1
|
Wadsley CG, Nguyen T, Horton C, Greenhouse I. Goal-directed action preparation in humans entails a mixture of corticospinal neural computations. J Physiol 2025; 603:1589-1605. [PMID: 39949052 DOI: 10.1113/jp287939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/28/2025] [Indexed: 02/19/2025] Open
Abstract
The seemingly effortless ability of humans to transition from thinking about actions to initiating them relies on sculpting corticospinal (CS) output from the primary motor cortex. The present study tested whether canonical additive and multiplicative neural computations, well-described in sensory systems, generalize to the CS pathway during human action preparation. We used non-invasive brain stimulation to measure CS input-output across varying action preparation contexts during instructed-delay finger response tasks. Goal-directed action preparation was marked by increased multiplicative gain of CS projections to task-relevant muscles and additive suppression of CS projections to non-selected and task-irrelevant muscles. Individuals who modulated CS gain to a greater extent were faster to initiate prepared responses. Our findings provide physiological evidence of combined additive suppression and gain modulation in the human motor system. We propose that these computations support action preparation by enhancing the contrast between selected motor representations and surrounding background activity to facilitate response selection and execution. KEY POINTS: Neural computations determine what information is transmitted through brain circuits. We investigated whether the motor system uses computations similar to those observed in sensory systems by non-invasively stimulating the corticospinal pathway in humans during goal-directed action preparation. We discovered physiological evidence indicating that corticospinal projections to behaviourally relevant muscles exhibit non-linear gain computations, whereas projections to behaviourally irrelevant muscles exhibit linear suppression. Our findings suggest that certain computational principles generalize to the human motor system and serve to enhance the contrast between relevant and background neural activity. These results indicate that neural computations during goal-directed action preparation may support motor control by increasing signal-to-noise within the corticospinal pathway.
Collapse
Affiliation(s)
- Corey G Wadsley
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Thuan Nguyen
- School of Public Health, Portland State University-Oregon Health and Science University, Portland, OR, USA
| | - Chris Horton
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Ian Greenhouse
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| |
Collapse
|
2
|
Xia X, Wang Z, Zeng K, Nankoo JF, Darmani G, Tran S, Ding MYR, Chen R. Effects of the motor cortical theta-burst transcranial-focused ultrasound stimulation on the contralateral motor cortex. J Physiol 2024; 602:2931-2943. [PMID: 38872383 DOI: 10.1113/jp285139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/15/2024] [Indexed: 06/15/2024] Open
Abstract
Theta-burst transcranial ultrasound stimulation (tbTUS) increases primary motor cortex (M1) excitability for at least 30 min. However, the remote effects of focal M1 tbTUS on the excitability of other cortical areas are unknown. Here, we examined the effects of left M1 tbTUS on right M1 excitability. An 80 s train of active or sham tbTUS was delivered to the left M1 in 20 healthy subjects. Before and after the tbTUS, we measured: (1) corticospinal excitability using motor-evoked potential (MEP) amplitudes from single-pulse transcranial magnetic stimulation (TMS) of left and right M1; (2) interhemispheric inhibition (IHI) from left to right M1 and from right to left M1 using a dual-site paired-pulse TMS paradigm; and (3) intracortical circuits of the right M1 with short-interval intracortical inhibition and intracortical facilitation (ICF) using paired-pulse TMS. Left M1 tbTUS decreased right M1 excitability as shown by decreased MEP amplitudes, increased right M1 ICF and decreased short-interval IHI from left to right hemisphere at interstimulus interval (ISI) of 10 ms but not long-interval IHI at interstimulus interval of 40 ms. The study showed that left M1 tbTUS can change the excitability of remote cortical areas with decreased right M1 excitability and interhemispheric inhibition. The remote effects of tbTUS should be considered when it is used in neuroscience research and as a potential neuromodulation treatment for brain disorders. KEY POINTS: Transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique for neuromodulation with the advantages of being able to achieve high spatial resolution and target deep brain structures. A repetitive TUS protocol, with an 80 s train of theta burst patterned TUS (tbTUS), has been shown to increase primary motor cortex (M1) excitability, as well as increase alpha and beta movement-related spectral power in distinct brain regions. In this study, we examined on the effects of the motor cortical tbTUS on the excitability of contralateral M1 measured with MEPs elicited by transcranial magnetic stimulation. We showed that left M1 tbTUS decreased right M1 excitability and left-to-right M1 interhemispheric inhibition, and increased intracortical facilitation of right M1. These results lead to better understand the effects of tbTUS and can help the development of tbTUS for the treatment of neurological and psychiatric disorders and in neuroscience research.
