1
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2024; 30:723-743. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
2
|
Mousavi S, Mottahedi A, Ehsani F, Delkhosh CT, Jaberzadeh S. Comparing the effects of anodal and cathodal transcranial direct current stimulation of primary motor cortex at varying intensities on motor learning in healthy young adults. Eur J Neurosci 2024; 60:6543-6555. [PMID: 39428835 DOI: 10.1111/ejn.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/21/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
Inconsistent results are observed in the effects of transcranial direct current stimulation (tDCS) with different montages on motor learning. This study aimed to compare the effects of anodal and cathodal tDCS (c-tDCS) over primary motor cortex (M1) at different intensities on motor learning in healthy young adults. The participants were randomly divided into: (1) 1 mA M1 c-tDCS, (2) 1 mA M1 anodal tDCS (a-tDCS), (3) 2 mA M1 c-tDCS, (4) 2 mA M1 a-tDCS and (5) M1 sham tDCS groups. The groups received 20-min stimulation with serial reaction time task (SRTT) incidentally, while the tDCS was turned off after 30 s in the sham tDCS group. Response time (RT) and error rate (ER) during SRTT were assessed prior, during and 72 h after the intervention. The results of the paired t-test indicated that online learning occurred in all groups (p < 0.05), except in M1 c-tDCS (1 mA) (p > 0.05). One-way ANOVA analysis also indicated that there were differences in offline learning (RT (F(DF) = 5.19(4); p < 0.001; and ER (F(DF) = 9(4), p < 0.0001) among groups, with more offline learning in 1 mA M1 a-tDCS, 2 mA M1 c-tDCS and 2 mA M1 a-tDCS groups (p < 0.05). On the other hand, the 1 mA M1 c-tDCS group did not indicate any consolidation effect or even a trend toward negative offline learning. M1 a-tDCS with different intensities and also 2 mA M1 c-tDCS may be helpful for the enhancement of motor learning in young healthy adults. This study enhances our understanding of tDCS intensity and polarity effects on motor learning, with potential for optimizing therapeutic protocols.
Collapse
Affiliation(s)
- Sheida Mousavi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Amin Mottahedi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Fong PY, Rothwell JC, Rocchi L. The Past, Current and Future Research in Cerebellar TMS Evoked Responses-A Narrative Review. Brain Sci 2024; 14:432. [PMID: 38790411 PMCID: PMC11118133 DOI: 10.3390/brainsci14050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) is a novel technique to investigate cortical physiology in health and disease. The cerebellum has recently gained attention as a possible new hotspot in the field of TMS-EEG, with several reports published recently. However, EEG responses obtained by cerebellar stimulation vary considerably across the literature, possibly due to different experimental methods. Compared to conventional TMS-EEG, which involves stimulation of the cortex, cerebellar TMS-EEG presents some technical difficulties, including strong muscle twitches in the neck area and a loud TMS click when double-cone coils are used, resulting in contamination of responses by electromyographic activity and sensory potentials. Understanding technical difficulties and limitations is essential for the development of cerebellar TMS-EEG research. In this review, we summarize findings of cerebellar TMS-EEG studies, highlighting limitations in experimental design and potential issues that can result in discrepancies between experimental outcomes. Lastly, we propose a possible direction for academic and clinical research with cerebellar TMS-EEG.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Medical School, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
4
|
Kim H, King BR, Verwey WB, Buchanan JJ, Wright DL. Timing of transcranial direct current stimulation at M1 does not affect motor sequence learning. Heliyon 2024; 10:e25905. [PMID: 38370203 PMCID: PMC10869848 DOI: 10.1016/j.heliyon.2024.e25905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/04/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Administering anodal transcranial direct current stimulation (tDCS) at the primary motor cortex (M1) at various temporal loci relative to motor training is reported to affect subsequent performance gains. Stimulation administered in conjunction with motor training appears to offer the most robust benefit that emerges during offline epochs. This conclusion is made, however, based on between-experiment comparisons that involved varied methodologies. The present experiment addressed this shortcoming by administering the same 15-minute dose of anodal tDCS at M1 before, during, or after practice of a serial reaction time task (SRTT). It was anticipated that exogenous stimulation during practice with a novel SRTT would facilitate offline gains. Ninety participants were randomly assigned to one of four groups: tDCS before practice, tDCS during practice, tDCS after practice, or no tDCS. Each participant was exposed to 15 min of 2 mA of tDCS and motor training of an eight-element SRTT. The anode was placed at the right M1 with the cathode at the left M1, and the left hand was used to execute the SRTT. Test blocks were administered 1 and 24 h after practice concluded. The results revealed significant offline gain for all conditions at the 1-hour and 24-hour test blocks. Importantly, exposure to anodal tDCS at M1 at any point before, during, or after motor training failed to change the trajectory of skill development as compared to the no-stimulation control condition. These data add to the growing body of evidence questioning the efficacy of a single bout of exogenous stimulation as an adjunct to motor training for fostering skill learning.
Collapse
Affiliation(s)
- Hakjoo Kim
- Motor Neuroscience Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Bradley R. King
- Lifespan Motor Neuroscience Lab, Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, United States
| | - Willem B. Verwey
- Section Cognition, Data & Education, Department of Learning, Data-Analytics and Technology, University of Twente, Enschede, Netherlands
| | - John J. Buchanan
- Motor Neuroscience Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - David L. Wright
- Motor Neuroscience Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Christova M, Sylwester V, Gallasch E, Fresnoza S. Reduced Cerebellar Brain Inhibition and Vibrotactile Perception in Response to Mechanical Hand Stimulation at Flutter Frequency. CEREBELLUM (LONDON, ENGLAND) 2024; 23:67-81. [PMID: 36502502 PMCID: PMC10864223 DOI: 10.1007/s12311-022-01502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The cerebellum is traditionally considered a movement control structure because of its established afferent and efferent anatomical and functional connections with the motor cortex. In the last decade, studies also proposed its involvement in perception, particularly somatosensory acquisition and prediction of the sensory consequences of movement. However, compared to its role in motor control, the cerebellum's specific role or modulatory influence on other brain areas involved in sensory perception, specifically the primary sensorimotor cortex, is less clear. In the present study, we explored whether peripherally applied vibrotactile stimuli at flutter frequency affect functional cerebello-cortical connections. In 17 healthy volunteers, changes in cerebellar brain inhibition (CBI) and vibration perception threshold (VPT) were measured before and after a 20-min right hand mechanical stimulation at 25 Hz. 5 Hz mechanical stimulation of the right foot served as an active control condition. Performance in a Grooved Pegboard test (GPT) was also measured to assess stimulation's impact on motor performance. Hand stimulation caused a reduction in CBI (13.16%) and increased VPT but had no specific effect on GPT performance, while foot stimulation had no significant effect on all measures. The result added evidence to the functional connections between the cerebellum and primary motor cortex, as shown by CBI reduction. Meanwhile, the parallel increase in VPT indirectly suggests that the cerebellum influences the processing of vibrotactile stimulus through motor-sensory interactions.
Collapse
Affiliation(s)
- Monica Christova
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria.
