1
|
Katsumi Y, Eckbo R, Chapleau M, Wong B, McGinnis SM, Touroutoglou A, Dickerson BC, Putcha D. Greater baseline cortical atrophy in the dorsal attention network predicts faster clinical decline in Posterior Cortical Atrophy. Alzheimers Res Ther 2024; 16:262. [PMID: 39696378 PMCID: PMC11653806 DOI: 10.1186/s13195-024-01636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Posterior Cortical Atrophy (PCA) is a clinical syndrome characterized by progressive visuospatial and visuoperceptual impairment. As the neurodegenerative disease progresses, patients lose independent functioning due to the worsening of initial symptoms and development of symptoms in other cognitive domains. The timeline of clinical progression is variable across patients, and the field currently lacks robust methods for prognostication. Here, evaluated the utility of MRI-based cortical atrophy as a predictor of longitudinal clinical decline in a sample of PCA patients. METHODS PCA patients were recruited through the Massachusetts General Hospital Frontotemporal Disorders Unit PCA Program. All patients had cortical thickness estimates from baseline MRI scans, which were used to predict longitudinal change in clinical impairment assessed by the CDR Sum-of-Boxes (CDR-SB) score. Multivariable linear regression was used to estimate the magnitude of cortical atrophy in PCA patients relative to a group of amyloid-negative cognitively unimpaired participants. Linear mixed-effects models were used to test hypotheses about the utility of baseline cortical atrophy for predicting longitudinal clinical decline. RESULTS Data acquired from 34 PCA patients (mean age = 65.41 ± 7.90, 71% females) and 24 controls (mean age = 67.34 ± 4.93, 50% females) were analyzed. 62% of the PCA patients were classified as having mild cognitive impairment (CDR 0.5) at baseline, with the rest having mild dementia (CDR 1). Each patient had at least one clinical follow-up, with the mean duration of 2.78 ± 1.62 years. Relative to controls, PCA patients showed prominent baseline atrophy in the posterior cortical regions, with the largest effect size observed in the visual network of the cerebral cortex. Cortical atrophy localized to the dorsal attention network, which supports higher-order visuospatial function, selectively predicted the rate of subsequent clinical decline. CONCLUSIONS These results demonstrate the utility of a snapshot measure of cortical atrophy of the dorsal attention network for predicting the rate of subsequent clinical decline in PCA. If replicated, this topographically-specific MRI-based biomarker could be useful as a clinical prognostication tool that facilitates personalized care planning.
Collapse
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marianne Chapleau
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Jiang J, Brotherhood EV, Core LB, Hardy CJ, Yong KX, Foulkes A, Warren JD. Preserved musical working memory and absolute pitch in posterior cortical atrophy. Cortex 2024; 181:1-11. [PMID: 39442325 DOI: 10.1016/j.cortex.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
Working memory for nonverbal auditory information is essential for everyday functioning but its cognitive organisation is not well understood. Here we addressed this issue in a musician, YA, with absolute pitch (AP, the uncommon ability to categorise and label individual musical pitches without an external reference) who developed posterior cortical atrophy. We assessed YA's AP ability and her working memory for pitch and rhythmic patterns using procedures modelled on a standard test of auditory verbal working memory (digit span), referenced to age-matched, cognitively-normal AP and non-AP possessing musicians. YA had retained AP and performed comparably to healthy older AP and non-AP musicians on all musical working memory tasks, despite impaired auditory verbal working memory. These findings suggest that the cognitive mechanisms for auditory verbal working memory, nonverbal (pitch and rhythm) working memory and AP are at least partly dissociable, and both musical working memory and AP can be spared despite posterior parietal degeneration.
Collapse
Affiliation(s)
- Jessica Jiang
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emilie V Brotherhood
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy B Core
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris Jd Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Keir Xx Yong
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alexander Foulkes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Katsumi Y, Eckbo R, Chapleau M, Wong B, McGinnis SM, Touroutoglou A, Dickerson BC, Putcha D. Greater baseline cortical atrophy in the dorsal attention network predicts faster clinical decline in Posterior Cortical Atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.15.24315270. [PMID: 39484250 PMCID: PMC11527058 DOI: 10.1101/2024.10.15.24315270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background and Objectives Posterior Cortical Atrophy (PCA) is a clinical syndrome characterized by progressive visuospatial and visuoperceptual impairment. As the neurodegenerative disease progresses, patients lose independent functioning due to the worsening of initial symptoms and development of symptoms in other cognitive domains. The timeline of clinical progression is variable across patients, and the field currently lacks robust methods for prognostication. Here, evaluated the utility of MRI-based cortical atrophy as a predictor of longitudinal clinical decline in a sample of PCA patients. Methods PCA patients were recruited through the Massachusetts General Hospital Frontotemporal Disorders Unit PCA Program. All patients had cortical thickness estimates from baseline MRI scans, which were used to predict longitudinal change in clinical impairment assessed by the CDR Sum-of-Boxes (CDR-SB) score. Multivariable linear regression was used to estimate the magnitude of cortical atrophy in PCA patients relative to a group of amyloid-negative cognitively unimpaired participants. Linear mixed-effects models were used to test hypotheses about the utility of baseline cortical atrophy for predicting longitudinal clinical decline. Results Data acquired from 34 PCA patients (mean age = 65.41 ± 7.90, 71% females) and 24 controls (mean age = 67.34 ± 4.93, 50% females) were analyzed. Sixty-two percent of the PCA patients were classified as having mild cognitive impairment (CDR 0.5) at baseline, with the rest having mild dementia (CDR 1). Each patient had at least one clinical follow-up, with the mean duration of 2.78 ± 1.62 years. Relative to controls, PCA patients showed prominent baseline atrophy in the posterior cortical regions, with the largest effect size observed in the visual network of the cerebral cortex. Cortical atrophy localized to the dorsal attention network, which supports higher-order visuospatial function, selectively predicted the rate of subsequent clinical decline. Discussion These results demonstrate the utility of a snapshot measure of cortical atrophy of the dorsal attention network for predicting the rate of subsequent clinical decline in PCA. If replicated, this topographically-specific MRI-based biomarker could be useful as a clinical prognostication tool that facilitates personalized care planning.
Collapse
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marianne Chapleau
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Ingram RU, Ocal D, Halai A, Pobric G, Cash DM, Crutch S, Yong KX, Lambon Ralph MA. Graded Multidimensional Clinical and Radiologic Variation in Patients With Alzheimer Disease and Posterior Cortical Atrophy. Neurology 2024; 103:e209679. [PMID: 39042846 PMCID: PMC11314952 DOI: 10.1212/wnl.0000000000209679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) spans heterogeneous typical and atypical phenotypes. Posterior cortical atrophy (PCA) is a striking example, characterized by prominent impairment in visual and other posterior functions in contrast to typical, amnestic AD. The primary study objective was to establish how the similarities and differences of cognition and brain volumes within AD and PCA (and by extension other AD variants) can be conceptualized as systematic variations across a transdiagnostic, graded multidimensional space. METHODS This was a cross-sectional, single-center, observational, cohort study performed at the National Hospital for Neurology & Neurosurgery, London, United Kingdom. Data were collected from a cohort of patients with PCA and AD, matched for age, disease duration, and Mini-Mental State Examination (MMSE) scores. There were 2 sets of outcome measures: (1) scores on a neuropsychological battery containing 22 tests spanning visuoperceptual and visuospatial processing, episodic memory, language, executive functions, calculation, and visuospatial processing and (2) measures extracted from high-resolution T1-weighted volumetric MRI scans. Principal component analysis was used to extract the transdiagnostic dimensions of phenotypical variation from the detailed neuropsychological data. Voxel-based morphometry was used to examine associations between the PCA-derived clinical phenotypes and the structural measures. RESULTS We enrolled 93 participants with PCA (mean: age = 59.9 years, MMSE = 21.2; 59/93 female) and 58 AD participants (mean: age = 57.1 years, MMSE = 19.7; 22/58 female). The principal component analysis for PCA (sample adequacy confirmed: Kaiser-Meyer-Olkin = 0.865) extracted 3 dimensions accounting for 61.0% of variance in patients' performance, reflecting general cognitive impairment, visuoperceptual deficits, and visuospatial impairments. Plotting AD cases into the PCA-derived multidimensional space, and vice versa, revealed graded, overlapping variations between cases along these dimensions, with no evidence for categorical-like patient clustering. Similarly, the relationship between brain volumes and scores on the extracted dimensions was overlapping for PCA and AD cases. DISCUSSION These results provide evidence supporting a reconceptualization of clinical and radiologic variation in these heterogenous AD phenotypes as being along shared phenotypic continua spanning PCA and AD, arising from systematic graded variations within a transdiagnostic, multidimensional neurocognitive geometry.