Collapse
Affiliation(s)
- Xue Xia
- School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, China
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Zhen Wang
- Krembil Research Institute, University Health Network, Toronto, Canada
- School of Sport and Health Science, Xi'an Physical Education University, Xi'an, China
| | - Ke Zeng
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | | | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Stephanie Tran
- Krembil Research Institute, University Health Network, Toronto, Canada
| | | | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Bundt C, Huster RJ. Corticospinal excitability reductions during action preparation and action stopping in humans: Different sides of the same inhibitory coin? Neuropsychologia 2024; 195:108799. [PMID: 38218313 DOI: 10.1016/j.neuropsychologia.2024.108799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Motor functions and cognitive processes are closely associated with each other. In humans, this linkage is reflected in motor system state changes both when an action must be prepared and stopped. Single-pulse transcranial magnetic stimulation showed that both action preparation and action stopping are accompanied by a reduction of corticospinal excitability, referred to as preparatory and response inhibition, respectively. While previous efforts have been made to describe both phenomena extensively, an updated and comprehensive comparison of the two phenomena is lacking. To ameliorate such deficit, this review focuses on the role and interpretation of single-coil (single-pulse and paired-pulse) and dual-coil TMS outcome measures during action preparation and action stopping in humans. To that effect, it aims to identify commonalities and differences, detailing how TMS-based outcome measures are affected by states, traits, and psychopathologies in both processes. Eventually, findings will be compared, and open questions will be addressed to aid future research.
Collapse
Affiliation(s)
- Carsten Bundt
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Denyer R, Greenhouse I, Boyd LA. PMd and action preparation: bridging insights between TMS and single neuron research. Trends Cogn Sci 2023; 27:759-772. [PMID: 37244800 DOI: 10.1016/j.tics.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Transcranial magnetic stimulation (TMS) research has furthered understanding of human dorsal premotor cortex (PMd) function due to its unrivalled ability to measure the inhibitory and facilitatory influences of PMd over the primary motor cortex (M1) in a temporally precise manner. TMS research indicates that PMd transiently modulates inhibitory output to effector representations within M1 during motor preparation, with the direction of modulation depending on which effectors are selected for response, and the timing of modulations co-varying with task selection demands. In this review, we critically assess this literature in the context of a dynamical systems approach used to model nonhuman primate (NHP) PMd/M1 single-neuron recordings during action preparation. Through this process, we identify gaps in the literature and propose future experiments.
Collapse
Affiliation(s)
- Ronan Denyer
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T1Z3, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR 97401, USA
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| |
Collapse
|
5
|
Puri R, Hinder MR, Heathcote A. What mechanisms mediate prior probability effects on rapid-choice decision-making? PLoS One 2023; 18:e0288085. [PMID: 37418378 DOI: 10.1371/journal.pone.0288085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023] Open
Abstract
Rapid-choice decision-making is biased by prior probability of response alternatives. Conventionally, prior probability effects are assumed to selectively affect, response threshold, which determines the amount of evidence required to trigger a decision. However, there may also be effects on the rate at which evidence is accumulated and the time required for non-decision processes (e.g., response production). Healthy young (n = 21) and older (n = 20) adults completed a choice response-time task requiring left- or right-hand responses to imperative stimuli. Prior probability was manipulated using a warning stimulus that informed participants that a particular response was 70% likely (i.e., the imperative stimulus was either congruent or incongruent with the warning stimulus). In addition, prior probability was either fixed for blocks of trials (block-wise bias) or varied from trial-to-trial (trial-wise bias). Response time and accuracy data were analysed using the racing diffusion evidence-accumulation model to test the selective influence assumption. Response times for correct responses were slower on incongruent than congruent trials, and older adults' responses were slower, but more accurate, than young adults. Evidence-accumulation modelling favoured an effect of prior probability on both response thresholds and nondecision time. Overall, the current results cast doubt on the selective threshold influence assumption in the racing diffusion model.