- Institute of Physiotherapy, University of Applied Sciences FH-Joanneum, Graz, Austria.
| | | | - Eugen Gallasch
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria
| | - Shane Fresnoza
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
6
|
Wang Y, Huynh AT, Bao S, Buchanan JJ, Wright DL, Lei Y. Memory consolidation of sequence learning and dynamic adaptation during wakefulness. Cereb Cortex 2024; 34:bhad507. [PMID: 38185987 PMCID: PMC12083497 DOI: 10.1093/cercor/bhad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.
Collapse
Affiliation(s)
- Yiyu Wang
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Angelina T. Huynh
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - John J. Buchanan
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - David L. Wright
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
7
|
Post EM, Kraemer WJ. Physiological Mechanisms That Impact Exercise Adaptations for Individuals With Down Syndrome. J Strength Cond Res 2023; 37:e646-e655. [PMID: 38015740 DOI: 10.1519/jsc.0000000000004658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
ABSTRACT Post, EM, and Kraemer, WJ. Physiological mechanisms that impact exercise adaptations for individuals with Down syndrome. J Strength Cond Res 37(12): e646-e655, 2023-Down syndrome (DS) is the most common chromosomal disorder diagnosed in the United States since 2014. There is a wide range of intellectual severities, with the average IQ of individuals with DS at approximately 50 and adults without intellectual delay at approximately 70-130. Individuals with DS vary from mild to severe cognitive impairment, depending on the phenotypic penetration on the 21st chromosome, with the average cognitive capacity equivalent to a cognitive functioning of an 8- to 9-year-old child. To have successful health, all aspects of health must be considered (i.e., overall health, fitness, and social). Both aerobic training and resistance training (RT) are favored for a healthy lifestyle. Resistance training specifically can help improve motor function and overall activities of daily living. Although many motivational and environmental barriers for individuals with DS can make exercising difficult, there are many ways to overcome those barriers (both intrinsically and extrinsically). Individuals with DS should strive for 150 minutes of moderate-intensity or 75 minutes of vigorous-intensity aerobic exercise a week or a combination of both. The individual should also strive for 2 or more days a week of strengthening activities, such as RT, involving all muscle groups. These activities will help improve many aspects of life, leading to a better quality of life. Regular group exercise activity can help increase self-confidence and success socially in life. This review will focus on the underlying biological mechanisms related to DS, their influence on exercise, and the roles exercise plays in mediating positive health, physical fitness, and social lifestyle outcomes.
Collapse
Affiliation(s)
- Emily M Post
- Department of Health and Sports Science, Otterbein University, Westerville, Ohio
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut; and
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Australia
| |
Collapse
|
8
|
Darainy M, Manning TF, Ostry DJ. Disruption of somatosensory cortex impairs motor learning and retention. J Neurophysiol 2023; 130:1521-1528. [PMID: 37964765 DOI: 10.1152/jn.00231.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
This study tests for a function of the somatosensory cortex, that, in addition to its role in processing somatic afferent information, somatosensory cortex contributes both to motor learning and the stabilization of motor memory. Continuous theta-burst magnetic stimulation (cTBS) was applied, before force-field training to disrupt activity in either the primary somatosensory cortex, primary motor cortex, or a control zone over the occipital lobe. Tests for retention and relearning were conducted after a 24 h delay. Analysis of movement kinematic measures and force-channel trials found that cTBS to somatosensory cortex disrupted both learning and subsequent retention, whereas cTBS to motor cortex had little effect on learning but possibly impaired retention. Basic movement variables are unaffected by cTBS suggesting that the stimulation does not interfere with movement but instead disrupts changes in the cortex that are necessary for learning. In all experimental conditions, relearning in an abruptly introduced force field, which followed retention testing, showed extensive savings, which is consistent with previous work suggesting that more cognitive aspects of learning and retention are not dependent on either of the cortical zones under test. Taken together, the findings are consistent with the idea that motor learning is dependent on learning-related activity in the somatosensory cortex.NEW & NOTEWORTHY This study uses noninvasive transcranial magnetic stimulation to test the contribution of somatosensory and motor cortex to human motor learning and retention. Continuous theta-burst stimulation is applied before learning; participants return 24 h later to assess retention. Disruption of the somatosensory cortex is found to impair both learning and retention, whereas disruption of the motor cortex has no effect on learning. The findings are consistent with the idea that motor learning is dependent upon learning-related plasticity in somatosensory cortex.
Collapse
Affiliation(s)
- Mohammad Darainy
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Timothy F Manning
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
9
|
Truong C, Ruffino C, Gaveau J, White O, Hilt PM, Papaxanthis C. Time of day and sleep effects on motor acquisition and consolidation. NPJ SCIENCE OF LEARNING 2023; 8:30. [PMID: 37658041 PMCID: PMC10474136 DOI: 10.1038/s41539-023-00176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/17/2023] [Indexed: 09/03/2023]
Abstract
We investigated the influence of the time-of-day and sleep on skill acquisition (i.e., skill improvement immediately after a training-session) and consolidation (i.e., skill retention after a time interval including sleep). Three groups were trained at 10 a.m. (G10am), 3 p.m. (G3pm), or 8 p.m. (G8pm) on a finger-tapping task. We recorded the skill (i.e., the ratio between movement duration and accuracy) before and immediately after the training to evaluate acquisition, and after 24 h to measure consolidation. We did not observe any difference in acquisition according to the time of the day. Interestingly, we found a performance improvement 24 h after the evening training (G8pm), while the morning (G10am) and the afternoon (G3pm) groups deteriorated and stabilized their performance, respectively. Furthermore, two control experiments (G8awake and G8sleep) supported the idea that a night of sleep contributes to the skill consolidation of the evening group. These results show a consolidation when the training is carried out in the evening, close to sleep, and forgetting when the training is carried out in the morning, away from sleep. This finding may have an important impact on the planning of training programs in sports, clinical, or experimental domains.
Collapse
Affiliation(s)
- Charlène Truong
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France.
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
- EA4660, C3S Laboratory, C3S Culture Sport Health Society, Université de Bourgogne Franche-Comté, UPFR Sports, 25000, Besançon, France
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Olivier White
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Pauline M Hilt
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
- Pôle Recherche et Santé Publique, CHU Dijon Bourgogne, F-21000, Dijon, France
| |
Collapse
|
10
|
Yadav G, Duque J. Reflecting on what is "skill" in human motor skill learning. Front Hum Neurosci 2023; 17:1117889. [PMID: 37484917 PMCID: PMC10356990 DOI: 10.3389/fnhum.2023.1117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Humans have an exceptional ability to execute a variety of skilled movements. Researchers have been long interested in understanding behavioral and neurophysiological basis of human motor skill learning for advancing both fundamental neuroscientific knowledge and clinical outcomes. However, despite decades of work in this field there is a lack of consensus about what is meant by "skill" in skill learning. With an advent of various task paradigms testing human motor behavior and increasing heterogeneity in motor learning assessments methods, it is very crucial to identify key features of skill in order to avoid any ambiguity that may result in misinterpretation or over-generalization of findings, which could have serious implications for replication and translational research. In this review, we attempt to highlight the features of skill following a historical approach, considering the seminal work that led to the first definitions of skill and including some contemporary concepts emerging from human motor learning research. Overall, based on this literature, we emphasize that skill has some fundamental characteristics, such as- (i) optimal movement selection and execution, (ii) improved movement speed and accuracy, and (iii) reduced movement variability and error. These features of skill can emerge as a consequence of extensive practice/training/learning, thus resulting in an improved performance state beyond baseline levels. Finally we provide some examples of model tasks that can appropriately capture these features of skill, and conclude that any neuroscientific endeavor aimed at understanding the essence of skill in human motor skill learning should focus on these aspects.
