1
|
Sakaguchi K, Tawata S. Giftedness and atypical sexual differentiation: enhanced perceptual functioning through estrogen deficiency instead of androgen excess. Front Endocrinol (Lausanne) 2024; 15:1343759. [PMID: 38752176 PMCID: PMC11094242 DOI: 10.3389/fendo.2024.1343759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also manifest hypogonadism. Compared to the popular Extreme Male Brain theory, the Enhanced Perceptual Functioning model explains the connection between ASC, savant traits, and giftedness more seamlessly, and their co-emergence with atypical sexual differentiation. Overexcitability of primary sensory inputs generates a relative enhancement of local to global processing of stimuli, hindering the abstraction of communication signals, in contrast to the extraordinary local information processing skills in some individuals. Weaker inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors and the atypicality of synapse formation lead to this difference, and the formation of unique neural circuits that process external information. Additionally, deficiency in monitoring inner sensory information leads to alexithymia (inability to distinguish one's own emotions), which can be caused by hypoactivity of estrogen and oxytocin in the interoceptive neural circuits, comprising the anterior insular and cingulate gyri. These areas are also part of the Salience Network, which switches between the Central Executive Network for external tasks and the Default Mode Network for self-referential mind wandering. Exploring the possibility that estrogen deficiency since early development interrupts GABA shift, causing sensory processing atypicality, it helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity disorder, dyslexia, and schizophrenia based on phenotypic and physiological bases. It also provides clues for understanding the common underpinnings of these neurodevelopmental disorders and gifted populations.
Collapse
Affiliation(s)
- Kikue Sakaguchi
- Research Department, National Institution for Academic Degrees and Quality Enhancement of Higher Education (NIAD-QE), Kodaira-shi, Tokyo, Japan
| | - Shintaro Tawata
- Graduate School of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
2
|
Reeder RR, Sala G, van Leeuwen TM. A novel model of divergent predictive perception. Neurosci Conscious 2024; 2024:niae006. [PMID: 38348335 PMCID: PMC10860603 DOI: 10.1093/nc/niae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Predictive processing theories state that our subjective experience of reality is shaped by a balance of expectations based on previous knowledge about the world (i.e. priors) and confidence in sensory input from the environment. Divergent experiences (e.g. hallucinations and synaesthesia) are likely to occur when there is an imbalance between one's reliance on priors and sensory input. In a novel theoretical model, inspired by both predictive processing and psychological principles, we propose that predictable divergent experiences are associated with natural or environmentally induced prior/sensory imbalances: inappropriately strong or inflexible (i.e. maladaptive) high-level priors (beliefs) combined with low sensory confidence can result in reality discrimination issues, a characteristic of psychosis; maladaptive low-level priors (sensory expectations) combined with high sensory confidence can result in atypical sensory sensitivities and persistent divergent percepts, a characteristic of synaesthesia. Crucially, we propose that whether different divergent experiences manifest with dominantly sensory (e.g. hallucinations) or nonsensory characteristics (e.g. delusions) depends on mental imagery ability, which is a spectrum from aphantasia (absent or weak imagery) to hyperphantasia (extremely vivid imagery). We theorize that imagery is critically involved in shaping the sensory richness of divergent perceptual experience. In sum, to predict a range of divergent perceptual experiences in both clinical and general populations, three factors must be accounted for: a maladaptive use of priors, individual level of confidence in sensory input, and mental imagery ability. These ideas can be expressed formally using nonparametric regression modeling. We provide evidence for our theory from previous work and deliver predictions for future research.
