1
|
Scalona E, De Marco D, Ferrari L, Creatini I, Taglione E, Andreoni G, Fabbri-Destro M, Avanzini P, Lopomo NF. Identification of movement phenotypes from occupational gesture kinematics: Advancing individual ergonomic exposure classification and personalized training. APPLIED ERGONOMICS 2024; 115:104182. [PMID: 38000137 DOI: 10.1016/j.apergo.2023.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The identification of personalized preventive strategies plays a major role in contrasting the occurrence of work-related musculoskeletal disorders. This requires the identification of distinct movement patterns within large samples and the attribution of a proper risk level to each identified movement phenotype. We assessed the feasibility of this approach by exploiting wearable inertial measurement units to estimate the whole-body kinematics of 43 healthy participants performing 18 reach-to-manipulate movements, which differed based on the object's position in the space and the type of manipulation required. Through unsupervised clustering, we identified multiple movement phenotypes graded by ergonomic performance. Furthermore, we determined which joints mostly contributed to instantiating the ergonomic differences across clusters, emphasizing the importance of monitoring this aspect during occupational gestures. Overall, our analysis suggests that movement phenotypes can be identified within occupational motor repertoires. Assigning individual performance to specific phenotypes has the potential to inform the development of more effective and tailored interventions.
Collapse
Affiliation(s)
- Emilia Scalona
- Dipartimento di Scienze Medico Chirurgiche, Scienza Radiologiche e Sanità Pubblica (DSMC), Università Degli Studi di Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Doriana De Marco
- Dipartimento di Medicina e Chirurgia, Università Degli Studi di Parma, Parma, Italy
| | - Laura Ferrari
- Consiglio Nazionale Delle Ricerche, Istituto di Neuroscienze, Parma, Italy; School of Advanced Studies, Università di Camerino, Camerino, Italy
| | | | - Elisa Taglione
- Centro di Riabilitazione Motoria, INAIL, Volterra, Italy
| | | | | | - Pietro Avanzini
- Consiglio Nazionale Delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | - Nicola Francesco Lopomo
- Consiglio Nazionale Delle Ricerche, Istituto di Neuroscienze, Parma, Italy; Dipartimento di Ingegneria Dell'Informazione, Università Degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
2
|
Torricelli F, Tomassini A, Pezzulo G, Pozzo T, Fadiga L, D'Ausilio A. Actions are all we need for cognition, but do we know enough about them?: Reply to comments on "Motor invariants in action execution and perception". Phys Life Rev 2023; 47:30-32. [PMID: 37690326 DOI: 10.1016/j.plrev.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Francesco Torricelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Thierry Pozzo
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.
| |
Collapse
|
3
|
Fricke C, Gentner R, Alizadeh J, Classen J. Linking Individual Movements to a Skilled Repertoire: Fast Modulation of Motor Synergies by Repetition of Stereotyped Movements. Cereb Cortex 2021; 30:1185-1198. [PMID: 31386110 DOI: 10.1093/cercor/bhz159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/15/2023] Open
Abstract
Motor skills emerge when practicing individual movements enables the motor system to extract building instructions that facilitate the generation of future diverse movements. Here we asked how practicing stereotyped movements for minutes affects motor synergies that encode human motor skills acquired over years of training. Participants trained a kinematically highly constrained combined index-finger and thumb movement. Before and after training, finger movements were evoked at rest by transcranial magnetic stimulation (TMS). Post-training, the angle between posture vectors describing TMS-evoked movements and the training movements temporarily decreased, suggesting the presence of a short-term memory for the trained movement. Principal component analysis was used to identify joint covariance patterns in TMS-evoked movements. The quality of reconstruction of training or grasping movements from linear combinations of a small subset of these TMS-derived synergies was used as an index of neural efficiency of movement generation. The reconstruction quality increased for the trained movement but remained constant for grasping movements. These findings suggest that the motor system rapidly reorganizes to enhance the coding efficiency of a difficult movement without compromising the coding efficiency of overlearned movements. Practice of individual movements may drive an unsupervised bottom-up process that ultimately shapes synergistic neuronal organization by constant competition of action memories.