Collapse
Affiliation(s)
- Ruth U Ingram
- From the Division of Psychology and Mental Health (R.U.I., G.P.), University of Manchester; Dementia Research Centre (D.O., D.M.C., S.C., K.X.Y.), UCL Institute of Neurology, London; and MRC Cognition and Brain Sciences Unit (A.H., M.A.L.R.), University of Cambridge, United Kingdom
| | - Dilek Ocal
- From the Division of Psychology and Mental Health (R.U.I., G.P.), University of Manchester; Dementia Research Centre (D.O., D.M.C., S.C., K.X.Y.), UCL Institute of Neurology, London; and MRC Cognition and Brain Sciences Unit (A.H., M.A.L.R.), University of Cambridge, United Kingdom
| | - Ajay Halai
- From the Division of Psychology and Mental Health (R.U.I., G.P.), University of Manchester; Dementia Research Centre (D.O., D.M.C., S.C., K.X.Y.), UCL Institute of Neurology, London; and MRC Cognition and Brain Sciences Unit (A.H., M.A.L.R.), University of Cambridge, United Kingdom
| | - Gorana Pobric
- From the Division of Psychology and Mental Health (R.U.I., G.P.), University of Manchester; Dementia Research Centre (D.O., D.M.C., S.C., K.X.Y.), UCL Institute of Neurology, London; and MRC Cognition and Brain Sciences Unit (A.H., M.A.L.R.), University of Cambridge, United Kingdom
| | - David M Cash
- From the Division of Psychology and Mental Health (R.U.I., G.P.), University of Manchester; Dementia Research Centre (D.O., D.M.C., S.C., K.X.Y.), UCL Institute of Neurology, London; and MRC Cognition and Brain Sciences Unit (A.H., M.A.L.R.), University of Cambridge, United Kingdom
| | - Sebastian Crutch
- From the Division of Psychology and Mental Health (R.U.I., G.P.), University of Manchester; Dementia Research Centre (D.O., D.M.C., S.C., K.X.Y.), UCL Institute of Neurology, London; and MRC Cognition and Brain Sciences Unit (A.H., M.A.L.R.), University of Cambridge, United Kingdom
| | - Keir X Yong
- From the Division of Psychology and Mental Health (R.U.I., G.P.), University of Manchester; Dementia Research Centre (D.O., D.M.C., S.C., K.X.Y.), UCL Institute of Neurology, London; and MRC Cognition and Brain Sciences Unit (A.H., M.A.L.R.), University of Cambridge, United Kingdom
| | - Matthew A Lambon Ralph
- From the Division of Psychology and Mental Health (R.U.I., G.P.), University of Manchester; Dementia Research Centre (D.O., D.M.C., S.C., K.X.Y.), UCL Institute of Neurology, London; and MRC Cognition and Brain Sciences Unit (A.H., M.A.L.R.), University of Cambridge, United Kingdom
| |
Collapse
|
5
|
Singh NA, Sintini I. Editorial: New insights into atypical Alzheimer's disease: from clinical phenotype to biomarkers. Front Neurosci 2024; 18:1414443. [PMID: 38745936 PMCID: PMC11091363 DOI: 10.3389/fnins.2024.1414443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
| | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Ahmed S, Caswell J, Butler CR, Bose A. Secondary language impairment in posterior cortical atrophy: insights from sentence repetition. Front Neurosci 2024; 18:1359186. [PMID: 38576871 PMCID: PMC10993779 DOI: 10.3389/fnins.2024.1359186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive impairment in visuospatial and perceptual function linked to atrophy of the occipito-parietal cortex. Besides the salient visual impairment, several studies have documented subtle changes in language may also be present. Sentence repetition is a highly constrained linguistic task involving multiple linguistic and cognitive processes and have been shown to be impaired in other AD spectrum disorders, with little consensus on its relevance in PCA. This aim of this study was to further delineate the linguistic and cognitive features of impaired language in PCA using a sentence repetition task. Method Seven PCA patients and 16 healthy controls verbally repeated 16 sentences from the Boston Diagnostic Aphasia Examination. Responses were transcribed orthographically and coded for accuracy (percentage accuracy; percentage Correct Information Units; Levenshtein Distance) and for temporal characteristics (preparation duration (ms); utterance duration (ms); silent pause duration (ms); speech duration (ms); dysfluency duration (ms)). The potential modulating effects of attentional control and working memory capacity were explored. Results PCA patients showed lower overall accuracy with retained semantic content of the sentences, and lower phonological accuracy. Temporal measures revealed longer preparation and utterance duration for PCA patients compared to controls, alongside longer speech duration but comparable dysfluency duration. PCA patients also showed comparable silent pause duration to controls. Attentional control, measured using the Hayling sentence completion task, predicted accuracy of sentence repetition. Discussion The findings suggest that sentence repetition is impaired in PCA and is characterized by phonological, response planning and execution difficulties, underpinned in part by attentional control mechanisms. The emerging profile of language impairment in PCA suggests vulnerability of similar cognitive systems to other Alzheimer's syndromes, with subtle differences in clinical presentation.
Collapse
Affiliation(s)
- Samrah Ahmed
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Josie Caswell
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Christopher R. Butler
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Arpita Bose
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
7
|
Susianti NA, Prodjohardjono A, Vidyanti AN, Setyaningsih I, Gofir A, Setyaningrum CTS, Effendy C, Setyawan NH, Setyopranoto I. The impact of medial temporal and parietal atrophy on cognitive function in dementia. Sci Rep 2024; 14:5281. [PMID: 38438548 PMCID: PMC10912680 DOI: 10.1038/s41598-024-56023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Although medial temporal atrophy (MTA) and parietal atrophy (Koedam score) have been used to diagnose Alzheimer's disease (AD), early detection of other dementia types remains elusive. The study aims to investigate the association between these brain imaging markers and cognitive function in dementia. This cross-sectional study collected data from the Memory Clinic of Dr. Sardjito General Hospital Yogyakarta, Indonesia from January 2020 until December 2022. The cut-off value of MTA and Koedam score was set with Receiver Operating Curve. Multivariate analysis was performed to investigate the association between MTA and Koedam score with cognitive function. Of 61 patients, 22.95% had probable AD, 59.01% vascular dementia, and 18.03% mixed dementia. Correlation test showed that MTA and Koedam score were negatively associated with Montreal Cognitive Assessment-Indonesian Version (MoCA-INA) score. MTA score ≥ 3 (AUC 0.69) and Koedam score ≥ 2 (AUC 0.67) were independently associated with higher risk of poor cognitive function (OR 13.54, 95% CI 1.77-103.43, p = 0.01 and OR 5.52, 95% CI 1.08-28.19, p = 0.04). Higher MTA and Koedam score indicate worse cognitive function in dementia. Future study is needed to delineate these findings as prognostic markers of dementia severity.