Collapse
Affiliation(s)
- Reshanne R Reeder
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Giovanni Sala
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Tessa M van Leeuwen
- Department of Communication and Cognition, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Noda K, Soda T, Yamashita Y. Emergence of number sense through the integration of multimodal information: developmental learning insights from neural network models. Front Neurosci 2024; 18:1330512. [PMID: 38298912 PMCID: PMC10828047 DOI: 10.3389/fnins.2024.1330512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction Associating multimodal information is essential for human cognitive abilities including mathematical skills. Multimodal learning has also attracted attention in the field of machine learning, and it has been suggested that the acquisition of better latent representation plays an important role in enhancing task performance. This study aimed to explore the impact of multimodal learning on representation, and to understand the relationship between multimodal representation and the development of mathematical skills. Methods We employed a multimodal deep neural network as the computational model for multimodal associations in the brain. We compared the representations of numerical information, that is, handwritten digits and images containing a variable number of geometric figures learned through single- and multimodal methods. Next, we evaluated whether these representations were beneficial for downstream arithmetic tasks. Results Multimodal training produced better latent representation in terms of clustering quality, which is consistent with previous findings on multimodal learning in deep neural networks. Moreover, the representations learned using multimodal information exhibited superior performance in arithmetic tasks. Discussion Our novel findings experimentally demonstrate that changes in acquired latent representations through multimodal association learning are directly related to cognitive functions, including mathematical skills. This supports the possibility that multimodal learning using deep neural network models may offer novel insights into higher cognitive functions.
Collapse
Affiliation(s)
| | | | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
4
|
van Leeuwen TM, Wilsson L, Norrman HN, Dingemanse M, Bölte S, Neufeld J. Perceptual processing links autism and synesthesia: A co-twin control study. Cortex 2021; 145:236-249. [PMID: 34763130 DOI: 10.1016/j.cortex.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/21/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Synesthesia occurs more commonly in individuals fulfilling criteria for an autism spectrum diagnosis than in the general population. It is associated with autistic traits and autism-related perceptual processing characteristics, including a more detail-focused attentional style and altered sensory sensitivity. In addition, these characteristics correlate with the degree of grapheme-color synesthesia (consistency of grapheme-color associations) in non-synesthetes. We investigated a predominantly non-synesthetic twin sample, including individuals fulfilling criteria for an autism spectrum diagnosis or other neurodevelopmental disorders (n = 65, 14-34 years, 60% female). We modelled linear relationships between the degree of grapheme-color synesthesia and autistic traits, sensory sensitivity, and visual perception, both within-twin pairs (22 pairs) where all factors shared by twins are implicitly controlled (including 50-100% genetics), and across the entire cohort. We found that the degree of grapheme-color synesthesia was associated with autistic traits within the domain of Attention to Details and with sensory hyper-, but not hypo-sensitivity. These associations were stronger within-twin pairs than across the sample. Further, twins with a higher degree of grapheme-color synesthesia were better than their co-twins at identifying fragmented images (Fragmented Pictures Test). This is the first twin study on the association between synesthesia and autism-related perceptual features and traits. The results suggest that investigating these associations within-twin pairs, implicitly adjusting for potential confounding factors shared by twins, is more sensitive than doing so in non-related individuals. Consistent with previous findings, the results suggest an association between the degree of grapheme-color synesthesia and autism-related perceptual features, while utilizing a different measure for sensory sensitivity. The novel finding of enhanced fragmented picture integration in twins with a higher degree of grapheme-color synesthesia challenges the view of a generally more detail-focused attentional style in synesthesia and might be related to enhanced memory or mental imagery in more synesthetic individuals.
Collapse
Affiliation(s)
- Tessa M van Leeuwen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Communication and Cognition, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, the Netherlands
| | - Lowe Wilsson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Hjalmar Nobel Norrman
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Mark Dingemanse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Centre for Language Studies, Radboud University, Nijmegen, the Netherlands
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
5
|
Pisanski K, Reby D. Efficacy in deceptive vocal exaggeration of human body size. Nat Commun 2021; 12:968. [PMID: 33579910 PMCID: PMC7881139 DOI: 10.1038/s41467-021-21008-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
How can deceptive communication signals exist in an evolutionarily stable signalling system? To resolve this age-old honest signalling paradox, researchers must first establish whether deception benefits deceivers. However, while vocal exaggeration is widespread in the animal kingdom and assumably adaptive, its effectiveness in biasing listeners has not been established. Here, we show that human listeners can detect deceptive vocal signals produced by vocalisers who volitionally shift their voice frequencies to exaggerate or attenuate their perceived size. Listeners can also judge the relative heights of cheaters, whose deceptive signals retain reliable acoustic cues to interindividual height. Importantly, although vocal deception biases listeners' absolute height judgments, listeners recalibrate their height assessments for vocalisers they correctly and concurrently identify as deceptive, particularly men judging men. Thus, while size exaggeration can fool listeners, benefiting the deceiver, its detection can reduce bias and mitigate costs for listeners, underscoring an unremitting arms-race between signallers and receivers in animal communication.