Collapse
|
11
|
Spampinato DA, Ibanez J, Rocchi L, Rothwell J. Motor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system. J Physiol 2023; 601:2827-2851. [PMID: 37254441 PMCID: PMC10952180 DOI: 10.1113/jp281885] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that is increasingly used to study the human brain. One of the principal outcome measures is the motor-evoked potential (MEP) elicited in a muscle following TMS over the primary motor cortex (M1), where it is used to estimate changes in corticospinal excitability. However, multiple elements play a role in MEP generation, so even apparently simple measures such as peak-to-peak amplitude have a complex interpretation. Here, we summarize what is currently known regarding the neural pathways and circuits that contribute to the MEP and discuss the factors that should be considered when interpreting MEP amplitude measured at rest in the context of motor processing and patients with neurological conditions. In the last part of this work, we also discuss how emerging technological approaches can be combined with TMS to improve our understanding of neural substrates that can influence MEPs. Overall, this review aims to highlight the capabilities and limitations of TMS that are important to recognize when attempting to disentangle sources that contribute to the physiological state-related changes in corticomotor excitability.
Collapse
Affiliation(s)
- Danny Adrian Spampinato
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Jaime Ibanez
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- BSICoS group, I3A Institute and IIS AragónUniversity of ZaragozaZaragozaSpain
- Department of Bioengineering, Centre for NeurotechnologiesImperial College LondonLondonUK
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - John Rothwell
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
| |
Collapse
|
12
|
Casamento-Moran A, Mooney RA, Chib VS, Celnik PA. Cerebellar Excitability Regulates Physical Fatigue Perception. J Neurosci 2023; 43:3094-3106. [PMID: 36914263 PMCID: PMC10146467 DOI: 10.1523/jneurosci.1406-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Fatigue is the subjective sensation of weariness, increased sense of effort, or exhaustion and is pervasive in neurologic illnesses. Despite its prevalence, we have a limited understanding of the neurophysiological mechanisms underlying fatigue. The cerebellum, known for its role in motor control and learning, is also involved in perceptual processes. However, the role of the cerebellum in fatigue remains largely unexplored. We performed two experiments to examine whether cerebellar excitability is affected after a fatiguing task and its association with fatigue. Using a crossover design, we assessed cerebellar inhibition (CBI) and perception of fatigue in humans before and after "fatigue" and "control" tasks. Thirty-three participants (16 males, 17 females) performed five isometric pinch trials with their thumb and index finger at 80% maximum voluntary capacity (MVC) until failure (force <40% MVC; fatigue) or at 5% MVC for 30 s (control). We found that reduced CBI after the fatigue task correlated with a milder perception of fatigue. In a follow-up experiment, we investigated the behavioral consequences of reduced CBI after fatigue. We measured CBI, perception of fatigue, and performance during a ballistic goal-directed task before and after the same fatigue and control tasks. We replicated the observation that reduced CBI after the fatigue task correlated with a milder perception of fatigue and found that greater endpoint variability after the fatigue task correlated with reduced CBI. The proportional relation between cerebellar excitability and fatigue indicates a role of the cerebellum in the perception of fatigue, which might come at the expense of motor control.SIGNIFICANCE STATEMENT Fatigue is one of the most common and debilitating symptoms in neurologic, neuropsychiatric, and chronic illnesses. Despite its epidemiological importance, there is a limited understanding of the neurophysiological mechanisms underlying fatigue. In a series of experiments, we demonstrate that decreased cerebellar excitability relates to lesser physical fatigue perception and worse motor control. These results showcase the role of the cerebellum in fatigue regulation and suggest that fatigue- and performance-related processes might compete for cerebellar resources.
Collapse
Affiliation(s)
- Agostina Casamento-Moran
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland 21287
| | - Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland 21287
| | - Vikram S Chib
- Kennedy Krieger Institute, Baltimore, Maryland 21287
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21287
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland 21287
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287
| |
Collapse
|
13
|
Kunaratnam N, Saumer TM, Kuan G, Holmes Z, Swarbrick D, Kiss A, Mochizuki G, Chen JL. Transcranial direct current stimulation leads to faster acquisition of motor skills, but effects are not maintained at retention. PLoS One 2022; 17:e0269851. [PMID: 36099260 PMCID: PMC9469971 DOI: 10.1371/journal.pone.0269851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Practice is required to improve one’s shooting technique in basketball or to play a musical instrument well. Learning these motor skills may be further enhanced by transcranial direct current stimulation (tDCS). We aimed to investigate whether tDCS leads to faster attainment of a motor skill, and to confirm prior work showing it improves skill acquisition and retention performance. Fifty-two participants were tested; half received tDCS with the anode on primary motor cortex and cathode on the contralateral forehead while concurrently practicing a sequential visuomotor isometric pinch force task on Day 1, while the other half received sham tDCS during practice. On Day 2, retention of the skill was tested. Results from a Kaplan-Meier survival analysis showed that participants in the anodal group attained a pre-defined target level of skill faster than participants in the sham group (χ2 = 9.117, p = 0.003). Results from a nonparametric rank-based regression analysis showed that the rate of improvement was greater in the anodal versus sham group during skill acquisition (F(1,249) = 5.90, p = 0.016), but there was no main effect of group or time. There was no main effect of group or time, or group by time interaction when comparing performance at the end of acquisition to retention. These findings suggest anodal tDCS improves performance more quickly during skill acquisition but does not have additional benefits on motor learning after a period of rest.
Collapse
Affiliation(s)
- Nirsan Kunaratnam
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tyler M. Saumer
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Giovanna Kuan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Zacharie Holmes
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Dana Swarbrick
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alex Kiss
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - George Mochizuki
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Joyce L. Chen
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Post EM, Kraemer WJ, Kackley ML, Caldwell LK, Volek JS, Sanchez BN, Focht BC, Newton RU, Häkkinen K, Maresh CM. The Effects of Resistance Training on Physical Fitness and Neuromotor-Cognitive Functions in Adults With Down Syndrome. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:927629. [PMID: 36189007 PMCID: PMC9397808 DOI: 10.3389/fresc.2022.927629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Adults with Down syndrome are an underserved population at high risk for a host of different pathologies from aging and lack of activity.