Collapse
Affiliation(s)
- Noor Alia Susianti
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Astuti Prodjohardjono
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Department of Neurology, Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
| | - Amelia Nur Vidyanti
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
- Department of Neurology, Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia.
| | - Indarwati Setyaningsih
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Department of Neurology, Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
| | - Abdul Gofir
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Department of Neurology, Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
| | - Cempaka Thursina Srie Setyaningrum
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Department of Neurology, Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
| | - Christantie Effendy
- Department of Medical-Surgical Nursing, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Nurhuda Hendra Setyawan
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Ismail Setyopranoto
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Department of Neurology, Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
| |
Collapse
|
8
|
St-Georges MA, Wang L, Chapleau M, Migliaccio R, Carrier T, Montembeault M. Social cognition and behavioral changes in patients with posterior cortical atrophy. J Neurol 2024; 271:1439-1450. [PMID: 38032370 DOI: 10.1007/s00415-023-12089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Posterior cortical atrophy (PCA) is a rare neurodegenerative condition characterized by progressive visual and visuospatial dysfunction. The consensus criteria state that patients should present "relatively spared behavior and personality" in early stages. However, limited research has focused on these symptoms in PCA. This study compared 157 patients with PCA in early stages of the disease with 352 healthy controls (HC), 202 typical AD (tAD), and 177 logopenic variant primary progressive aphasia (lvPPA) patients from the National Alzheimer's Coordinating Center (NACC) dataset. They were compared using clinician ratings of behavioral symptoms, informant- and clinician-filled questionnaires and patient-facing tests of behavior and social cognition. Results showed that PCA individuals exhibited many behavioral symptoms, the more frequently reported being anxiety, depression, apathy, and irritability. During cognitive testing, clinicians observed disorganized and reactive behaviors, but no insensitive behaviors. Informant reports indicated that PCA patients exhibited higher levels of inhibition and anxiety in response to stimuli associated with non-reward, novelty, and punishment. Social norms knowledge and empathy were overall preserved, although slight decreases in perspective-taking and socioemotional sensitivity were observed on informant-rated questionnaires. Except for more elevated neuropsychiatric symptoms in tAD, the three AD variants had similar profiles. Our findings provide insights into the social cognition and behavioral profiles of PCA, highlighting patterns of preservations and mild impairments, even in the early stages of the disease. These results contribute to a more complete understanding of non-visual symptoms in PCA and have implications for diagnostic and intervention strategies.
Collapse
Affiliation(s)
| | - Linshan Wang
- Department of Psychology, McGill University, Montréal, QC, H3A 1G1, Canada
| | - Marianne Chapleau
- Memory & Aging Center, University of California in San Francisco, San Francisco, CA, 94158, USA
| | - Raffaella Migliaccio
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière, Paris, France
- Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Carrier
- Douglas Research Centre, Montréal, QC, H4H 1R3, Canada
- Département de Psychologie, Université du Québec à Montréal, Montréal, QC, H2X 3P2, Canada
| | - Maxime Montembeault
- Douglas Research Centre, Montréal, QC, H4H 1R3, Canada.
- Department of Psychiatry, McGill University, Montréal, QC, H3A 1A1, Canada.
| |
Collapse
|
9
|
Rezaii N, Hochberg D, Quimby M, Wong B, McGinnis S, Dickerson BC, Putcha D. Language uncovers visuospatial dysfunction in posterior cortical atrophy: a natural language processing approach. Front Neurosci 2024; 18:1342909. [PMID: 38379764 PMCID: PMC10876777 DOI: 10.3389/fnins.2024.1342909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Posterior Cortical Atrophy (PCA) is a syndrome characterized by a progressive decline in higher-order visuospatial processing, leading to symptoms such as space perception deficit, simultanagnosia, and object perception impairment. While PCA is primarily known for its impact on visuospatial abilities, recent studies have documented language abnormalities in PCA patients. This study aims to delineate the nature and origin of language impairments in PCA, hypothesizing that language deficits reflect the visuospatial processing impairments of the disease. Methods We compared the language samples of 25 patients with PCA with age-matched cognitively normal (CN) individuals across two distinct tasks: a visually-dependent picture description and a visually-independent job description task. We extracted word frequency, word utterance latency, and spatial relational words for this comparison. We then conducted an in-depth analysis of the language used in the picture description task to identify specific linguistic indicators that reflect the visuospatial processing deficits of PCA. Results Patients with PCA showed significant language deficits in the visually-dependent task, characterized by higher word frequency, prolonged utterance latency, and fewer spatial relational words, but not in the visually-independent task. An in-depth analysis of the picture description task further showed that PCA patients struggled to identify certain visual elements as well as the overall theme of the picture. A predictive model based on these language features distinguished PCA patients from CN individuals with high classification accuracy. Discussion The findings indicate that language is a sensitive behavioral construct to detect visuospatial processing abnormalities of PCA. These insights offer theoretical and clinical avenues for understanding and managing PCA, underscoring language as a crucial marker for the visuospatial deficits of this atypical variant of Alzheimer's disease.