Collapse
Affiliation(s)
- Katarzyna Pisanski
- Equipe de Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), CNRS, INSERM, University of Lyon/Saint-Étienne, Saint-Étienne, France. .,Institute of Psychology, University of Wrocław, Wrocław, Poland.
| | - David Reby
- Equipe de Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), CNRS, INSERM, University of Lyon/Saint-Étienne, Saint-Étienne, France
| |
Collapse
|
6
|
van Leeuwen TM, Neufeld J, Hughes J, Ward J. Synaesthesia and autism: Different developmental outcomes from overlapping mechanisms? Cogn Neuropsychol 2020; 37:433-449. [PMID: 32845799 DOI: 10.1080/02643294.2020.1808455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synaesthesia, a mixing of the senses, is more common in individuals with autism. Here, we review the evidence for the association between synaesthesia and autism with regard to their genetic background, brain connectivity, perception, cognitive mechanisms and their contribution to exceptional talents. Currently, the overlap between synaesthesia and autism is established most convincingly at the level of alterations in sensory sensitivity and perception, with synaesthetes showing autism-like profiles of sensory sensitivity and a bias towards details in perception. Shared features may include a predominance of local over global connectivity in the brain. When autism and synaesthesia co-occur in the same individual, the chance of developing heightened cognitive and memory abilities is increased. We discuss how the same theoretical models could potentially explain both conditions. Given the evidence, we believe the phenotypical overlap between autism and synaesthesia has been established clearly enough to invite future research to confirm overlapping mechanisms.
Collapse
Affiliation(s)
- Tessa M van Leeuwen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - James Hughes
- School of Psychology, University of Sussex, Brighton, UK
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton, UK
| |
Collapse
|
7
|
van Petersen E, Altgassen M, van Lier R, van Leeuwen TM. Enhanced spatial navigation skills in sequence-space synesthetes. Cortex 2020; 130:49-63. [PMID: 32640374 DOI: 10.1016/j.cortex.2020.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/14/2019] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
Abstract
Individuals with sequence-space synesthesia (SSS) perceive sequences like months, days and numbers in certain spatial arrangements. Several cognitive benefits have been associated with SSS, such as enhanced mental rotation, more vivid visual imagery and an advantage in spatial processing. The current study aimed to further investigate these cognitive benefits, focusing on spatial navigation skills, to explore if their enhanced sensitivity to spatial relations is reflected in enhanced navigational performance. Synesthetes were distinguished from controls by means of a questionnaire, a consistency test and drawings. A virtual Morris Water Maze (MWM) task with two allocentric and two egocentric navigation conditions was used to assess spatial navigation abilities. For the allocentric tasks, participants had to use object cues to find a hidden platform and for the egocentric tasks, they had to use their own position as a reference. Results showed that synesthetes performed significantly better compared to controls on the allocentric and egocentric tasks that reflected real life situations more accurately. However, this significant result was only found for the time taken to find the platform and not for the length of the path that was taken. In exploratory analyses, no significant relations were found between task performance and the specific features of the manifestation of each individual's synesthesia. Our hypothesis that synesthetes with the ability to mentally rotate their spatial arrangements would perform better on the allocentric task was not confirmed. Results add to the growing body of literature concerning the cognitive benefits of SSS and are consistent with the possibility that enhanced spatial navigation skills emerge from generally enhanced visuospatial abilities in SSS.