Collapse
Affiliation(s)
- Rohan Puri
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Andrew Heathcote
- School of Psychology, University of Newcastle, Newcastle, Australia
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
7
|
Wadsley CG, Cirillo J, Nieuwenhuys A, Byblow WD. Proactive Interhemispheric Disinhibition Supports Response Preparation during Selective Stopping. J Neurosci 2023; 43:1008-1017. [PMID: 36609455 PMCID: PMC9908313 DOI: 10.1523/jneurosci.1712-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Response inhibition is essential for terminating inappropriate actions. A substantial response delay may occur in the nonstopped effector when only part of a multieffector action is terminated. This stopping-interference effect has been attributed to nonselective response inhibition processes and can be reduced with proactive cuing. This study aimed to elucidate the role of interhemispheric primary motor cortex (M1-M1) influences during selective stopping with proactive cuing. We hypothesized that stopping-interference would be reduced as stopping certainty increased because of proactive recruitment of interhemispheric facilitation or inhibition when cued to respond or stop, respectively. Twenty-three healthy human participants of either sex performed a bimanual anticipatory response inhibition paradigm with cues signaling the likelihood of a stop-signal occurring. Dual-coil transcranial magnetic stimulation was used to determine corticomotor excitability (CME), interhemispheric inhibition (IHI), and interhemispheric facilitation (IHF) in the left hand at rest and during response preparation. Response times slowed and stopping-interference decreased with increased stopping certainty. Proactive response inhibition was marked by a reduced rate of rise and faster cancel time in electromyographical bursts during stopping. There was a nonselective release of IHI but not CME from rest to in-task response preparation, whereas IHF was not observed in either context. An effector-specific reduction in CME but no reinstatement of IHI was observed when the left hand was cued to stop. These findings indicate that stopping speed and selectivity are better with proactive cueing and that interhemispheric M1-M1 channels modulate inhibitory tone during response preparation to support going but not proactive response inhibition.SIGNIFICANCE STATEMENT Response inhibition is essential for terminating inappropriate actions and, in some cases, may be required for only part of a multieffector action. The present study examined interhemispheric influences between the primary motor cortices during selective stopping with proactive cuing. Stopping selectivity was greater with increased stopping certainty and was marked by proactive adjustments to the hand cued to stop and hand cued to respond separately. Inhibitory interhemispheric influences were released during response preparation but were not directly involved in proactive response inhibition. These findings indicate that between-hand stopping can be selective with proactive cuing, but cue-related improvements are unlikely to reflect the advance engagement of interhemispheric influences between primary motor cortices.
Collapse
Affiliation(s)
- Corey G Wadsley
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
| | - John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
| | - Arne Nieuwenhuys
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Investigating the role of contextual cues and interhemispheric inhibitory mechanisms in response-selective stopping: a TMS study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:84-99. [PMID: 36385251 PMCID: PMC9925558 DOI: 10.3758/s13415-022-01047-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Response-selective stopping requires cancellation of only one component of a multicomponent action. While research has investigated how delays to the continuing action components ("stopping interference") can be attenuated by way of contextual cues of the specific stopping demands ("foreknowledge"), little is known of the underlying neural mechanisms. Twenty-seven, healthy, young adults undertook a multicomponent stop-signal task. For two thirds of trials, participants responded to an imperative (go) stimulus (IS) with simultaneous button presses using their left and right index fingers. For the remaining one third of trials, the IS was followed by a stop-signal requiring cancellation of only the left, or right, response. To manipulate foreknowledge of stopping demands, a cue preceded the IS that informed participants which hand might be required to stop (proactive) or provided no such information (reactive). Transcranial magnetic stimulation (TMS) assessed corticospinal excitability (CSE) as well as short- and long-interval interhemispheric inhibition (SIHI, LIHI) between the primary motor cortices. Proactive cues reduced, but did not eliminate, stopping interference relative to the reactive condition. Relative to TMS measures at cue onset, decreases in CSE (both hands and both cue conditions) and LIHI (both hands, proactive condition only) were observed during movement preparation. During movement cancellation, LIHI reduction in the continuing hand was greater than that in the stopping hand and greater than LIHI reductions in both hands during execution of multicomponent responses. Our results indicate that foreknowledge attenuates stopping interference and provide evidence for a novel role of LIHI, mediated via prefrontal regions, in facilitating continuing action components.