Collapse
Affiliation(s)
| | - Reinhard Gentner
- Department of Neurology, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Jalal Alizadeh
- Department of Neurology, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Liebigstrasse 20, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Interplay of self-other distinction and cognitive control mechanisms in a social automatic imitation task: An ERP study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:639-655. [PMID: 33761110 DOI: 10.3758/s13415-021-00878-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 11/08/2022]
Abstract
The regulation of motor resonance processes in daily life is indispensable. The automatic imitation task is an experimental model of those daily-life motor resonance processes. Recent research suggests that both self-other distinction and cognitive control processes may be involved in interference control during automatic imitation. Yet, we lack a clear understanding of the chronological sequence of interacting processes. To this end, this study used event-related potentials (ERPs) to investigate the time course underlying interference control during automatic imitation. We moreover aimed to extend previous results by investigating its modulation by social context. Cognitive conflict/action monitoring was assessed with the N2, in an exploratory manner the N450, and the CRN components. The Pre-Motor Positivity (PMP), associated with movement initiation, was suggested as a possible correlate of the successful resolution of self-other distinction. The cognitive control/action monitoring ERP components were influenced by the social context manipulation and partly by congruency, while PMP amplitudes were only sensitive to congruency. In addition, the exploratorily investigated N450 component predicted response times on incongruent relative to congruent trials in the different social contexts. This suggested that cognitive control/action monitoring processes, reflected in the N450, are guiding behavioral outcomes. Overall, interference control may primarily be guided by processes of cognitive control/action monitoring, whilst being modulated by social context demands.
Collapse
|
5
|
Chen Z, Xia N, He C, Gu M, Xu J, Han X, Huang X. Action observation treatment-based exoskeleton (AOT-EXO) for upper extremity after stroke: study protocol for a randomized controlled trial. Trials 2021; 22:222. [PMID: 33743788 PMCID: PMC7981809 DOI: 10.1186/s13063-021-05176-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Stroke produces multiple symptoms, including sensory, motor, cognitive and psychological dysfunctions, among which motor deficit is the most common and is widely recognized as a major contributor to long-term functional disability. Robot-assisted training is effective in promoting upper extremity muscle strength and motor impairment recovery after stroke. Additionally, action observation treatment can enhance the effects of physical and occupational therapy by increasing neural activation. The AOT-EXO trial aims to investigate whether action observation treatment coupled with robot-assisted training could enhance motor circuit activation and improve upper extremity motor outcomes. Methods The AOT-EXO trial is a multicentre, prospective, three-group randomized controlled trial (RCT). We will screen and enrol 132 eligible patients in the trial implemented in the Department of Rehabilitation Medicine of Tongji Hospital, Optical Valley Branch of Tongji Hospital and Hubei Province Hospital of Integrated Chinese & Western Medicine in Wuhan, China. Prior to study participation, written informed consent will be obtained from eligible patients in accordance with the Declaration of Helsinki. The enrolled stroke patients will be randomized to three groups: the CT group (conventional therapy); EXO group (exoskeleton therapy) and AOT-EXO group (action observation treatment-based exoskeleton therapy). The patients will undergo blinded assessments at baseline, post-intervention (after 4 weeks) and follow-up (after 12 weeks). The primary outcome will be the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Secondary outcomes will include the Action Research Arm Test (ARAT), modified Barthel Index (MBI), kinematic metrics assessed by inertial measurement unit (IMU), resting motor threshold (rMT), motor evoked potentials (MEP), functional magnetic resonance imaging (fMRI) and safety outcomes. Discussion This trial will provide evidence regarding the feasibility and efficacy of the action observation treatment-based exoskeleton (AOT-EXO) for post-stroke upper extremity rehabilitation and elucidate the potential underlying kinematic and neurological mechanisms. Trial registration Chinese Clinical Trial Registry ChiCTR1900026656. Registered on 17 October 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05176-x.
Collapse
Affiliation(s)
- Zejian Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Chang He
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China.