Collapse
Affiliation(s)
- Emily M. Post
- Department of Exercise Science, Ohio Dominican University, Columbus, OH, United States
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- Exercise Medicine Research Institute, and School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- *Correspondence: William J. Kraemer
| | - Madison L. Kackley
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Lydia K. Caldwell
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, TX, United States
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Barbara N. Sanchez
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Brian C. Focht
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Robert U. Newton
- Exercise Medicine Research Institute, and School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Keijo Häkkinen
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Carl M. Maresh
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Mai AS, Yong JH, Lim OZH, Tan EK. Non-Invasive Electrical Stimulation in Patients with Neurodegenerative Ataxia and Spasticity: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Eur J Neurol 2022; 29:2842-2850. [PMID: 35666142 DOI: 10.1111/ene.15438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND There are limited treatment options for patients with neurodegenerative ataxia and spasticity. Non-invasive electrostimulation (NES) is receiving increasing interest because of its ease of implementation, cost-effectiveness, and safety. We conducted a meta-analysis to evaluate the efficacy of NES. METHODS We screened Medline and Embase for studies using NES in ataxias and spasticity. Key outcome measurements of effectiveness included changes in: (1) Modified Ashworth Scale (MAS) scores, (2) cerebellar brain inhibition (CBI), (3) 9-hole peg test (9HPT), (4) 8-meter walking time (8MWT), (5) International Cooperative Ataxia Rating Scale (ICARS) scores, (6) Scale for Assessment and Rating of Ataxia (SARA) scores. RESULTS Seven randomised controlled trials (RCTs) involving 203 patients were included. There were significant improvements in MAS (MD -0.42, 95% CI -0.76 to -0.08, P=0.015), CBI (MD -0.35%, 95% CI -0.42 to -0.28, P<0.001), 8MWT (MD -1.88 seconds, 95% CI -3.26 to -0.49, P=0.008), ICARS (MD -7.84, 95% CI -11.90 to -3.78, P<0.001), and SARA (MD -3.01, 95% CI -4.74 to -1.28, P<0.001). There was almost no heterogeneity across all outcomes except for CBI (I2 =79%). No significant changes in 9HPT were observed when comparing NES to a sham procedure (MD -3.52 seconds, 95% CI -9.15 to 2.10, P=0.220). Most included studies were at low risk of bias, and no severe adverse effects were reported. CONCLUSION We demonstrated that NES is an effective treatment for improving coordination and balance, and increased exercise capacity in patients with ataxia and spasticity. There was also a significant modulation of CBI in ataxic patients.
Collapse
Affiliation(s)
- Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jung Hahn Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Oliver Zi Hern Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, General Hospital Campus, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
16
|
Manto M, Argyropoulos GPD, Bocci T, Celnik PA, Corben LA, Guidetti M, Koch G, Priori A, Rothwell JC, Sadnicka A, Spampinato D, Ugawa Y, Wessel MJ, Ferrucci R. Consensus Paper: Novel Directions and Next Steps of Non-invasive Brain Stimulation of the Cerebellum in Health and Disease. CEREBELLUM (LONDON, ENGLAND) 2021; 21:1092-1122. [PMID: 34813040 DOI: 10.1007/s12311-021-01344-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
The cerebellum is involved in multiple closed-loops circuitry which connect the cerebellar modules with the motor cortex, prefrontal, temporal, and parietal cortical areas, and contribute to motor control, cognitive processes, emotional processing, and behavior. Among them, the cerebello-thalamo-cortical pathway represents the anatomical substratum of cerebellum-motor cortex inhibition (CBI). However, the cerebellum is also connected with basal ganglia by disynaptic pathways, and cerebellar involvement in disorders commonly associated with basal ganglia dysfunction (e.g., Parkinson's disease and dystonia) has been suggested. Lately, cerebellar activity has been targeted by non-invasive brain stimulation (NIBS) techniques including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to indirectly affect and tune dysfunctional circuitry in the brain. Although the results are promising, several questions remain still unsolved. Here, a panel of experts from different specialties (neurophysiology, neurology, neurosurgery, neuropsychology) reviews the current results on cerebellar NIBS with the aim to derive the future steps and directions needed. We discuss the effects of TMS in the field of cerebellar neurophysiology, the potentials of cerebellar tDCS, the role of animal models in cerebellar NIBS applications, and the possible application of cerebellar NIBS in motor learning, stroke recovery, speech and language functions, neuropsychiatric and movement disorders.
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium.,Service Des Neurosciences, UMons, 7000, Mons, Belgium
| | - Georgios P D Argyropoulos
- Division of Psychology, Faculty of Natural Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville. Victoria, Australia
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | - Giacomo Koch
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy.,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, UK.,Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Danny Spampinato
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00179, Rome, Italy
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142, Milan, Italy. .,ASST Santi Paolo E Carlo, Via di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
17
|
Anodal tDCS accelerates on-line learning of dart throwing. Neurosci Lett 2021; 764:136211. [PMID: 34481881 DOI: 10.1016/j.neulet.2021.136211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been shown to enhance or block online learning of motor skills, depending on the current direction. However, most research on the use of tDCS has been limited to the study of relatively simple motor tasks. The purpose of the present study was to examine the influence of anodal (a-tDCS) and cathodal (c-tDCS) direct current stimulation on the online learning during a single session of dart throwing. Fifty-eight young adults were randomized to a-tDCS, c-tDCS, or SHAM groups and completed a pre-test block of dart throws, a 20-minute practice block of throws while receiving their stimulation condition, and a post-test block of dart throws. The results showed that a-tDCS accelerated the skill learning of dart throwing more than SHAM and c-tDCS conditions. The SHAM and c-tDCS conditions were not different. We conclude that a-tDCS may have a positive effect in a single training session which would be ideal in a recreational game environment where repeated practice is not common.
Collapse
|
18
|
Mooney RA, Casamento-Moran A, Celnik PA. The reliability of cerebellar brain inhibition. Clin Neurophysiol 2021; 132:2365-2370. [PMID: 34454263 PMCID: PMC11787817 DOI: 10.1016/j.clinph.2021.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Connectivity between the cerebellum and primary motor cortex (M1) can be assessed by using transcranial magnetic stimulation to measure cerebellar brain inhibition (CBI). The aim of the present study was to determine the intra- and inter-day measurment error and relative reliability of CBI. The former informs the degree to which repeated measurements vary, whereas the latter informs how well the measure can distinguish individuals from one another within a sample. METHODS We obtained CBI data from 83 healthy young participants (n = 55 retrospective). Intra-day measurements were separated by ~ 30 min. Inter-day measurmenets were separated by a minimum of 24 h. RESULTS We show that CBI has low measurement error (~15%) within and between sessions. Using the measurment error, we demonstrate that change estimates which exceed measurment noise are large at an individual level, but can be detected with modest sample sizes. Finally, we demonstrate that the CBI measurement has fair to good relative reliability in healthy individuals, which may be deflated by low sample heterogeneity. CONCLUSIONS CBI has low measurement error supporting its use for tracking intra- and inter-day changes in cerebellar-M1 connectivity. SIGNIFICANCE Our findings provide clear reliability guidelines for future studies assessing modulation of cerebellar-M1 connectivity with intervention or disease progression.