Collapse
|
9
|
Tecilla M, Guerra A, Rocchi L, Määttä S, Bologna M, Herrojo Ruiz M, Biundo R, Antonini A, Ferreri F. Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation. Brain Sci 2022; 12:639. [PMID: 35625025 PMCID: PMC9139261 DOI: 10.3390/brainsci12050639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
In everyday life, goal-oriented motor behaviour relies on the estimation of the rewards/costs associated with alternative actions and on the appropriate selection of movements. Motor decision making is defined as the process by which a motor plan is chosen among a set of competing actions based on the expected value. In the present literature review we discuss evidence from transcranial magnetic stimulation (TMS) studies of motor control. We focus primarily on studies of action selection for instructed movements and motor decision making. In the first section, we delve into the usefulness of various TMS paradigms to characterise the contribution of motor areas and distributed brain networks to cued action selection. Then, we address the influence of motivational information (e.g., reward and biomechanical cost) in guiding action choices based on TMS findings. Finally, we conclude that TMS represents a powerful tool for elucidating the neurophysiological mechanisms underlying action choices in humans.
Collapse
Affiliation(s)
- Margherita Tecilla
- Department of Psychology, Goldsmiths, University of London, London SE146NW, UK; (M.T.); (M.H.R.)
| | - Andrea Guerra
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.G.); (M.B.)
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N3BG, UK
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.G.); (M.B.)
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Herrojo Ruiz
- Department of Psychology, Goldsmiths, University of London, London SE146NW, UK; (M.T.); (M.H.R.)
| | - Roberta Biundo
- Department of General Psychology and Study Center for Neurodegeneration (CESNE), University of Padua, 35131 Padua, Italy;
- San Camillo IRCSS Hospital, 30126 Lido di Venezia, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35131 Padua, Italy;
| | - Florinda Ferreri
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland;
- Unit of Neurology, Unit of Clinical Neurophysiology and Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35131 Padua, Italy
| |
Collapse
|
10
|
Puri R, Hinder MR. Response bias reveals the role of interhemispheric inhibitory networks in movement preparation and execution. Neuropsychologia 2021; 165:108120. [PMID: 34915037 DOI: 10.1016/j.neuropsychologia.2021.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/25/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Human movement is influenced by various cognitive processes, such as bias, that dynamically shape competing movement representations. However, the neurophysiological mechanisms underlying the effects of bias on movement selection across the lifespan remains poorly understood. Healthy young (n = 21) and older (n = 20) adults completed a choice reaction-time task necessitating left- or right-hand responses to imperative stimuli (IS). Response bias was manipulated via a cue that informed participants a particular response was 70% likely (i.e., the IS was either congruent, or incongruent, with the cue); biasing was either fixed for blocks of trials (block-wise bias) or varied from trial-to-trial (trial-wise bias). As well as assessing the behavioural manifestations of bias, we used transcranial magnetic stimulation to determine changes in corticospinal excitability (CSE) and short- and long-interval interhemispheric inhibition (SIHI, LIHI) during movement preparation and execution. Participants responded more quickly, and accurately, in congruent compared to incongruent trials. CSE decreases occurred in both hands following the cue, consistent with the 'inhibition for impulse control' hypothesis of preparatory inhibition. In contrast, IHI modulations occurred in a hand-specific manner. Greater SIHI was observed during movement preparation in the hand biased away from, compared to the hand biased towards, the cue; furthermore, greater SIHI was observed during movement execution in the hand biased towards the cue when it was not required to respond (i.e., incongruent trial) compared to when it was required to respond (congruent trial). Additionally, during the movement preparation period, the LIHI ratio of the hand biased towards, compared to the hand biased away from, the cue was greatest when the cue varied trial-by-trial. Overall, the IHI results provide support for the 'inhibition for competition resolution' hypothesis, with hand specific modulation of inhibition during movement preparation and execution.
