1
|
Fallon SJ, Plant O, Tabi YA, Manohar SG, Husain M. Effects of cholinesterase inhibition on attention and working memory in Lewy body dementias. Brain Commun 2023; 5:fcad207. [PMID: 37545547 PMCID: PMC10404008 DOI: 10.1093/braincomms/fcad207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Cholinesterase inhibitors are frequently used to treat cognitive symptoms in Lewy body dementias (Parkinson's disease dementia and dementia with Lewy bodies). However, the selectivity of their effects remains unclear. In a novel rivastigmine withdrawal design, Parkinson's disease dementia and dementia with Lewy bodies patients were tested twice: once when taking rivastigmine as usual and once when they had missed one dose. In each session, they performed a suite of tasks (sustained attention, simple short-term recall, distractor resistance and manipulating the focus of attention) that allowed us to investigate the cognitive mechanisms through which rivastigmine affects attentional control. Consistent with previous literature, rivastigmine withdrawal significantly impaired attentional efficacy (quicker response latencies without a change in accuracy). However, it had no effects on cognitive control as assessed by the ability to withhold a response (inhibitory control). Worse short-term memory performance was also observed when patients were OFF rivastigmine, but these effects were delay and load independent, likely due to impaired visual attention. In contrast to previous studies that have examined the effects of dopamine withdrawal, cognitively complex tasks requiring control over the contents of working memory (ignoring, updating or shifting the focus of attention) were not significantly impaired by rivastigmine withdrawal. Cumulatively, these data support that the conclusion that cholinesterase inhibition has relatively specific and circumscribed-rather than global-effects on attention that may also affect performance on simple short-term memory tasks, but not when cognitive control over working memory is required. The results also indicate that the withdrawal of a single dose of rivastigmine is sufficient to reveal these impairments, demonstrating that cholinergic withdrawal can be an informative clinical as well as an investigative tool.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- School of Psychology, University of Plymouth, Plymouth PL4 8AA, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Younes A Tabi
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
Fallon SJ, van Rhee C, Kienast A, Manohar SG, Husain M. Mechanisms underlying corruption of working memory in Parkinson's disease. J Neuropsychol 2023. [PMID: 36642965 DOI: 10.1111/jnp.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023]
Abstract
Working memory (WM) impairments are reported to occur in patients with Parkinson's disease (PD). However, the mechanisms are unclear. Here, we investigate several putative factors that might drive poor performance, by examining the precision of recall, the order in which items are recalled and whether memories are corrupted by random guessing (attentional lapses). We used two separate tasks that examined the quality of WM recall under different loads and retention periods, as well as a traditional digit span test. Firstly, on a simple measure of WM recall, where patients were asked to reproduce the orientation of a centrally presented arrow, overall recall was not significantly impaired. However, there was some evidence for increased guessing (attentional lapses). On a new analogue version of the Corsi-span task, where participants had to reproduce on a touchscreen the exact spatial pattern of presented stimuli in the order and locations in which they appeared, there was a reduction in the precision of spatial WM at higher loads. This deficit was due to misremembering item order. At the highest load, there was reduced recall precision, whereas increased guessing was only observed at intermediate set sizes. Finally, PD patients had impaired backward, but not forward, digit spans. Overall, these results reveal the task- and load-dependent nature of WM deficits in PD. On simple low-load tasks, attentional lapses predominate, whereas at higher loads, in the spatial domain, the corruption of mnemonic information-both order item and precision-emerge as the main driver of impairment.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,School of Psychology, University of Plymouth, Plymouth, UK
| | - Chevonne van Rhee
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
3
|
Li S, Hu J, Chang R, Li Q, Wan P, Liu S. Eye Movements of Spatial Working Memory Encoding in Children with and without Autism: Chunking Processing and Reference Preference. Autism Res 2020; 14:897-910. [PMID: 32959979 DOI: 10.1002/aur.2398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