Collapse
Affiliation(s)
- Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
| | - Agostina Casamento-Moran
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Mooney RA, Bastian AJ, Celnik PA. Training at asymptote stabilizes motor memories by reducing intracortical excitation. Cortex 2021; 143:47-56. [PMID: 34375797 PMCID: PMC11751834 DOI: 10.1016/j.cortex.2021.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Learning similar motor skills in close succession is limited by interference, a phenomenon that takes place early after acquisition when motor memories are unstable. Interference can be bidirectional, as the first memory can be disrupted by the second (retrograde interference), or the second memory can be disrupted by the first (anterograde interference). The heightened plastic state of primary motor cortex after learning is thought to underlie interference, as unstable motor memories compete for neural resources. While time-dependent consolidation processes reduce interference, the passage of time (~6 h) required for memory stabilization limits our capacity to learn multiple motor skills at once. Here, we demonstrate in humans that prolonged training at asymptote of an initial motor skill reduces both retrograde and anterograde interference when a second motor skill is acquired in close succession. Neurophysiological assessments via transcranial magnetic stimulation reflect this online stabilization process. Specifically, excitatory neurotransmission in primary motor cortex increased after short training and decreased after prolonged training at performance asymptote. Of note, this reduction in intracortical excitation after prolonged training was proportional to better skill retention the following day. Importantly, these neurophysiological effects were not observed after motor practice without learning or after a temporal delay. Together, these findings indicate that prolonged training at asymptote improves the capacity to learn multiple motor skills in close succession, and that downregulation of excitatory neurotransmission in primary motor cortex may be a marker of online motor memory stabilization.
Collapse
Affiliation(s)
- Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
| | - Amy J Bastian
- Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Multiple bouts of high-intensity interval exercise reverse age-related functional connectivity disruptions without affecting motor learning in older adults. Sci Rep 2021; 11:17108. [PMID: 34429472 PMCID: PMC8385059 DOI: 10.1038/s41598-021-96333-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022] Open
Abstract
Exercise has emerged as an intervention that may mitigate age-related resting state functional connectivity and sensorimotor decline. Here, 42 healthy older adults rested or completed 3 sets of high-intensity interval exercise for a total of 23 min, then immediately practiced an implicit motor task with their non-dominant hand across five separate sessions. Participants completed resting state functional MRI before the first and after the fifth day of practice; they also returned 24-h and 35-days later to assess short- and long-term retention. Independent component analysis of resting state functional MRI revealed increased connectivity in the frontoparietal, the dorsal attentional, and cerebellar networks in the exercise group relative to the rest group. Seed-based analysis showed strengthened connectivity between the limbic system and right cerebellum, and between the right cerebellum and bilateral middle temporal gyri in the exercise group. There was no motor learning advantage for the exercise group. Our data suggest that exercise paired with an implicit motor learning task in older adults can augment resting state functional connectivity without enhancing behaviour beyond that stimulated by skilled motor practice.
Collapse
|
21
|
Turco CV, Nelson AJ. Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. FRONTIERS IN NEUROERGONOMICS 2021; 2:679033. [PMID: 38235229 PMCID: PMC10790852 DOI: 10.3389/fnrgo.2021.679033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 01/19/2024]
Abstract
Aerobic exercise facilitates neuroplasticity and has been linked to improvements in cognitive and motor function. Transcranial magnetic stimulation (TMS) is a non-invasive technique that can be used to quantify changes in neurophysiology induced by exercise. The present review summarizes the single- and paired-pulse TMS paradigms that can be used to probe exercise-induced neuroplasticity, the optimal stimulation parameters and the current understanding of the neurophysiology underlying each paradigm. Further, this review amalgamates previous research exploring the modulation of these paradigms with exercise-induced neuroplasticity in healthy and clinical populations and highlights important considerations for future TMS-exercise research.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
22
|
Mirdamadi JL, Block HJ. Somatosensory versus cerebellar contributions to proprioceptive changes associated with motor skill learning: A theta burst stimulation study. Cortex 2021; 140:98-109. [PMID: 33962318 DOI: 10.1016/j.cortex.2021.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/22/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well established that proprioception (position sense) is important for motor control, yet its role in motor learning and associated plasticity is not well understood. We previously demonstrated that motor skill learning is associated with enhanced proprioception and changes in sensorimotor neurophysiology. However, the neural substrates mediating these effects are unclear. OBJECTIVE To determine whether suppressing activity in the cerebellum and somatosensory cortex (S1) affects proprioceptive changes associated with motor skill learning. METHODS 54 healthy young adults practiced a skill involving visually-guided 2D reaching movements through an irregular-shaped track using a robotic manipulandum with their right hand. Proprioception was measured using a passive two-alternative choice task before and after motor practice. Continuous theta burst stimulation (cTBS) was delivered over S1 or the cerebellum (CB) at the end of training for two consecutive days. We compared group differences (S1, CB, Sham) in proprioception and motor skill, quantified by a speed-accuracy function, measured on a third consecutive day (retention). RESULTS As shown previously, the Sham group demonstrated enhanced proprioceptive sensitivity after training and at retention. The S1 group had impaired proprioceptive function at retention through online changes during practice, whereas the CB group demonstrated offline decrements in proprioceptive function. All groups demonstrated motor skill learning. However, the magnitude of learning differed between the CB and Sham groups, consistent with a role for the cerebellum in motor learning. CONCLUSION Overall, these findings suggest that the cerebellum and S1 are important for distinct aspects of proprioceptive changes during skill learning.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| | - Hannah J Block
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
23
|
Spampinato D, Avci E, Rothwell J, Rocchi L. Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimul 2021; 14:277-283. [PMID: 33482375 PMCID: PMC7970622 DOI: 10.1016/j.brs.2021.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Background it is well-known that the cerebellum is critical for the integrity of motor and cognitive actions. Applying non-invasive brain stimulation techniques over this region results in neurophysiological and behavioural changes, which have been associated with the modulation of cerebellar-cerebral cortex connectivity. Here, we investigated whether online application of cerebellar transcranial alternating current stimulation (tACS) results in changes to this pathway. Methods thirteen healthy individuals participated in two sessions of cerebellar tACS delivered at different frequencies (5Hz and 50Hz). We used transcranial magnetic stimulation to measure cerebellar-motor cortex (M1) inhibition (CBI), short-intracortical inhibition (SICI) and short-afferent inhibition (SAI) before, during and after the application of tACS. Results we found that CBI was specifically strengthened during the application of 5Hz cerebellar tACS. No changes were detected immediately following the application of 5Hz stimulation, nor at any time point with 50Hz stimulation. We also found no changes to M1 intracortical circuits (i.e. SICI) or sensorimotor interaction (i.e. SAI), indicating that the effects of 5Hz tACS over the cerebellum are site-specific. Conclusions cerebellar tACS can modulate cerebellar excitability in a time- and frequency-dependent manner. Additionally, cerebellar tACS does not appear to induce any long-lasting effects (i.e. plasticity), suggesting that stimulation enhances oscillations within the cerebellum only throughout the stimulation period. As such, cerebellar tACS may have significant implications for diseases manifesting with abnormal cerebellar oscillatory activity and also for future behavioural studies. Cerebellar tACS increases the inhibitory tone that the cerebellum exerts over M1 (CBI). CBI changes were found only during the online application of 5Hz tACS and not immediately following stimulation. The effects are specific to the cerebellum, as no changes were found in intracortical measures (e.g. SICI and SAI).