Collapse
Affiliation(s)
- Rohan Puri
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
11
|
Verstraelen S, Cuypers K, Maes C, Hehl M, Van Malderen S, Levin O, Mikkelsen M, Meesen RLJ, Swinnen SP. Neurophysiological modulations in the (pre)motor-motor network underlying age-related increases in reaction time and the role of GABA levels - a bimodal TMS-MRS study. Neuroimage 2021; 243:118500. [PMID: 34428570 PMCID: PMC8547554 DOI: 10.1016/j.neuroimage.2021.118500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
It has been argued that age-related changes in the neurochemical and neurophysiological properties of the GABAergic system may underlie increases in reaction time (RT) in older adults. However, the role of GABA levels within the sensorimotor cortices (SMC) in mediating interhemispheric interactions (IHi) during the processing stage of a fast motor response, as well as how both properties explain interindividual differences in RT, are not yet fully understood. In this study, edited magnetic resonance spectroscopy (MRS) was combined with dual-site transcranial magnetic stimulation (dsTMS) for probing GABA+ levels in bilateral SMC and task-related neurophysiological modulations in corticospinal excitability (CSE), and primary motor cortex (M1)-M1 and dorsal premotor cortex (PMd)-M1 IHi, respectively. Both CSE and IHi were assessed during the preparatory and premotor period of a delayed choice RT task. Data were collected from 25 young (aged 18-33 years) and 28 older (aged 60-74 years) healthy adults. Our results demonstrated that older as compared to younger adults exhibited a reduced bilateral CSE suppression, as well as a reduced magnitude of long latency M1-M1 and PMd-M1 disinhibition during the preparatory period, irrespective of the direction of the IHi. Importantly, in older adults, the GABA+ levels in bilateral SMC partially accounted for task-related neurophysiological modulations as well as individual differences in RT. In contrast, in young adults, neither task-related neurophysiological modulations, nor individual differences in RT were associated with SMC GABA+ levels. In conclusion, this study contributes to a comprehensive initial understanding of how age-related differences in neurochemical properties and neurophysiological processes are related to increases in RT.
Collapse
Affiliation(s)
- Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium.
| | - Celine Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Melina Hehl
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Shanti Van Malderen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Mark Mikkelsen
- Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Raf L J Meesen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
12
|
The modulation of short and long-latency interhemispheric inhibition during bimanually coordinated movements. Exp Brain Res 2021; 239:1507-1516. [PMID: 33687518 DOI: 10.1007/s00221-021-06074-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Bimanual coordination is essential for the performance of many everyday tasks. There are several types of bimanually coordinated movements, classified according to whether the arms are acting to achieve a single goal (cooperative) or separate goals (independent), and whether the arms are moving symmetrically or asymmetrically. Symmetric bimanual movements are thought to facilitate corticomotor excitability (CME), while asymmetric bimanual movements are thought to recruit interhemispheric inhibition to reduce functional coupling between the motor cortices. The influences of movement symmetry and goal conceptualisation on interhemispheric interactions have not been studied together, and not during bimanually active dynamic tasks. The present study used transcranial magnetic stimulation (TMS) to investigate the modulation of CME and short- and long-latency interhemispheric inhibition (SIHI and LIHI, respectively) during bimanually active dynamic tasks requiring different types of bimanual coordination. Twenty healthy right-handed adults performed four bimanual tasks in which they held a dumbbell in each hand (independent) or a custom device between both hands (cooperative) while rhythmically flexing and extending their wrists symmetrically or asymmetrically. Motor-evoked potentials were recorded from the right extensor carpi ulnaris. We found CME was greater during asymmetric tasks than symmetric tasks, and movement symmetry did not modulate SIHI or LIHI. There was no effect of goal conceptualisation nor any interaction with movement symmetry for CME, SIHI or LIHI. Based on these results, movement symmetry and goal conceptualisation may not modulate interhemispheric inhibition during dynamic bimanual tasks. These findings contradict prevailing thinking about the roles of CME and interhemispheric inhibition in bimanual coordination.