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China.
| |
Collapse
|
6
|
Hilt PM, Cardellicchio P, Dolfini E, Pozzo T, Fadiga L, D’Ausilio A. Motor Recruitment during Action Observation: Effect of Interindividual Differences in Action Strategy. Cereb Cortex 2020; 30:3910-3920. [PMID: 32043124 PMCID: PMC7264692 DOI: 10.1093/cercor/bhaa006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/04/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022] Open
Abstract
Visual processing of other's actions is supported by sensorimotor brain activations. Access to sensorimotor representations may, in principle, provide the top-down signal required to bias search and selection of critical visual features. For this to happen, it is necessary that a stable one-to-one mapping exists between observed kinematics and underlying motor commands. However, due to the inherent redundancy of the human musculoskeletal system, this is hardly the case for multijoint actions where everyone has his own moving style (individual motor signature-IMS). Here, we investigated the influence of subject's IMS on subjects' motor excitability during the observation of an actor achieving the same goal by adopting two different IMSs. Despite a clear dissociation in kinematic and electromyographic patterns between the two actions, we found no group-level modulation of corticospinal excitability (CSE) in observers. Rather, we found a negative relationship between CSE and actor-observer IMS distance, already at the single-subject level. Thus, sensorimotor activity during action observation does not slavishly replicate the motor plan implemented by the actor, but rather reflects the distance between what is canonical according to one's own motor template and the observed movements performed by other individuals.
Collapse
Affiliation(s)
- P M Hilt
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121, Ferrara, Italy
| | - P Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121, Ferrara, Italy
| | - E Dolfini
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121, Ferrara, Italy
| | - T Pozzo
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121, Ferrara, Italy
- INSERMU1093, Universite de Bourgogne Franche-Comte, 21000, Dijon, France
| | - L Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121, Ferrara, Italy
- Section of Human Physiology, Università di Ferrara, 44121, Ferrara, Italy
| | - A D’Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121, Ferrara, Italy
- Section of Human Physiology, Università di Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
7
|
Spatial frequency tuning of motor responses reveals differential contribution of dorsal and ventral systems to action comprehension. Proc Natl Acad Sci U S A 2020; 117:13151-13161. [PMID: 32457158 DOI: 10.1073/pnas.1921512117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding object-directed actions performed by others is central to everyday life. This ability is thought to rely on the interaction between the dorsal action observation network (AON) and a ventral object recognition pathway. On this view, the AON would encode action kinematics, and the ventral pathway, the most likely intention afforded by the objects. However, experimental evidence supporting this model is still scarce. Here, we aimed to disentangle the contribution of dorsal vs. ventral pathways to action comprehension by exploiting their differential tuning to low-spatial frequencies (LSFs) and high-spatial frequencies (HSFs). We filtered naturalistic action images to contain only LSF or HSF and measured behavioral performance and corticospinal excitability (CSE) using transcranial magnetic stimulation (TMS). Actions were embedded in congruent or incongruent scenarios as defined by the compatibility between grips and intentions afforded by the contextual objects. Behaviorally, participants were better at discriminating congruent actions in intact than LSF images. This effect was reversed for incongruent actions, with better performance for LSF than intact and HSF. These modulations were mirrored at the neurophysiological level, with greater CSE facilitation for congruent than incongruent actions for HSF and the opposite pattern for LSF images. Finally, only for LSF did we observe CSE modulations according to grip kinematics. While results point to differential dorsal (LSF) and ventral (HSF) contributions to action comprehension for grip and context encoding, respectively, the negative congruency effect for LSF images suggests that object processing may influence action perception not only through ventral-to-dorsal connections, but also through a dorsal-to-dorsal route involved in predictive processing.
Collapse
|
8
|
Motor cortical inhibition during concurrent action execution and action observation. Neuroimage 2020; 208:116445. [DOI: 10.1016/j.neuroimage.2019.116445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 11/23/2022] Open
|
9
|
Amoruso L, Finisguerra A. Low or High-Level Motor Coding? The Role of Stimulus Complexity. Front Hum Neurosci 2019; 13:332. [PMID: 31680900 PMCID: PMC6798151 DOI: 10.3389/fnhum.2019.00332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that observing an action induces activity in the onlooker's motor system. In light of the muscle specificity and time-locked mirroring nature of the effect, this motor resonance has been traditionally viewed as an inner automatic replica of the observed movement. Notably, studies highlighting this aspect have classically considered movement in isolation (i.e., using non-realistic stimuli such as snapshots of hands detached from background). However, a few recent studies accounting for the role of contextual cues, motivational states, and social factors, have challenged this view by showing that motor resonance is not completely impervious to top-down modulations. A debate is still present. We reasoned that motor resonance reflects the inner replica of the observed movement only when its modulation is assessed during the observation of movements in isolation. Conversely, the presence of top-down modulations of motor resonance emerges when other high-level factors (i.e., contextual cues, past experience, social, and motivational states) are taken into account. Here, we attempt to lay out current TMS studies assessing this issue and discuss the results in terms of their potential to favor the inner replica or the top-down modulation hypothesis. In doing so, we seek to shed light on this actual debate and suggest specific avenues for future research, highlighting the need for a more ecological approach when studying motor resonance phenomenon.