Collapse
Affiliation(s)
- Danny Spampinato
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy.
| | - Esin Avci
- Department of Sport and Sport Science, Institute of Biology, University of Freiburg, Germany
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
24
|
Tanaka SY, Hirano M, Funase K. Modulation of cerebellar brain inhibition during temporal adaptive learning in a coincident timing task. Exp Brain Res 2020; 239:127-139. [PMID: 33128572 DOI: 10.1007/s00221-020-05963-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022]
Abstract
In the present study, we examined the role of the cerebellum in temporal adaptive learning during a coincident timing task, i.e., a baseball-like hitting task involving a moving ball presented on a computer monitor. The subjects were required to change the timing of their responses based on imposed temporal perturbations. Using paired-pulse transcranial magnetic stimulation, we measured cerebellar brain inhibition (CBI) before, during, and after the temporal adaptive learning. Reductions in CBI only occurred during and after the temporal adaptive learning, regardless of the direction of the temporal perturbations. In addition, the changes in CBI were correlated with the magnitude of the adaptation. Here, we showed that the cerebellum is essential for learning about and controlling the timing of movements during temporal adaptation. Furthermore, changes in cerebellar-primary motor cortex connectivity occurred during temporal adaptation, as has been previously reported for spatial adaptation.
Collapse
Affiliation(s)
- Shin-Ya Tanaka
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
| | | | - Kozo Funase
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan.
| |
Collapse
|
25
|
Spampinato D, Celnik P. Multiple Motor Learning Processes in Humans: Defining Their Neurophysiological Bases. Neuroscientist 2020; 27:246-267. [PMID: 32713291 PMCID: PMC8151555 DOI: 10.1177/1073858420939552] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Learning new motor behaviors or adjusting previously learned actions to account for dynamic changes in our environment requires the operation of multiple distinct motor learning processes, which rely on different neuronal substrates. For instance, humans are capable of acquiring new motor patterns via the formation of internal model representations of the movement dynamics and through positive reinforcement. In this review, we will discuss how changes in human physiological markers, assessed with noninvasive brain stimulation techniques from distinct brain regions, can be utilized to provide insights toward the distinct learning processes underlying motor learning. We will summarize the findings from several behavioral and neurophysiological studies that have made efforts to understand how distinct processes contribute to and interact when learning new motor behaviors. In particular, we will extensively review two types of behavioral processes described in human sensorimotor learning: (1) a recalibration process of a previously learned movement and (2) acquiring an entirely new motor control policy, such as learning to play an instrument. The selected studies will demonstrate in-detail how distinct physiological mechanisms contributions change depending on the time course of learning and the type of behaviors being learned.
Collapse
|
26
|
Spampinato D. Dissecting two distinct interneuronal networks in M1 with transcranial magnetic stimulation. Exp Brain Res 2020; 238:1693-1700. [PMID: 32661650 PMCID: PMC7413864 DOI: 10.1007/s00221-020-05875-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 11/27/2022]
Abstract
Interactions from both inhibitory and excitatory interneurons are necessary components of cortical processing that contribute to the vast amount of motor actions executed by humans daily. As transcranial magnetic stimulation (TMS) over primary motor cortex is capable of activating corticospinal neurons trans-synaptically, studies over the past 30 years have provided how subtle changes in stimulation parameters (i.e., current direction, pulse width, and paired-pulse) can elucidate evidence for two distinct neuronal networks that can be probed with this technique. This article provides a brief review of some fundamental studies demonstrating how these networks have separable excitatory inputs to corticospinal neurons. Furthermore, the findings of recent investigations will be discussed in detail, illustrating how each network's sensitivity to different brain states (i.e., rest, movement preparation, and motor learning) is dissociable. Understanding the physiological characteristics of each network can help to explain why interindividual responses to TMS exist, while also providing insights into the role of these networks in various human motor behaviors.
Collapse
Affiliation(s)
- Danny Spampinato
- Department for Clinical and Movement Neurosciences, Institute of Neurology, University College of London, London, UK.
| |
Collapse
|
27
|
Advanced TMS approaches to probe corticospinal excitability during action preparation. Neuroimage 2020; 213:116746. [DOI: 10.1016/j.neuroimage.2020.116746] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
|
28
|
Cerebellar-Motor Cortex Connectivity: One or Two Different Networks? J Neurosci 2020; 40:4230-4239. [PMID: 32312885 DOI: 10.1523/jneurosci.2397-19.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Anterior-posterior (AP) and posterior-anterior (PA) pulses of transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) appear to activate distinct interneuron networks that contribute differently to two varieties of physiological plasticity and motor behaviors (Hamada et al., 2014). The AP network is thought to be more sensitive to online manipulation of cerebellar (CB) activity using transcranial direct current stimulation. Here we probed CB-M1 interactions using cerebellar brain inhibition (CBI) in young healthy female and male individuals. TMS over the cerebellum produced maximal CBI of PA-evoked EMG responses at an interstimulus interval of 5 ms (PA-CBI), whereas the maximum effect on AP responses was at 7 ms (AP-CBI), suggesting that CB-M1 pathways with different conduction times interact with AP and PA networks. In addition, paired associative stimulation using ulnar nerve stimulation and PA TMS pulses over M1, a protocol used in human studies to induce cortical plasticity, reduced PA-CBI but not AP-CBI, indicating that cortical networks process cerebellar inputs in distinct ways. Finally, PA-CBI and AP-CBI were differentially modulated after performing two different types of motor learning tasks that are known to process cerebellar input in different ways. The data presented here are compatible with the idea that applying different TMS currents to the cerebral cortex may reveal cerebellar inputs to both the premotor cortex and M1. Overall, these results suggest that there are two independent CB-M1 networks that contribute uniquely to different motor behaviors.SIGNIFICANCE STATEMENT Connections between the cerebellum and primary motor cortex (M1) are essential for performing daily life activities, as damage to these pathways can result in faulty movements. Therefore, developing and understanding novel approaches to probe this pathway are critical to advancing our understanding of the pathophysiology of diseases involving the cerebellum. Here, we show evidence for two distinct cerebellar-cerebral interactions using cerebellar stimulation in combination with directional transcranial magnetic stimulation (TMS) over M1. These distinct cerebellar-cerebral interactions respond differently to physiological plasticity and to distinct motor learning tasks, which suggests they represent separate cerebellar inputs to the premotor cortex and M1. Overall, we show that directional TMS can probe two distinct cerebellar-cerebral pathways that likely contribute to independent processes of learning.