Collapse
|
13
|
MacDonald HJ, Laksanaphuk C, Day A, Byblow WD, Jenkinson N. The role of interhemispheric communication during complete and partial cancellation of bimanual responses. J Neurophysiol 2021; 125:875-886. [PMID: 33567982 DOI: 10.1152/jn.00688.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precise control of upper limb movements in response to external stimuli is vital to effectively interact with the environment. Accurate execution of bimanual movement is known to rely on finely orchestrated interhemispheric communication between the primary motor cortices (M1s). However, relatively little is known about the role of interhemispheric communication during sudden cancellation of prepared bimanual movement. The current study investigated the role of interhemispheric interactions during complete and partial cancellation of bimanual movement. In two experiments, healthy young human participants received transcranial magnetic stimulation to both M1s during a bimanual response inhibition task. The increased corticomotor excitability in anticipation of bimanual movement was accompanied by a release of inhibition from both M1s. After a stop cue, inhibition was reengaged onto both hemispheres to successfully cancel the complete bimanual response. However, when the stop cue signaled partial cancellation (stopping of one digit only), inhibition was reengaged with regard to the cancelled digit, but the responding digit representation was facilitated. This bifurcation in interhemispheric communication between M1s occurred 75 ms later in the more difficult condition when the nondominant, as opposed to dominant, hand was still responding. Our results demonstrate that interhemispheric communication is integral to response inhibition once a bimanual response has been prepared. Interestingly, M1-M1 interhemispheric circuitry does not appear to be responsible for the nonselective suppression of all movement components that has been observed during partial cancellation. Instead such interhemispheric communication enables uncoupling of bimanual response components and facilitates the selective initiation of just the required unimanual movement.NEW & NOTEWORTHY We provide the first evidence that interhemispheric communication plays an important role during sudden movement cancellation of two-handed responses. Simultaneously increased inhibition onto both hemispheres assists with two-handed movement cancellation. However, this network is not responsible for the widespread suppression of motor activity observed when only one of the two hands is cancelled. Instead, communication between hemispheres enables the separation of motor activity for the two hands and helps to execute the required one-handed response.
Collapse
Affiliation(s)
- Hayley J MacDonald
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Chotica Laksanaphuk
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathumthani, Thailand
| | - Alice Day
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Winston D Byblow
- Department of Exercise Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Chettouf S, Rueda-Delgado LM, de Vries R, Ritter P, Daffertshofer A. Are unimanual movements bilateral? Neurosci Biobehav Rev 2020; 113:39-50. [DOI: 10.1016/j.neubiorev.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
|
15
|
He JL, Fuelscher I, Coxon J, Chowdhury N, Teo WP, Barhoun P, Enticott P, Hyde C. Individual differences in intracortical inhibition predict motor-inhibitory performance. Exp Brain Res 2019; 237:2715-2727. [DOI: 10.1007/s00221-019-05622-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
16
|
Muralidharan V, Yu X, Cohen MX, Aron AR. Preparing to Stop Action Increases Beta Band Power in Contralateral Sensorimotor Cortex. J Cogn Neurosci 2019; 31:657-668. [DOI: 10.1162/jocn_a_01373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
How do we prepare to stop ourselves in the future? Here, we used scalp EEG to test the hypothesis that people prepare to stop by putting parts of their motor system (specifically, here, sensorimotor cortex) into a suppressed state ahead of time. On each trial, participants were cued to prepare to stop one hand and then initiated a bimanual movement. On a minority of trials, participants were instructed to stop the cued hand while continuing quickly with the other. We used a guided multivariate source separation method to examine oscillatory power changes in presumed sensorimotor cortical areas. We observed that, when people prepare to stop a hand, there were above-baseline beta band power increases (12–24 Hz) in contralateral cortex up to a second earlier. This increase in beta band power in the proactive period was functionally relevant because it predicted, trial by trial, the degree of selectivity with which participants subsequently stopped a response but did not relate to movement per se. Thus, preparing to stop particular response channels corresponds to increased beta power from contralateral (sensorimotor) cortex, and this relates specifically to subsequent stopping. These results provide a high temporal resolution and frequency-specific electrophysiological signature of the preparing-to-stop state that is pertinent to future studies of mitigating provocation, including in clinical disorders. The results also highlight the utility of guided multivariate source separation for revealing the cortical dynamics underlying both movement and response suppression.