Collapse
Affiliation(s)
- Neguine Rezaii
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Scott McGinnis
- Center for Brain Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Alzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Putcha D, Eustace A, Carvalho N, Wong B, Quimby M, Dickerson BC. Auditory naming is impaired in posterior cortical atrophy and early-onset Alzheimer's disease. Front Neurosci 2024; 18:1342928. [PMID: 38327846 PMCID: PMC10847232 DOI: 10.3389/fnins.2024.1342928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Visual naming ability reflects semantic memory retrieval and is a hallmark deficit of Alzheimer's disease (AD). Naming impairment is most prominently observed in the late-onset amnestic and logopenic variant Primary Progressive Aphasia (lvPPA) syndromes. However, little is known about how other patients across the atypical AD syndromic spectrum perform on tests of auditory naming, particularly those with primary visuospatial deficits (Posterior Cortical Atrophy; PCA) and early onset (EOAD) syndromes. Auditory naming tests may be of particular relevance to more accurately measuring anomia in PCA syndrome and in others with visual perceptual deficits. Methods Forty-six patients with biomarker-confirmed AD (16 PCA, 12 lvPPA, 18 multi-domain EOAD), at the stage of mild cognitive impairment or mild dementia, were administered the Auditory Naming Test (ANT). Performance differences between groups were evaluated using one-way ANOVA and post-hoc t-tests. Correlation analyses were used to examine ANT performance in relation to measures of working memory and word retrieval to elucidate cognitive mechanisms underlying word retrieval deficits. Whole-cortex general linear models were generated to determine the relationship between ANT performance and cortical atrophy. Results Based on published cutoffs, out of a total possible score of 50 on the ANT, 56% of PCA patients (mean score = 45.3), 83% of EOAD patients (mean = 39.2), and 83% of lvPPA patients (mean = 29.8) were impaired. Total uncued ANT performance differed across groups, with lvPPA performing most poorly, followed by EOAD, and then PCA. ANT performance was still impaired in lvPPA and EOAD after cuing, while performance in PCA patients improved to the normal range with phonemic cues. ANT performance was also directly correlated with measures of verbal fluency and working memory, and was associated with cortical atrophy in a circumscribed semantic language network. Discussion Auditory confrontation naming is impaired across the syndromic spectrum of AD including in PCA and EOAD, and is likely related to auditory-verbal working memory and verbal fluency which represent the nexus of language and executive functions. The left-lateralized semantic language network was implicated in ANT performance. Auditory naming, in the absence of a visual perceptual demand, may be particularly sensitive to measuring naming deficits in PCA.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ana Eustace
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Nicole Carvalho
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Bonnie Wong
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Megan Quimby
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Rezaii N, Hochberg D, Quimby M, Wong B, McGinnis S, Dickerson BC, Putcha D. Language Uncovers Visuospatial Dysfunction in Posterior Cortical Atrophy: A Natural Language Processing Approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.21.23298864. [PMID: 38045263 PMCID: PMC10690359 DOI: 10.1101/2023.11.21.23298864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Introduction Posterior Cortical Atrophy (PCA) is a syndrome characterized by a progressive decline in higher-order visuospatial processing, leading to symptoms such as space perception deficit, simultanagnosia, and object perception impairment. While PCA is primarily known for its impact on visuospatial abilities, recent studies have documented language abnormalities in PCA patients. This study aims to delineate the nature and origin of language impairments in PCA, hypothesizing that language deficits reflect the visuospatial processing impairments of the disease. Methods We compared the language samples of 25 patients with PCA with age-matched cognitively normal (CN) individuals across two distinct tasks: a visually-dependent picture description and a visually-independent job description task. We extracted word frequency, word utterance latency, and spatial relational words for this comparison. We then conducted an in-depth analysis of the language used in the picture description task to identify specific linguistic indicators that reflect the visuospatial processing deficits of PCA. Results Patients with PCA showed significant language deficits in the visually-dependent task, characterized by higher word frequency, prolonged utterance latency, and fewer spatial relational words, but not in the visually-independent task. An in-depth analysis of the picture description task further showed that PCA patients struggled to identify certain visual elements as well as the overall theme of the picture. A predictive model based on these language features distinguished PCA patients from CN individuals with high classification accuracy. Discussion The findings indicate that language is a sensitive behavioral construct to detect visuospatial processing abnormalities of PCA. These insights offer theoretical and clinical avenues for understanding and managing PCA, underscoring language as a crucial marker for the visuospatial deficits of this atypical variant of Alzheimer's disease.
Collapse
Affiliation(s)
- Neguine Rezaii
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Scott McGinnis
- Center for Brain Mind Medicine, Department of Neurology, Brigham & Women’s Hospital, Boston, MA 02115
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Alzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
12
|
Katsumi Y, Putcha D, Eckbo R, Wong B, Quimby M, McGinnis S, Touroutoglou A, Dickerson BC. Anterior dorsal attention network tau drives visual attention deficits in posterior cortical atrophy. Brain 2023; 146:295-306. [PMID: 36237170 PMCID: PMC10060714 DOI: 10.1093/brain/awac245] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023] Open
Abstract
Posterior cortical atrophy (PCA), usually an atypical clinical syndrome of Alzheimer's disease, has well-characterized patterns of cortical atrophy and tau deposition that are distinct from typical amnestic presentations of Alzheimer's disease. However, the mechanisms underlying the cortical spread of tau in PCA remain unclear. Here, in a sample of 17 biomarker-confirmed (A+/T+/N+) individuals with PCA, we sought to identify functional networks with heightened vulnerability to tau pathology by examining the cortical distribution of elevated tau as measured by 18F-flortaucipir (FTP) PET. We then assessed the relationship between network-specific FTP uptake and visuospatial cognitive task performance. As predicted, we found consistent and prominent localization of tau pathology in the dorsal attention network and visual network of the cerebral cortex. Elevated FTP uptake within the dorsal attention network (particularly the ratio of FTP uptake between the anterior and posterior nodes) was associated with poorer visuospatial attention in PCA; associations were also identified in other functional networks, although to a weaker degree. Furthermore, using functional MRI data collected from each patient at wakeful rest, we found that a greater anterior-to-posterior ratio in FTP uptake was associated with stronger intrinsic functional connectivity between anterior and posterior nodes of the dorsal attention network. Taken together, we conclude that our cross-sectional marker of anterior-to-posterior FTP ratio could indicate tau propagation from posterior to anterior dorsal attention network nodes, and that this anterior progression occurs in relation to intrinsic functional connectivity within this network critical for visuospatial attention. Our findings help to clarify the spatiotemporal pattern of tau propagation in relation to visuospatial cognitive decline and highlight the key role of the dorsal attention network in the disease progression of PCA.
Collapse
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Scott McGinnis
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
13
|
Putcha D, Katsumi Y, Brickhouse M, Flaherty R, Salat DH, Touroutoglou A, Dickerson BC. Gray to white matter signal ratio as a novel biomarker of neurodegeneration in Alzheimer's disease. Neuroimage Clin 2022; 37:103303. [PMID: 36586361 PMCID: PMC9830315 DOI: 10.1016/j.nicl.2022.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by β-amyloid (Aβ) plaques, hyperphosphorylated tau neurofibrillary tangles, and neurodegeneration, which lead to a phenotypically heterogeneous cognitive-behavioral dementia syndrome. Our understanding of how these neuropathological and neurodegeneration biomarkers relate to each other is still evolving. A relatively new approach to measuring structural brain change, gray matter to white matter signal intensity ratio (GWR), quantifies the signal contrast between these tissue compartments, and has emerged as a promising marker of AD-related neurodegeneration. We sought to validate GWR as a novel MRI biomarker of neurodegeneration in 29 biomarker positive individuals across the atypical syndromic spectrum of AD. Bivariate correlation analyses revealed that GWR was associated with cortical thickness, tau PET, and amyloid PET, with GWR showing a larger magnitude of abnormality than cortical thickness. We also found that combining GWR, cortical thickness, and amyloid PET better explained observed tau PET signal than using these modalities alone, suggesting that the three imaging biomarkers contribute independently and synergistically to explaining the variance in the distribution of tau pathology. We conclude that GWR is a uniquely sensitive in vivo marker of neurodegenerative change that reflects pathological mechanisms which may occur prior to cortical atrophy. By using all of these imaging biomarkers of AD together, we may be better able to capture, and possibly predict, AD neuropathologic changes in vivo. We hope that such an approach will ultimately contribute to better endpoints to evaluate the efficacy of therapeutic interventions as we move toward an era of disease-modifying treatments for this devastating disease.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Yuta Katsumi
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryn Flaherty
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David H Salat
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Abstract
OBJECTIVE Cognitive impairment is one of the most common symptoms of anti-leucine rich glioma inactivated 1 (anti-LGI-1) encephalitis, but little is known about the cognitive profile of these patients. This study characterized the cognitive profile of patients with anti-LGI-1 encephalitis and compared patterns of impairment to healthy controls and other patient groups with known temporal lobe/limbic involvement. METHODS A retrospective analysis of adult patients with anti-LGI-1 encephalitis who underwent neuropsychological assessment was conducted. Performance patterns of anti-LGI-1 patients were compared to patients deemed cognitively healthy (HC), as well as patients with amnestic mild cognitive impairment (aMCI) and temporal lobe epilepsy (TLE). RESULTS Among 10 anti-LGI encephalitis patients (60% male, median age 67.5 years) who underwent neuropsychological testing (median = 38.5 months from symptom onset), cognitive deficits were common, with 100% of patients showing impairment (≤1.5 SD below mean) on 1+ measures and 80% on 2+ measures. Patients with anti-LGI-1 encephalitis performed worse than controls on measures of basic attention, vigilance, psychomotor speed, complex figure copy, and aspects of learning/memory. Of measures which differed from controls, there were no differences between the anti-LGI-1 and TLE patients, while the anti-LGI-1 patients exhibited higher rates of impairment in basic attention and lower rates of delayed verbal memory impairment compared to the aMCI patients. CONCLUSIONS Long-term cognitive deficits are common in patients with anti-LGI-1 encephalitis and involve multiple domains. Future research in larger samples is needed to confirm these findings.