Collapse
Affiliation(s)
- Lucia Amoruso
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | |
Collapse
|
10
|
Motor system recruitment during action observation: No correlation between mu-rhythm desynchronization and corticospinal excitability. PLoS One 2018; 13:e0207476. [PMID: 30440042 PMCID: PMC6237396 DOI: 10.1371/journal.pone.0207476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022] Open
Abstract
Observing others’ actions desynchronizes electroencephalographic (EEG) rhythms and modulates corticospinal excitability as assessed by transcranial magnetic stimulation (TMS). However, it remains unclear if these measures reflect similar neurofunctional mechanisms at the individual level. In the present study, a within-subject experiment was designed to assess these two neurophysiological indexes and to quantify their mutual correlation. Participants observed reach-to-grasp actions directed towards a small (precision grip) or a large object (power grip). We focused on two specific time points for both EEG and TMS. The first time point (t1) coincided with the maximum hand aperture, i.e. the moment at which a significant modulation of corticospinal excitability is expected. The second (t2), coincided with the EEG resynchronization occurring at the end of the action, i.e. the moment at which a hypothetic minimum for action observation effect is expected. Results showed a Mu rhythm bilateral desynchronization at t1 with differential resynchronization at t2 in the two hemispheres. Beta rhythm was more desynchronized in the left hemisphere at both time points. These EEG differences, however, were not influenced by grip type. Conversely, motor potentials evoked by TMS in an intrinsic hand muscle revealed an interaction effect of grip and time. No significant correlations between Mu/Beta rhythms and motor evoked potentials were found. These findings are discussed considering the spatial and temporal resolution of the two investigated techniques and argue over two alternative explanations: i. each technique provides different measures of the same process or ii. they describe complementary features of the action observation network in humans.
Collapse
|
11
|
Hannah R, Rocchi L, Rothwell JC. Observing Without Acting: A Balance of Excitation and Suppression in the Human Corticospinal Pathway? Front Neurosci 2018; 12:347. [PMID: 29875628 PMCID: PMC5974331 DOI: 10.3389/fnins.2018.00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies of human primary motor cortex (M1) indicate an increase corticospinal excitability during the observation of another's action. This appears to be somewhat at odds with recordings of pyramidal tract neurons in primate M1 showing that there is a balance of increased and decreased activity across the population. TMS is known to recruit a mixed population of cortical neurons, and so one explanation for previous results is that TMS tends to recruit those excitatory output neurons whose activity is increased during action observation. Here we took advantage of the directional sensitivity of TMS to recruit different subsets of M1 neurons and probed whether they responded differentially to action observation in a manner consistent with the balanced change in activity in primates. At the group level we did not observe the expected increase in corticospinal excitability for either TMS current direction during the observation of a precision grip movement. Instead, we observed substantial inter-individual variability ranging from strong facilitation to strong suppression of corticospinal excitability that was similar across both current directions. Thus, we found no evidence of any differential changes in the excitability of distinct M1 neuronal populations during action observation. The most notable change in corticospinal excitability at the group level was a general increase, across muscles and current directions, when participants went from a baseline state outside the task to a baseline state within the actual observation task. We attribute this to arousal- or attention-related processes, which appear to have a similar effect on the different corticospinal pathways targeted by different TMS current directions. Finally, this rather non-specific increase in corticospinal excitability suggests care should be taken when selecting a “baseline” state against which to compare changes during action observation.
Collapse
Affiliation(s)
- Ricci Hannah
- University College London Institute of Neurology, London, United Kingdom
| | - Lorenzo Rocchi
- University College London Institute of Neurology, London, United Kingdom
| | - John C Rothwell
- University College London Institute of Neurology, London, United Kingdom
| |
Collapse
|