Collapse
Affiliation(s)
| | - Xinze Yu
- University of California, San Diego
| | | | | |
Collapse
|
17
|
Welniarz Q, Gallea C, Lamy JC, Méneret A, Popa T, Valabregue R, Béranger B, Brochard V, Flamand-Roze C, Trouillard O, Bonnet C, Brüggemann N, Bitoun P, Degos B, Hubsch C, Hainque E, Golmard JL, Vidailhet M, Lehéricy S, Dusart I, Meunier S, Roze E. The supplementary motor area modulates interhemispheric interactions during movement preparation. Hum Brain Mapp 2019; 40:2125-2142. [PMID: 30653778 DOI: 10.1002/hbm.24512] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 01/01/2019] [Indexed: 01/25/2023] Open
Abstract
The execution of coordinated hand movements requires complex interactions between premotor and primary motor areas in the two hemispheres. The supplementary motor area (SMA) is involved in movement preparation and bimanual coordination. How the SMA controls bimanual coordination remains unclear, although there is evidence suggesting that the SMA could modulate interhemispheric interactions. With a delayed-response task, we investigated interhemispheric interactions underlying normal movement preparation and the role of the SMA in these interactions during the delay period of unimanual or bimanual hand movements. We used functional MRI and transcranial magnetic stimulation in 22 healthy volunteers (HVs), and then in two models of SMA dysfunction: (a) in the same group of HVs after transient disruption of the right SMA proper by continuous transcranial magnetic theta-burst stimulation; (b) in a group of 22 patients with congenital mirror movements (CMM), whose inability to produce asymmetric hand movements is associated with SMA dysfunction. In HVs, interhemispheric connectivity during the delay period was modulated according to whether or not hand coordination was required for the forthcoming movement. In HVs following SMA disruption and in CMM patients, interhemispheric connectivity was modified during the delay period and the interhemispheric inhibition was decreased. Using two models of SMA dysfunction, we showed that the SMA modulates interhemispheric interactions during movement preparation. This unveils a new role for the SMA and highlights its importance in coordinated movement preparation.
Collapse
Affiliation(s)
- Quentin Welniarz
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Faculté des sciences, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Cécile Gallea
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Jean-Charles Lamy
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Aurélie Méneret
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Traian Popa
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Romain Valabregue
- Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Benoît Béranger
- Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Vanessa Brochard
- Centre d'Investigation Clinique 14-22, INSERM/AP-HP, Paris, France
| | - Constance Flamand-Roze
- IFPPC, Centre CAMKeys, 7 rue des Cordelières, Paris, France.,Service de Neurologie, Unité Cardiovasculaire, Centre Hospitalier Sud-Francilien, Université Paris-Sud, Corbeille-Essonne, France
| | - Oriane Trouillard
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Cécilia Bonnet
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Bertrand Degos
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cécile Hubsch
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elodie Hainque
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Louis Golmard
- Département de biostatistiques, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| | - Marie Vidailhet
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Isabelle Dusart
- Faculté des sciences, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Sabine Meunier
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Emmanuel Roze
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Puri R, Nikitenko T, Kemp S. Using transcranial magnetic stimulation to investigate the neural mechanisms of inhibitory control. J Neurophysiol 2018; 120:1587-1590. [PMID: 30020843 DOI: 10.1152/jn.00366.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many everyday actions require inhibitory control. The success of these actions depends on the availability of prior information regarding stopping demands. Using transcranial magnetic stimulation (TMS), Cirillo and colleagues (Cirillo J, Cowie MJ, MacDonald HJ, Byblow WD. J Neurophysiol 119: 877-886, 2018) provide novel neurophysiological evidence for distinct roles of intracortical inhibitory mechanisms underlying inhibitory control. Other, nonexclusive mechanisms such as disfacilitation of excitatory pathways and interhemispheric inhibition may also contribute to inhibitory control. Accordingly, diverse TMS protocols are a valuable assessment tool to investigate these mechanisms.
Collapse
Affiliation(s)
- Rohan Puri
- Sensorimotor Neuroscience and Ageing Laboratory, School of Medicine, Faculty of Health, University of Tasmania , Hobart , Australia
| | - Tess Nikitenko
- Sensorimotor Neuroscience and Ageing Laboratory, School of Medicine, Faculty of Health, University of Tasmania , Hobart , Australia
| | - Sarah Kemp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen , Nijmegen , The Netherlands
| |
Collapse
|