Collapse
|
15
|
Putcha D, Carvalho N, Dev S, McGinnis SM, Dickerson BC, Wong B. Verbal Encoding Deficits Impact Recognition Memory in Atypical “Non-Amnestic” Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12070843. [PMID: 35884649 PMCID: PMC9313460 DOI: 10.3390/brainsci12070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Memory encoding and retrieval deficits have been identified in atypical Alzheimer’s disease (AD), including posterior cortical atrophy (PCA) and logopenic variant primary progressive aphasia (lvPPA), despite these groups being referred to as “non-amnestic”. There is a critical need to better understand recognition memory in atypical AD. We investigated performance on the California Verbal Learning Test (CVLT-II-SF) in 23 amyloid-positive, tau-positive, and neurodegeneration-positive participants with atypical “non-amnestic” variants of AD (14 PCA, 9 lvPPA) and 14 amnestic AD participants. Recognition memory performance was poor across AD subgroups but trended toward worse in the amnestic group. Encoding was related to recognition memory in non-amnestic but not in amnestic AD. We also observed cortical atrophy in dissociable subregions of the distributed memory network related to encoding (left middle temporal and angular gyri, posterior cingulate and precuneus) compared to recognition memory (anterior medial temporal cortex). We conclude that recognition memory is not spared in all patients with atypical variants of AD traditionally thought to be “non-amnestic”. The non-amnestic AD patients with poor recognition memory were those who struggled to encode the material during the learning trials. In contrast, the amnestic AD group had poor recognition memory regardless of encoding ability.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (N.C.); (S.D.); (S.M.M.); (B.C.D.); (B.W.)
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Center for Brain Mind Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| | - Nicole Carvalho
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (N.C.); (S.D.); (S.M.M.); (B.C.D.); (B.W.)
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sheena Dev
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (N.C.); (S.D.); (S.M.M.); (B.C.D.); (B.W.)
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott M. McGinnis
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (N.C.); (S.D.); (S.M.M.); (B.C.D.); (B.W.)
- Center for Brain Mind Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (N.C.); (S.D.); (S.M.M.); (B.C.D.); (B.W.)
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (N.C.); (S.D.); (S.M.M.); (B.C.D.); (B.W.)
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Brodeur C, Belley É, Deschênes LM, Enriquez-Rosas A, Hubert M, Guimond A, Bilodeau J, Soucy JP, Macoir J. Primary and Secondary Progressive Aphasia in Posterior Cortical Atrophy. Life (Basel) 2022; 12:life12050662. [PMID: 35629330 PMCID: PMC9142989 DOI: 10.3390/life12050662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Posterior cortical atrophy (PCA) is a clinico-radiological syndrome characterized by a progressive decline in visuospatial/visuoperceptual processing. PCA is accompanied by the impairment of other cognitive functions, including language abilities. Methods: The present study focused on three patients presenting with language complaints and a clinical profile that was compatible with PCA. In addition to neurological and neuroimaging examinations, they were assessed with comprehensive batteries of neuropsychological and neurolinguistic tests. Results: The general medical profile of the three patients is consistent with PCA, although they presented with confounding factors, making diagnosis less clear. The cognitive profile of the three patients was marked by Balint and Gerstmann’s syndromes as well as impairments affecting executive functions, short-term and working memory, visuospatial and visuoperceptual abilities, and sensorimotor execution abilities. Their language ability was characterized by word-finding difficulties and impairments of sentence comprehension, sentence repetition, verbal fluency, narrative speech, reading, and writing. Conclusions: This study confirmed that PCA is marked by visuospatial and visuoperceptual deficits and reported evidence of primary and secondary language impairments in the three patients. The similarities of some of their language impairments with those found in the logopenic variant of primary progressive aphasia is discussed from neurolinguistic and neuroanatomical points of view.
Collapse
Affiliation(s)
- Catherine Brodeur
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
- Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Centre de Recherche de l’IUGM, Montreal, QC H3W 1W6, Canada
| | - Émilie Belley
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec, QC G1V 0A6, Canada; (É.B.); (L.-M.D.)
| | - Lisa-Marie Deschênes
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec, QC G1V 0A6, Canada; (É.B.); (L.-M.D.)
| | - Adriana Enriquez-Rosas
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
| | - Michelyne Hubert
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
| | - Anik Guimond
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
| | - Josée Bilodeau
- Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada; (C.B.); (A.E.-R.); (M.H.); (A.G.); (J.B.)
| | - Jean-Paul Soucy
- Université de Montréal, Montreal, QC H3T 1J4, Canada;
- McConnell Brain Imaging Centre, McGill University, Montreal, QC H3A 2B4, Canada
- Concordia University, Montreal, QC H4B 1R6, Canada
| | - Joël Macoir
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec, QC G1V 0A6, Canada; (É.B.); (L.-M.D.)
- Centre de Recherche CERVO (CERVO Brain Research Centre), Quebec, QC G1J 2G3, Canada
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 412190)
| |
Collapse
|
17
|
Putcha D, Eckbo R, Katsumi Y, Dickerson BC, Touroutoglou A, Collins JA. Tau and the fractionated default mode network in atypical Alzheimer's disease. Brain Commun 2022; 4:fcac055. [PMID: 35356035 PMCID: PMC8963312 DOI: 10.1093/braincomms/fcac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease-related atrophy in the posterior cingulate cortex, a key node of the default mode network, is present in the early stages of disease progression across clinical phenotypic variants of the disease. In the typical amnestic variant, posterior cingulate cortex neuropathology has been linked with disrupted connectivity of the posterior default mode network, but it remains unclear if this relationship is observed across atypical variants of Alzheimer's disease. In the present study, we first sought to determine if tau pathology is consistently present in the posterior cingulate cortex and other posterior nodes of the default mode network across the atypical Alzheimer's disease syndromic spectrum. Second, we examined functional connectivity disruptions within the default mode network and sought to determine if tau pathology is related to functional disconnection within this network. We studied a sample of 25 amyloid-positive atypical Alzheimer's disease participants examined with high-resolution MRI, tau (18F-AV-1451) PET, and resting-state functional MRI. In these patients, high levels of tau pathology in the posteromedial cortex and hypoconnectivity between temporal and parietal nodes of the default mode network were observed relative to healthy older controls. Furthermore, higher tau signal and reduced grey matter density in the posterior cingulate cortex and angular gyrus were associated with reduced parietal functional connectivity across individual patients, related to poorer cognitive scores. Our findings converge with what has been reported in amnestic Alzheimer's disease, and together these observations offer a unifying mechanistic feature that relates posterior cingulate cortex tau deposition to aberrant default mode network connectivity across heterogeneous clinical phenotypes of Alzheimer's disease.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuta Katsumi
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A. Collins
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Antypa D, Basta M, Vgontzas A, Zaganas I, Panagiotakis S, Vogiatzi E, Kokosali E, Simos P. The association of basal cortisol levels with episodic memory in older adults is mediated by executive function. Neurobiol Learn Mem 2022; 190:107600. [PMID: 35182737 DOI: 10.1016/j.nlm.2022.107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 01/08/2023]
Abstract
Elevated basal cortisol levels in elderly may indicate dysregulation of the internal stress-related system, as well as dysfunction and structural alterations in brain structures necessary for cognition, such as hippocampus and prefrontal cortex. Because of the close relation of executive functions and episodic memory processing, in this study we explored whether the association of elevated cortisol levels on episodic memory could be partly attributed to cortisol effects on executive functions. In this cross-sectional study we analyzed data from a sample of 236 community-dwelling older adults from the Cretan Aging Cohort aged 75.56 ± 7.21 years [53 with dementia due to probable Alzheimer's disease, 99 with Mild Cognitive Impairment (MCI) and 84 cognitively non-impaired participants (NI)]. Morning serum cortisol levels were higher in the probable AD as compared to the NI group (p = .031). Mediated regression models in the total sample supported the hypothesis that the negative association of basal cortisol levels with delayed memory was fully mediated by the relation of basal cortisol levels with executive functions and immediate memory (adjusted for age and self-reported depression symptoms). Moderated mediation regression models revealed that the direct effect of cortisol on executive function and the effect of executive function on delayed memory performance were statistically significant among participants diagnosed with MCI, while the immediate memory effect on delayed memory was more pronounced in AD patients, as compared to the NI group. The current findings corroborate neuroimaging research highlighting cortisol effects on executive functions and immediate memory and further suggest that dysregulation of systems involved in these functions may account for the purported detrimental long-term effects of high cortisol levels on delayed memory.