Collapse
|
29
|
Mirdamadi JL, Block HJ. Somatosensory changes associated with motor skill learning. J Neurophysiol 2020; 123:1052-1062. [DOI: 10.1152/jn.00497.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy trade-off. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological levels. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular two-dimensional track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced-choice task. In a subset of 15 participants, we measured short-latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function ( F4,108 = 32.15, P < 0.001) and was associated with improved proprioceptive sensitivity at retention ( t22 = 24.75, P = 0.0031). Furthermore, SAI increased after training ( F1,14 = 5.41, P = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc.) are specifically linked to somatosensory function. NEW & NOTEWORTHY Somatosensory processing has been implicated in motor adaptation, where performance recovers from a perturbation such as a force field. We investigated somatosensory function during motor skill learning, where a new motor pattern is acquired in the absence of perturbation. After skill practice, we found changes in proprioception and short-latency afferent inhibition (SAI), signifying somatosensory change at both the behavioral and neurophysiological levels. SAI may be an important functional mechanism by which individuals learn motor skills.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Hannah J. Block
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| |
Collapse
|
30
|
Tuning the Corticospinal System: How Distributed Brain Circuits Shape Human Actions. Neuroscientist 2020; 26:359-379. [DOI: 10.1177/1073858419896751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interactive behaviors rely on the operation of several processes allowing the control of actions, including their selection, withholding, and cancellation. The corticospinal system provides a unique route through which multiple brain circuits can exert control over bodily motor acts. In humans, the influence of these modulatory circuits on the corticospinal system can be probed using various transcranial magnetic stimulation (TMS) protocols. Here, we review neural data from TMS studies at the basis of our current understanding of how diverse pathways—including intra-cortical, trans-cortical, and subcortico-cortical circuits—contribute to action control by tuning the activity of the corticospinal system. Critically, when doing so, we point out important caveats in the field that arise from the fact that these circuits, and their impact on the corticospinal system, have not been considered equivalently for action selection, withholding, and cancellation. This has led to the misleading view that some circuits or regions are specialized in specific control processes and that they produce particular modulatory changes in corticospinal excitability (e.g., generic vs. specific modulation of corticospinal excitability). Hence, we point to the need for more transversal research approaches in the field of action control.
Collapse
|
31
|
Maas RPPWM, Helmich RCG, van de Warrenburg BPC. The role of the cerebellum in degenerative ataxias and essential tremor: Insights from noninvasive modulation of cerebellar activity. Mov Disord 2019; 35:215-227. [PMID: 31820832 PMCID: PMC7027854 DOI: 10.1002/mds.27919] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Over the last three decades, measuring and modulating cerebellar activity and its connectivity with other brain regions has become an emerging research topic in clinical neuroscience. The most important connection is the cerebellothalamocortical pathway, which can be functionally interrogated using a paired‐pulse transcranial magnetic stimulation paradigm. Cerebellar brain inhibition reflects the magnitude of suppression of motor cortex excitability after stimulating the contralateral cerebellar hemisphere and therefore represents a neurophysiological marker of the integrity of the efferent cerebellar tract. Observations that cerebellar noninvasive stimulation techniques enhanced performance of certain motor and cognitive tasks in healthy individuals have inspired attempts to modulate cerebellar activity and connectivity in patients with cerebellar diseases in order to achieve clinical benefit. We here comprehensively explore the therapeutic potential of these techniques in two movement disorders characterized by prominent cerebellar involvement, namely the degenerative ataxias and essential tremor. The article aims to illustrate the (patho)physiological insights obtained from these studies and how these translate into clinical practice, where possible by addressing the association with cerebellar brain inhibition. Finally, possible explanations for some discordant interstudy findings, shortcomings in our current understanding, and recommendations for future research will be provided. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick C G Helmich
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
32
|
Cerebellar transcranial magnetic stimulation: The role of coil type from distinct manufacturers. Brain Stimul 2019; 13:153-156. [PMID: 31631057 DOI: 10.1016/j.brs.2019.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Stimulating the cerebellum with transcranial magnetic stimulation is often perceived as uncomfortable. No study has systematically tested which coil design can effectively trigger a cerebellar response with the least discomfort. OBJECTIVE To determine the relationship between perceived discomfort and effectiveness of cerebellar stimulation using different coils: MagStim (70 mm, 110 mm-coated, 110-uncoated), MagVenture and Deymed. METHODS Using the cerebellar-brain inhibition (CBI) protocol, we conducted a CBI recruitment curve with respect to each participant's maximum tolerated-stimulus intensity (MTI) to assess how effective each coil was at activating the cerebellum. RESULTS Only the Deymed double-cone coil elicited CBI at low intensities (-20% MTI). At the MTI, the MagStim (110 mm coated/uncoated) and Deymed coils produced reliable CBI, whereas no CBI was found with the MagVenture coil. CONCLUSION s: The Deymed double-cone coil was most effective at cerebellar stimulation at tolerable intensities. These results can guide coil selection and stimulation parameters when designing cerebellar TMS studies.
Collapse
|
33
|
Kim CY, Luo L, Yu Q, Mirallave A, Saunders-Pullman R, Lipton RB, Louis ED, Pullman SL. Repeated Spiral Drawings in Essential Tremor: a Possible Limb-Based Measure of Motor Learning. THE CEREBELLUM 2019; 18:178-187. [PMID: 30206795 DOI: 10.1007/s12311-018-0974-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate changes in tremor severity over repeated spiral drawings to assess whether learning deficits can be evaluated directly in a limb in essential tremor (ET). A motor learning deficit in ET, possibly mediated by cerebellar pathways, has been established in eye-blink conditioning studies, but not paradigms measuring from an affected, tremulous limb. Computerized spiral analysis captures multiple characteristics of Archimedean spirals and quantifies performance through calculated indices. Sequential spiral drawing has recently been suggested to demonstrate improvement across trials among ET subjects. One hundred and sixty-one ET and 80 age-matched control subjects drew 10 consecutive spirals on a digitizing tablet. Degree of severity (DoS), a weighted, computational score of spiral execution that takes into account spiral shape and line smoothness, previously validated against a clinical rating scale, was calculated in both groups. Tremor amplitude (Ampl), an independent index of tremor size, measured in centimeters, was also calculated. Changes in DoS and Ampl across trials were assessed using linear regression with slope evaluations. Both groups demonstrated improvement in DoS across trials, but with less improvement in the ET group compared to controls. Ampl demonstrated a tendency to worsen across trials in ET subjects. ET subjects demonstrated less improvement than controls when drawing sequential spirals, suggesting a possible motor learning deficit in ET, here captured in an affected limb. DoS improved independently of Ampl, showing that DoS and Ampl are separable motor physiologic components in ET that may be independently mediated.