Individuals with autism spectrum disorder (ASD) experience spatial working memory deficits and show different encoding mechanisms from typical developing (TD) peers. To effectively describe the encoding strategies of those with ASD and highlight their characteristics in cognitive processing, we adopted improved change detection tasks and added eye-movement indicators to investigate the chunking function and reference preference of children with and without ASD. The current study included 20 participants with ASD aged 8-16 and 20 TD children matched for age, gender, and intelligence. Experiment 1 used high/low-structured change detection tasks, and eye-movement indexes were recorded as they memorized the locations of the items to investigate spatial chunking strategies. In Experiment 2, changes in eye movement patterns were observed by adding a frame of reference. The results suggested different encoding strategies in ASD and TD individuals. The ASD group showed local processing bias and had difficulty adopting chunking strategies in spatial working memory. Eye-movement analysis suggested that they rarely showed integrated information processing tendency observed in TD children. Moreover, as a compensatory processing, they were more likely to use the frame of reference. In this study, we compared the spatial chunking strategies and reference preference of children with and without ASD, and eye-movement analysis was used to investigate the processing mechanism. These findings are significant for research on cognitive characteristics of ASD and provide a new focus for working memory training in children with ASD. LAY SUMMARY: The current study suggests that children with autism spectrum disorder are poorer at organizing items into chunks in spatial working memory, but rely more on reference frames. If the purpose of location memory is to strengthen the adaptability of children with autism, it should provide them with more clues or references. If it is for the purpose of intervention such as cognitive training, it should guide them to integrate information to improve the basic cognitive processing efficiency. Autism Res 2021, 14: 897-910. © 2020 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Songze Li
- Department of Psychology, Liaoning Normal University, Dalian, Liaoning, China
| | - Jinsheng Hu
- Department of Psychology, Liaoning Normal University, Dalian, Liaoning, China
| | - Ruosong Chang
- Department of Psychology, Liaoning Normal University, Dalian, Liaoning, China
| | - Qi Li
- Department of Psychology, Liaoning Normal University, Dalian, Liaoning, China
| | - Peng Wan
- Department of Psychology, Liaoning Normal University, Dalian, Liaoning, China
| | - Shuqing Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Harrington DL, Shen Q, Vincent Filoteo J, Litvan I, Huang M, Castillo GN, Lee RR, Bayram E. Abnormal distraction and load-specific connectivity during working memory in cognitively normal Parkinson's disease. Hum Brain Mapp 2019; 41:1195-1211. [PMID: 31737972 PMCID: PMC7058508 DOI: 10.1002/hbm.24868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023] Open
Abstract
Visuospatial working memory impairments are common in Parkinson's disease (PD), yet the underlying neural mechanisms are poorly understood. The present study investigated abnormalities in context‐dependent functional connectivity of working memory hubs in PD. Cognitively normal PD and control participants underwent fMRI while performing a visuospatial working memory task. To identify sources of dysfunction, distraction, and load‐modulated connectivity were disentangled for encoding and retrieval phases of the task. Despite normal working memory performance in PD, two features of abnormal connectivity were observed, one due to a loss in normal context‐related connectivity and another related to upregulated connectivity of hubs for which the controls did not exhibit context‐dependent connectivity. During encoding, striatal‐prefrontal coupling was lost in PD, both during distraction and high memory loads. However, long‐range connectivity of prefrontal, medial temporal and occipital hubs was upregulated in a context‐specific manner. Memory retrieval was characterized by different aberrant connectivity patterns, wherein precuneus connectivity was upregulated during distraction, whereas prefrontal couplings were lost as memory load approached capacity limits. Features of abnormal functional connectivity in PD had pathological and compensatory influences as they correlated with poorer working memory or better visuospatial skills. The results offer new insights into working memory‐related signatures of aberrant cortico–cortical and corticostriatal functional connections, which may portend future declines in different facets of working memory.