Collapse
Affiliation(s)
- Despina Antypa
- School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - Maria Basta
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Ioannis Zaganas
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Symeon Panagiotakis
- Internal Medicine Department, Heraklion University Hospital, Heraklion, Crete, Greece
| | | | - Evgenia Kokosali
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Panagiotis Simos
- School of Medicine, University of Crete, Heraklion, Crete, Greece; Foundation of Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
19
|
Venkatesan UM, Rabinowitz AR, Wolfert SJ, Hillary FG. Duration of post-traumatic amnesia is uniquely associated with memory functioning in chronic moderate-to-severe traumatic brain injury. NeuroRehabilitation 2021; 49:221-233. [PMID: 34397431 DOI: 10.3233/nre-218022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Disrupted memory circuitry may contribute to post-traumatic amnesia (PTA) after traumatic brain injury (TBI). It is unclear whether duration of PTA (doPTA) uniquely impacts memory functioning in the chronic post-injury stage. OBJECTIVE To examine the relationship between doPTA and memory functioning, independent of other cognitive abilities, in chronic moderate-to-severe TBI. METHODS Participants were 82 individuals (median chronicity = 10.5 years) with available doPTA estimates and neuropsychological data. Composite memory, processing speed (PS), and executive functioning (EF) performance scores, as well as data on subjective memory (SM) beliefs, were extracted. DoPTA-memory associations were evaluated via linear modeling of doPTA with memory performance and clinical memory status (impaired/unimpaired), controlling for PS, EF and demographic covariates. Interrelationships between doPTA, objective memory functioning, and SM were assessed. RESULTS DoPTA was significantly related to memory performance, even after covariate adjustment. Impairment in memory, but not PS or EF, was associated with a history of longer doPTA. SM was associated with memory performance, but unrelated to doPTA. CONCLUSIONS Findings suggest a specific association between doPTA-an acute injury phenomenon-and chronic memory deficits after TBI. Prospective studies are needed to understand how underlying mechanisms of PTA shape distinct outcome trajectories, particularly functional abilities related to memory processing.
Collapse
Affiliation(s)
- Umesh M Venkatesan
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Amanda R Rabinowitz
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Stephanie J Wolfert
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Frank G Hillary
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Department of Psychology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
20
|
Overman MJ, Zamboni G, Butler C, Ahmed S. Splenial white matter integrity is associated with memory impairments in posterior cortical atrophy. Brain Commun 2021; 3:fcab060. [PMID: 34007964 PMCID: PMC8112963 DOI: 10.1093/braincomms/fcab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
Posterior cortical atrophy is an atypical form of Alzheimer’s disease characterized by visuospatial impairments and predominant tissue loss in the posterior parieto-occipital and temporo-occipital cortex. Whilst episodic memory is traditionally thought to be relatively preserved in posterior cortical atrophy, recent work indicates that memory impairments form a common clinical symptom in the early stages of the disease. Neuroimaging studies suggest that memory dysfunction in posterior cortical atrophy may originate from atrophy and functional hypoconnectivity of parietal cortex. The structural connectivity patterns underpinning these memory impairments, however, have not been investigated. This line of inquiry is of particular interest, as changes in white matter tracts of posterior cortical atrophy patients have been shown to be more extensive than expected based on posterior atrophy of grey matter. In this cross-sectional diffusion tensor imaging MRI study, we examine the relationship between white matter microstructure and verbal episodic memory in posterior cortical atrophy. We assessed episodic memory performance in a group of posterior cortical atrophy patients (n = 14) and a group of matched healthy control participants (n = 19) using the Free and Cued Selective Reminding Test with Immediate Recall. Diffusion tensor imaging measures were obtained for 13 of the posterior cortical atrophy patients and a second control group of 18 healthy adults. Patients and healthy controls demonstrated similar memory encoding performance, indicating that learning of verbal information was preserved in posterior cortical atrophy. However, retrieval of verbal items was significantly impaired in the patient group compared with control participants. As expected, tract-based spatial statistics analyses showed widespread reductions of white matter integrity in posterior cortical regions of patients compared with healthy adults. Correlation analyses indicated that poor verbal retrieval in the patient group was specifically associated with microstructural damage of the splenium of the corpus callosum. Post-hoc tractography analyses in healthy controls demonstrated that this splenial region was connected to thalamic radiations and the retrolenticular part of the internal capsule. These results provide insight into the brain circuits that underlie memory impairments in posterior cortical atrophy. From a cognitive perspective, we propose that the association between splenial integrity and memory dysfunction could arise indirectly via disruption of attentional processes. We discuss implications for the clinical phenotype and development of therapeutic aids for cognitive impairment in posterior cortical atrophy.
Collapse
Affiliation(s)
- Margot Juliëtte Overman
- Research Institute for the Care of Older People (RICE), Bath BA1 3NG, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Giovanna Zamboni
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, Modena, Italy.,Nuffield Department of Clinical Neuroscience, University of Oxford, Oxfordshire OX3 9DU, UK
| | - Christopher Butler
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxfordshire OX3 9DU, UK.,Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK.,Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Samrah Ahmed
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxfordshire OX3 9DU, UK.,School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ES, UK
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Non-amnestic (or atypical) presentations of neurodegenerative dementias are underrecognized and underdiagnosed, including posterior cortical atrophy (PCA) syndrome, which is characterized by prominent visuospatial and visuoperceptual dysfunction at presentation. It is most commonly due to Alzheimer's disease pathology, while Lewy body disease, corticobasal degeneration, and prion disease are neuropathological entities that are less frequently associated with PCA. The diagnosis of PCA is often delayed, to the detriment of the patient, and awareness and understanding of PCA will improve detection, prognostication, and treatment. RECENT FINDINGS The natural history of PCA appears to be distinct from typical Alzheimer's disease and significant heterogeneity exists within the PCA syndrome, with the underlying causes of this heterogeneity beginning to be explored. Functional and molecular imaging can assist in better understanding PCA, particularly assessment of network disruptions that contribute to clinical phenotypes. Cerebrospinal fluid biomarkers are useful to detect underlying pathology, but measures of retinal thickness are less promising. There are currently no adequate treatment options for PCA. SUMMARY Continued efforts to characterize PCA are needed, and greater awareness and understanding of atypical presentations of neurodegenerative dementias could serve to elucidate pathobiological mechanisms of underlying disease.
