBucharestRomania
| | - Jean Ciurea
- Neurosurgery DepartmentBagdasar‐Arseni HospitalBucharestRomania
| | - Ovidiu‐Alexandru Bajenaru
- Neurology DepartmentUniversity Emergency Hospital BucharestBucharestRomania
- Neurology DepartmentUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania
| | - Ioana Mindruta
- Neurology DepartmentUniversity Emergency Hospital BucharestBucharestRomania
- Neurology DepartmentUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania
| |
Collapse
|