Collapse
Affiliation(s)
- Deborah L Harrington
- Research, Radiology, and Psychology Services, VA San Diego Healthcare System, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Qian Shen
- Department of Radiology, University of California, San Diego, California
| | - Julian Vincent Filoteo
- Research, Radiology, and Psychology Services, VA San Diego Healthcare System, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, California
| | - Mingxiong Huang
- Research, Radiology, and Psychology Services, VA San Diego Healthcare System, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Gabriel N Castillo
- Department of Radiology, University of California, San Diego, California
| | - Roland R Lee
- Research, Radiology, and Psychology Services, VA San Diego Healthcare System, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Ece Bayram
- Department of Neurosciences, University of California, San Diego, California
| |
Collapse
|
5
|
Fallon SJ, Gowell M, Maio MR, Husain M. Dopamine affects short-term memory corruption over time in Parkinson's disease. NPJ Parkinsons Dis 2019; 5:16. [PMID: 31396548 PMCID: PMC6683156 DOI: 10.1038/s41531-019-0088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/25/2019] [Indexed: 11/09/2022] Open
Abstract
Cognitive deficits are a recognised component of Parkinson's disease (PD). However, particularly within the domain of short-term memory, it is unclear whether these impairments are masked, or caused, by patients' dopaminergic medication. The effect of medication on pure maintenance in PD patients has rarely been explored, with most assessments examining maintenance intercalated between other executive tasks. Moreover, few studies have utilised methods that can measure the quality of mental representations, which can enable the decomposition of recall errors into their underlying neurocognitive components. Here, we fill this gap by examining pure maintenance in PD patients in high and low dopaminergic states. Participants had to encode the orientation of two stimuli and reproduce these orientations after a short (2 s) or long (8 s) delay. In addition, we also examined the performance of healthy, age-matched older adults to contextualise these effects and determine whether PD represents an exacerbation of the normal ageing process. Patients showed improved recall OFF compared to ON their dopaminergic medication, but only for long-duration trials. Moreover, PD patients OFF their medication actually performed at a level superior to age-matched controls, indicative of a paradoxical enhancement of memory in the low dopaminergic state. The application of a probabilistic model of response selection suggested that PD patients made fewer misbinding errors in the low, compared with high, dopaminergic state for longer-delay trials. Thus, unexpectedly, the mechanisms that prevent memoranda from being corrupted by misbinding over time appear to be enhanced in PD patients OFF dopaminergic medication. Possible explanations for this paradoxical effect are discussed.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Matthew Gowell
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Maria Raquel Maio
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
6
|
Kahya M, Moon S, Lyons KE, Pahwa R, Akinwuntan AE, Devos H. Pupillary Response to Cognitive Demand in Parkinson's Disease: A Pilot Study. Front Aging Neurosci 2018; 10:90. [PMID: 29692720 PMCID: PMC5902496 DOI: 10.3389/fnagi.2018.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Previous studies have shown that pupillary response, a physiological measure of cognitive workload, reflects cognitive demand in healthy younger and older adults. However, the relationship between cognitive workload and cognitive demand in Parkinson's disease (PD) remains unclear. The aim of this pilot study was to examine the pupillary response to cognitive demand in a letter-number sequencing (LNS) task between 16 non-demented individuals with PD (age, median (Q1-Q3): 68 (62-72); 10 males) and 10 control participants (age: 63 (59-67); 2 males), matched for age, education, and Montreal Cognitive Assessment (MOCA) scores. A mixed model analysis was employed to investigate cognitive workload changes as a result of incremental cognitive demand for both groups. As expected, no differences were found in cognitive scores on the LNS between groups. Cognitive workload, exemplified by greater pupil dilation, increased with incremental cognitive demand in both groups (p = 0.003). No significant between-group (p = 0.23) or interaction effects were found (p = 0.45). In addition, individuals who achieved to complete the task at higher letter-number (LN) load responded differently to increased cognitive demand compared with those who completed at lower LN load (p < 0.001), regardless of disease status. Overall, the findings indicated that pupillary response reflects incremental cognitive demand in non-demented people with PD and healthy controls. Further research is needed to investigate the pupillary response to incremental cognitive demand of PD patients with dementia compared to non-demented PD and healthy controls. Highlights -Pupillary response reflects cognitive demand in both non-demented people with PD and healthy controls-Although not significant due to insufficient power, non-demented individuals with PD had increased cognitive workload compared to the healthy controls throughout the testing-Pupillary response may be a valid measure of cognitive demand in non-demented individuals with PD-In future, pupillary response might be used to detect cognitive impairment in individuals with PD.
Collapse
Affiliation(s)
- Melike Kahya
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sanghee Moon
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kelly E Lyons
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajesh Pahwa
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Abiodun E Akinwuntan
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States.,Office of the Dean, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hannes Devos
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|