Collapse
|
22
|
Yerstein O, Parand L, Liang LJ, Isaac A, Mendez MF. Benson's Disease or Posterior Cortical Atrophy, Revisited. J Alzheimers Dis 2021; 82:493-502. [PMID: 34057092 PMCID: PMC8316293 DOI: 10.3233/jad-210368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND D. Frank Benson and colleagues first described the clinical and neuropathological features of posterior cortical atrophy (PCA) from patients in the UCLA Neurobehavior Program. OBJECTIVE We reviewed the Program's subsequent clinical experience with PCA, and its potential for clarifying this relatively rare syndrome in comparison to the accumulated literature on PCA. METHODS Using the original criteria derived from this clinic, 65 patients with neuroimaging-supported PCA were diagnosed between 1995 and 2020. RESULTS On presentation, most had visual localization complaints and related visuospatial symptoms, but nearly half had memory complaints followed by symptoms of depression. Neurobehavioral testing showed predominant difficulty with visuospatial constructions, Gerstmann's syndrome, and Balint's syndrome, but also impaired memory and naming. On retrospective application of the current Consensus Criteria for PCA, 59 (91%) met PCA criteria with a modification allowing for "significantly greater visuospatial over memory and naming deficits." There were 37 deaths (56.9%) with the median overall survival of 10.3 years (95% CI: 9.6-13.6 years), consistent with a slow neurodegenerative disorder in most patients. CONCLUSION Together, these findings recommend modifying the PCA criteria for "relatively spared" memory, language, and behavior to include secondary memory and naming difficulty and depression, with increased emphasis on the presence of Gerstmann's and Balint's syndromes.
Collapse
Affiliation(s)
- Oleg Yerstein
- Department of Neurology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Leila Parand
- Department of Neurology, Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Neurology Service, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Li-Jung Liang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Adrienne Isaac
- Department of Linguistics, Georgetown University, Washington, DC, USA
| | - Mario F. Mendez
- Department of Neurology, Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Neurology Service, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
23
|
Giunta M, Libri I, Premi E, Brattini C, Paghera B, Archetti S, Gasparotti R, Padovani A, Borroni B, Benussi A. Clinical and radiological features of posterior cortical atrophy (PCA) in a GRN mutation carrier: a case report. Eur J Neurol 2020; 28:344-348. [PMID: 33030763 DOI: 10.1111/ene.14574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/01/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome, defined by a distinctive clinical-radiological profile, with Alzheimer's disease (AD) pathology accounting for the majority of cases. The aim of this report was to present the case of a patient with impairment of visual and constructional abilities as initial manifestations. METHOD The patient underwent a multidimensional assessment, including neuropsychological evaluation, structural and functional imaging and genetic screening. RESULTS Neurological and neuropsychological assessment showed an impairment of constructive and visuo-spatial skills, associated with dyscalculia, simultanagnosia, optic ataxia and oculomotor apraxia. In accordance with the latest consensus criteria, a diagnosis of PCA was made. Consistent with the clinical findings, structural and functional imaging showed a peculiar pattern of atrophy with primary involvement of right parieto-occipital cortices, whereas cerebrospinal fluid biochemical analysis did not reveal a profile compatible with AD pathology. Genetic screening identified a known pathogenic GRN mutation. CONCLUSION We present a case of PCA in a GRN mutation carrier in whom a concomitant AD pathological process was excluded. Consequently, although lacking histological data, our case suggests GRN-related pathology causative of PCA. Through this report we provide further evidence for a new neurodegenerative pathway leading to PCA, extending the clinical spectrum of GRN-associated phenotypes.
Collapse
Affiliation(s)
- M Giunta
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - I Libri
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - E Premi
- Stroke Unit, ASST Spedali Civili, Brescia, Italy
| | - C Brattini
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - B Paghera
- Nuclear Medicine Department, University of Brescia, Brescia, Italy
| | - S Archetti
- Biotechnology Laboratory, Department of Diagnostics, Spedali Civili Hospital, Brescia, Italy
| | - R Gasparotti
- Neuroradiology Unit, University of Brescia, Brescia, Italy
| | - A Padovani
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - B Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - A Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
24
|
Hardy CJD, Yong KXX, Goll JC, Crutch SJ, Warren JD. Impairments of auditory scene analysis in posterior cortical atrophy. Brain 2020; 143:2689-2695. [PMID: 32875326 PMCID: PMC7523698 DOI: 10.1093/brain/awaa221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
Although posterior cortical atrophy is often regarded as the canonical 'visual dementia', auditory symptoms may also be salient in this disorder. Patients often report particular difficulty hearing in busy environments; however, the core cognitive process-parsing of the auditory environment ('auditory scene analysis')-has been poorly characterized. In this cross-sectional study, we used customized perceptual tasks to assess two generic cognitive operations underpinning auditory scene analysis-sound source segregation and sound event grouping-in a cohort of 21 patients with posterior cortical atrophy, referenced to 15 healthy age-matched individuals and 21 patients with typical Alzheimer's disease. After adjusting for peripheral hearing function and performance on control tasks assessing perceptual and executive response demands, patients with posterior cortical atrophy performed significantly worse on both auditory scene analysis tasks relative to healthy controls and patients with typical Alzheimer's disease (all P < 0.05). Our findings provide further evidence of central auditory dysfunction in posterior cortical atrophy, with implications for our pathophysiological understanding of Alzheimer syndromes as well as clinical diagnosis and management.
Collapse
Affiliation(s)
- Chris J D Hardy
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Keir X X Yong
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Johanna C Goll
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
25
|
Word retrieval across the biomarker-confirmed Alzheimer's disease syndromic spectrum. Neuropsychologia 2020; 140:107391. [PMID: 32057937 DOI: 10.1016/j.neuropsychologia.2020.107391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is now conceptualized as a biological entity defined by amyloid and tau deposition and neurodegeneration, with heterogeneous clinical presentations. With the aid of in vivo biomarkers, clinicians are better poised to examine clinical syndromic variability arising from a common pathology. Word retrieval deficits, measured using verbal fluency and confrontation naming tests, are hallmark features of the early clinical stages of the amnestic presentations of AD, specifically in category fluency and naming with relatively spared letter fluency. As yet, there is no consensus regarding performance on these tests in atypical clinical phenotypes of AD, including posterior cortical atrophy (PCA) and logopenic primary progressive aphasia (lvPPA), in individuals who are amyloid-positive (Aβ+) but present with different clinical profiles and patterns of neurodegeneration compared to amnestic AD. The goal of the current study is to determine how Aβ+ individuals across the syndromic spectrum of AD perform on three different word retrieval tasks. A secondary goal is to determine the neuroanatomical substrates underlying word retrieval performance in these Aβ+ individuals. Thirty-two Aβ+ participants with the amnestic presentation, 16 with Aβ+ PCA, 22 with Aβ+ lvPPA, and 99 amyloid-negative (Aβ-) control participants were evaluated with verbal fluency and visual confrontation naming tests as well as high-resolution MRI. The Aβ+ patient groups were rated at very mild or mild levels of severity (CDR 0.5 or 1) and had comparable levels of global cognitive impairment (average MMSE = 23.7 ± 3.9). Behaviorally, we found that the word retrieval profile of PCA patients is comparable to that of amnestic patients, characterized by intact letter fluency but impaired category fluency and visual confrontation naming, while lvPPA patients demonstrated impairment across all tests of word retrieval. Across all AD variants, we observed that letter fluency was associated with cortical thickness in prefrontal, central precuneus, lateral parietal and temporal cortex, while category fluency and naming were associated with cortical thickness in left middle frontal gyrus, posterior middle temporal gyrus, and lateral parietal cortex. Visual confrontation naming was uniquely associated with atrophy in inferior temporal and visual association cortex. We conclude that a better understanding of the word retrieval profiles and underlying neurodegeneration across the AD syndromic spectrum will help improve interpretation of neuropsychological profiles with regard to the localization of neurodegeneration, particularly in the atypical AD variants.