Collapse
Affiliation(s)
- Christine Y Kim
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Lan Luo
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Qiping Yu
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Ana Mirallave
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA.,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Seth L Pullman
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
34
|
Rajan VA, Hardwick RM, Celnik PA. Reciprocal intralimb transfer of skilled isometric force production. J Neurophysiol 2019; 122:60-65. [PMID: 31042443 PMCID: PMC6689780 DOI: 10.1152/jn.00840.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022] Open
Abstract
Motor control theories propose that the same motor plans can be employed by different effectors (e.g., the hand and arm). Skills learned with one effector can therefore "transfer" to others, which has potential applications in clinical situations. However, evidence from adaptation suggests this effect is not reciprocal; learning can be generalized from proximal to distal effectors (e.g., arm to hand), but not from distal to proximal effectors (e.g., hand to arm). We propose that skill learning may not follow the same pattern, because it relies on multiple learning processes beyond error detection and correction. Participants learned a skill task involving the production of isometric forces. We assessed their ability to perform the task with the hand and arm. One group then trained to perform the task using only their hand, whereas a second group trained using only their arm. In a final assessment, we found that participants who trained with either effector improved their skill in performing the task with both their hand and arm. There was no change in a control group that did not train between assessments, indicating that gains were related to the training, not the multiple assessments. These results indicate that in contrast to adaptation, motor skills can generalize from both proximal to distal effectors and from distal to proximal effectors. We propose this is due to differences in the processes underlying skill acquisition as compared with adaptation. NEW & NOTEWORTHY Prior research indicates that motor learning transfers from proximal to distal effectors, but not vice versa. However, this work focused on adapting existing behavior; we questioned whether different results would occur during learning of new motor skills. We found that the benefits of training on a skill task with either the hand or arm transferred across both effectors. This highlights important differences between adaptation and skill learning, and may allow therapeutic benefits for patients with impairments in specific effectors.
Collapse
Affiliation(s)
- Vikram A Rajan
- Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Robert M Hardwick
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University , Baltimore, Maryland
- Department of Movement Sciences, KU Leuven , Belgium
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
35
|
Ballard HK, Goen JRM, Maldonado T, Bernard JA. Effects of cerebellar transcranial direct current stimulation on the cognitive stage of sequence learning. J Neurophysiol 2019; 122:490-499. [PMID: 31166807 DOI: 10.1152/jn.00036.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Though the cerebellum has been previously implicated in explicit sequence learning, the exact role of this structure in the acquisition of motor skills is not completely clear. The cerebellum contributes to both motor and nonmotor behavior. Thus, this structure not only may contribute to the motoric aspects of sequence learning but may also play a role in the cognitive components of these learning paradigms. Therefore, we investigated the consequence of both disrupting and facilitating cerebellar function using high-definition transcranial direct current stimulation (tDCS) before the completion of an explicit motor sequence learning paradigm. Using a mixed within- and between-subjects design, we employed cathodal (n = 21) and anodal (n = 23) tDCS (relative to sham), targeting the lateral posterior cerebellum, to temporarily modulate function and investigate the resulting effects on the acquisition of a sequential pattern of finger movements. Results indicate that cathodal stimulation has a positive influence on learning while anodal stimulation has the opposite effect, relative to sham. Though the cerebellum is presumed to be primarily involved in motor function and movement coordination, our results support a cognitive contribution that may come into play during the initial stages of learning. Using tDCS targeting the right posterior cerebellum, which communicates with the prefrontal cortex via closed-loop circuits, we found polarity-specific effects of cathodal and anodal stimulation on sequence learning. Thus, our results substantiate the role of the cerebellum in the cognitive aspect of motor learning and provide important new insights into the polarity-specific effects of tDCS in this area.NEW & NOTEWORTHY The cerebellum contributes to motor and cognitive processes. Investigating the cognitive contributions of the cerebellum in explicit sequence learning stands to provide new insights into this learning domain, and cerebellar function more generally. Using high-definition transcranial direct current stimulation, we demonstrated polarity-specific effects of stimulation on explicit sequence learning. We speculate that this is due to facilitation of working memory processes. This provides new evidence supporting a role for the cerebellum in the cognitive aspects of sequence learning.
Collapse
Affiliation(s)
- Hannah K Ballard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - James R M Goen
- Psychological and Brain Sciences Department, Texas A&M University, College Station, Texas
| | - Ted Maldonado
- Psychological and Brain Sciences Department, Texas A&M University, College Station, Texas
| | - Jessica A Bernard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas.,Psychological and Brain Sciences Department, Texas A&M University, College Station, Texas
| |
Collapse
|
36
|
Spampinato DA, Satar Z, Rothwell JC. Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings. Brain Stimul 2019; 12:1205-1212. [PMID: 31133478 PMCID: PMC6709642 DOI: 10.1016/j.brs.2019.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/27/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2022] Open
Abstract
Background Reward-based feedback given during motor learning has been shown to improve the retention of the behaviour being acquired. Interestingly, applying transcranial direct current stimulation (tDCS) during learning over the primary motor cortex (M1), an area associated with motor retention, also results in enhanced retention of the newly formed motor memories. However, it remains unknown whether combining these distinct interventions result in an additive benefit of motor retention. Methods We investigated whether combining both interventions while participants learned to account for a visuomotor transformation results in enhanced motor retention (total n = 56; each group n = 14). To determine whether these interventions share common physiological mechanisms underpinning learning, we assessed motor cortical excitability and inhibition (i.e. SICI) on a hand muscle before and after all participants learned the visuomotor rotation using their entire arm and hand. Results We found that both the Reward-Stim (i.e. reward + tDCS) and Reward-Sham (i.e. reward-only) groups had increased retention at the beginning of the retention phase, indicating an immediate effect of reward on behaviour. However, each intervention on their own did not enhance retention when compared to sham, but rather, only the combination of both reward and tDCS demonstrated prolonged retention. We also found that only the Reward-Stim group had a significant reduction in SICI after exposure to the perturbation. Conclusions We show that combining both interventions are additive in providing stronger retention of motor adaptation. These results indicate that the reliability and validity of using tDCS within a clinical context may depend on the type of feedback individuals receive when learning a new motor pattern. Concurrently administering reward and M1 tDCS during learning results in enhanced motor retention. The combination of these interventions also leads to a reduction in M1 inhibitory mechanisms. No benefits of motor retention were found when reward or M1 tDCS were given alone.
Collapse
|
37
|
The effects of acute exercise on visuomotor adaptation, learning, and inter-limb transfer. Exp Brain Res 2019; 237:1109-1127. [DOI: 10.1007/s00221-019-05491-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
|
38
|
Goddard MJ. Extending B. F. Skinner's Selection by Consequences to Personality Change, Implicit Theories of Intelligence, Skill Learning, and Language. REVIEW OF GENERAL PSYCHOLOGY 2018. [DOI: 10.1037/gpr0000168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a rooftop office, above a Minneapolis flour mill in 1943, B. F. Skinner discovered “shaping” by training a pigeon to send a small wooden ball down a miniature alley to hit a set of toy pins. Skinner recalled that the day was one of great illumination and emboldened his later suggestions that human behaviors may arise from behavior–environment interactions that are relatively malleable (selectionism) rather than arising from hypothetical inner constructs that are relatively fixed (essentialism). The present article extends selectionism to 4 current topics in psychology (personality change, implicit theories of intelligence, skill learning, and language) and highlights the advantages of selectionism, in contrast to essentialism.
Collapse
|