Collapse
|
26
|
Venkatesan UM, Margolis SA, Tremont G, Festa EK, Heindel WC. Forward to the past: Revisiting the role of immediate recognition in the assessment of episodic memory. J Clin Exp Neuropsychol 2019; 42:160-170. [DOI: 10.1080/13803395.2019.1697210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Seth A. Margolis
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Geoffrey Tremont
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Elena K. Festa
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - William C. Heindel
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
27
|
Putcha D, Brickhouse M, Touroutoglou A, Collins JA, Quimby M, Wong B, Eldaief M, Schultz A, El Fakhri G, Johnson K, Dickerson BC, McGinnis SM. Visual cognition in non-amnestic Alzheimer's disease: Relations to tau, amyloid, and cortical atrophy. Neuroimage Clin 2019; 23:101889. [PMID: 31200149 PMCID: PMC6562373 DOI: 10.1016/j.nicl.2019.101889] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
Abstract
Heterogeneity within the Alzheimer's disease (AD) syndromic spectrum is typically classified in a domain-specific manner (e.g., language vs. visual cognitive function). The central aim of this study was to investigate whether impairment in visual cognitive tasks thought to be subserved by posterior cortical dysfunction in non-amnestic AD presentations is associated with tau, amyloid, or neurodegeneration in those regions using 18F-AV-1451 and 11C-PiB positron emission tomography (PET) and magnetic resonance imaging (MRI). Sixteen amyloid-positive patients who met criteria for either Posterior Cortical Atrophy (PCA; n = 10) or logopenic variant Primary Progressive Aphasia (lvPPA; n = 6) were studied. All participants underwent a structured clinical assessment, neuropsychological battery, structural MRI, amyloid PET, and tau PET. The neuropsychological battery included two visual cognitive tests: VOSP Number Location and Benton Facial Recognition. Surface-based whole-cortical general linear models were used to first explore the similarities and differences between these biomarkers in the two patient groups, and then to assess their regional associations with visual cognitive test performance. The results show that these two variants of AD have both dissociable and overlapping areas of tau and atrophy, but amyloid is distributed with a stereotyped localization in both variants. Performance on both visual cognitive tests were associated with tau and atrophy in the right lateral and medial occipital association cortex, superior parietal cortex, and posterior ventral occipitotemporal cortex. No cortical associations were observed with amyloid PET. We further demonstrate that cortical atrophy has a partially mediating effect on the association between tau pathology and visual cognitive task performance. Our findings show that non-amnestic variants of AD have partially dissociable spatial patterns of tau and atrophy that localize as expected based on symptoms, but similar patterns of amyloid. Further, we demonstrate that impairments of visual cognitive dysfunction are strongly associated with tau in visual cortical regions and mediated in part by atrophy.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A Collins
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark Eldaief
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aaron Schultz
- Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Trotta L, Lamoureux D, Bartolomeo P, Migliaccio R. Working memory in posterior cortical atrophy. Neurol Sci 2019; 40:1713-1716. [DOI: 10.1007/s10072-019-03869-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/23/2019] [Indexed: 12/20/2022]
|
29
|
Putcha D, Brickhouse M, Wolk DA, Dickerson BC. Fractionating the Rey Auditory Verbal Learning Test: Distinct roles of large-scale cortical networks in prodromal Alzheimer's disease. Neuropsychologia 2019; 129:83-92. [PMID: 30930301 DOI: 10.1016/j.neuropsychologia.2019.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/22/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022]
Abstract
Successful episodic memory calls upon a number of different cognitive processes that are supported by the coordination of several large-scale cortical networks. Previous work from our group has demonstrated dissociable anatomic substrates at different stages of memory in patients with dementia due to Alzheimer's disease (AD). The aim of the current study was to extend the understanding of brain-behavior associations underlying a commonly administered neuropsychological assessment of verbal episodic memory (Rey Auditory Verbal Learning Test; RAVLT) by determining the cortical network contributions to the performance at early vs. late stages of list learning, delayed recall, and retention, in 235 very mild biomarker positive (A+/T+/N+) individuals diagnosed with amnestic mild cognitive impairment (aMCI; MMSE = 27.7). We measured cortical atrophy in four large-scale cortical networks impacted by AD: default mode (DMN), dorsal attention (DAN), frontoparietal (FPN), and language (LN) networks. We also evaluated the role of hippocampal atrophy at each stage of memory performance. Partial correlation analyses controlling for age, sex, and education and corrected for multiple comparisons revealed that early learning was most strongly associated with cortical thickness in the DAN, while late learning was most strongly associated with hippocampal volume, but also related to cortical thickness in the DAN, FPN, DMN, and LN. Delayed recall was associated most strongly with hippocampal volume, but was also related to cortical thickness in the FPN and DMN, while retention was associated only with hippocampal volume. These findings are consistent with prior models of the neural substrates of different stages of verbal list learning and retrieval, provide new insights into the cortical networks undergoing neurodegeneration even at very mild stages of prodromal AD, and inform our thinking about the networks and regions being interrogated by this kind of neuropsychological assessment of episodic memory.
Collapse
Affiliation(s)
| | - Michael Brickhouse
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradford C Dickerson
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
30
|
Veldsman M, Zamboni G, Butler C, Ahmed S. Attention network dysfunction underlies memory impairment in posterior cortical atrophy. NEUROIMAGE-CLINICAL 2019; 22:101773. [PMID: 30991615 PMCID: PMC6453667 DOI: 10.1016/j.nicl.2019.101773] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 03/10/2019] [Indexed: 11/24/2022]
Abstract
Accumulating evidence suggests that memory is impaired in posterior cortical atrophy (PCA), alongside the early and defining visual disorder. The posterior parietal cortex is a key region of pathology in PCA and memory impairment may be the result of dysfunction of parietally dependent network function rather than the medial temporal lobe dependent dysfunction that defines the storage deficits in typical Alzheimer's disease. We assessed episodic memory performance and network function in16 PCA patients and 19 healthy controls who underwent structural and resting-state functional MRI and neuropsychological testing. Memory was assessed using the Free and Cued Selective Reminding Test (FCSRT), a sensitive test of episodic memory storage and retrieval. We examined correlations between memory performance and functional connectivity in the dorsal attention (DAN) and default mode network (DMN). Immediate recall on the FCSRT was relatively preserved in PCA patients. Total recall performance was impaired in patients relative to healthy controls and performance benefitted from retrieval cues. In patients only, disrupted connectivity in the DAN, but not the DMN, was associated with total recall. Memory impairment may arise from disruption to the dorsal attention network, subserved by the dorsal posterior parietal cortex, a key region of pathology in PCA, rather than classic medial temporal lobe memory circuitry.We propose that functional dysconnectivity in attentional circuits underpins memory impairment in PCA.
Collapse
Affiliation(s)
- Michele Veldsman
- The Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Giovanna Zamboni
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Italy
| | - Christopher Butler
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Samrah Ahmed
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; Research Institute for the Care of the Elderly, Royal United Hospital, Bath, UK.
| |
Collapse
|