Collapse
Affiliation(s)
- Eline van Petersen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| | - Mareike Altgassen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Psychology, Johannes Gutenberg University of Mainz, Germany
| | - Rob van Lier
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Tessa M van Leeuwen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Riedel A, Maier S, Wenzler K, Feige B, Tebartz van Elst L, Bölte S, Neufeld J. A case of co-occuring synesthesia, autism, prodigious talent and strong structural brain connectivity. BMC Psychiatry 2020; 20:342. [PMID: 32605557 PMCID: PMC7329514 DOI: 10.1186/s12888-020-02722-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synesthesia is a sensory phenomenon where certain domain-specific stimuli trigger additional sensations of e.g. color or texture. The condition occurs in about 4% of the general population, but is overrepresented in individuals with Autism Spectrum Disorder (ASD), where it might also be associated with the presence of prodigious talents. CASE PRESENTATION Here we describe the case of a young transsexual man with Asperger Syndrome, synesthesia and a prodigious talent for foreign language acquisition. In our case, not only letters, numbers, spoken words, music, noises, weekdays and months lead to highly consistent, vivid color sensations but also his own and others' emotions, geometric shapes, any mathematical symbol, and letters from an unfamiliar alphabet (Hebrew). These color associations seem to aid categorization, differentiation and storage of information and might thereby contribute to the young man's language acquisition ability. We investigated the young man's structural brain connectivity in comparison to adults with or without ASD, applying global fiber tracking to diffusion-weighted Magnetic Resonance Imaging (MRI) data. The case presented with increased connectivity, especially between regions involved in visual and emotion processing, memory, and higher order associative binding regions. An electroencephalography experiment investigating synesthetic color and shape sensations while listening to music showed a negligible occipital alpha suppression, indicating that these internally generated synesthetic sensations derive from a different brain mechanism than when processing external visual information. CONCLUSIONS Taken together, this case study endorses the notion of a link between synesthesia, prodigious talent and autism, adding to the currently still sparse literature in this field. It provides new insights into the possible manifestations of synesthesia in individuals with ASD and its potential contribution to prodigious talents in people with an otherwise unexceptional cognitive profile. Additionally, this case impressively illustrates how synesthesia can be a key element not only of sensory perception but also social and emotional processing and contributes to existing evidence of increased brain connectivity in association with synesthesia.
Collapse
Affiliation(s)
- Andreas Riedel
- grid.7708.80000 0000 9428 7911Section for Experimental Neuropsychiatry, Department for Psychiatry & Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Simon Maier
- grid.7708.80000 0000 9428 7911Section for Experimental Neuropsychiatry, Department for Psychiatry & Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Kerstin Wenzler
- grid.7708.80000 0000 9428 7911Section for Experimental Neuropsychiatry, Department for Psychiatry & Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- grid.7708.80000 0000 9428 7911Section for Experimental Neuropsychiatry, Department for Psychiatry & Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- grid.7708.80000 0000 9428 7911Section for Experimental Neuropsychiatry, Department for Psychiatry & Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Sven Bölte
- grid.4714.60000 0004 1937 0626Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden ,grid.1032.00000 0004 0375 4078Curtin Autism Research Group, Essential Partner Autism CRC, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia ,grid.467087.a0000 0004 0442 1056Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
9
|
Raine J, Pisanski K, Bond R, Simner J, Reby D. Human roars communicate upper-body strength more effectively than do screams or aggressive and distressed speech. PLoS One 2019; 14:e0213034. [PMID: 30830931 PMCID: PMC6398857 DOI: 10.1371/journal.pone.0213034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/13/2019] [Indexed: 11/27/2022] Open
Abstract
Despite widespread evidence that nonverbal components of human speech (e.g., voice pitch) communicate information about physical attributes of vocalizers and that listeners can judge traits such as strength and body size from speech, few studies have examined the communicative functions of human nonverbal vocalizations (such as roars, screams, grunts and laughs). Critically, no previous study has yet to examine the acoustic correlates of strength in nonverbal vocalisations, including roars, nor identified reliable vocal cues to strength in human speech. In addition to being less acoustically constrained than articulated speech, agonistic nonverbal vocalizations function primarily to express motivation and emotion, such as threat, and may therefore communicate strength and body size more effectively than speech. Here, we investigated acoustic cues to strength and size in roars compared to screams and speech sentences produced in both aggressive and distress contexts. Using playback experiments, we then tested whether listeners can reliably infer a vocalizer's actual strength and height from roars, screams, and valenced speech equivalents, and which acoustic features predicted listeners' judgments. While there were no consistent acoustic cues to strength in any vocal stimuli, listeners accurately judged inter-individual differences in strength, and did so most effectively from aggressive voice stimuli (roars and aggressive speech). In addition, listeners more accurately judged strength from roars than from aggressive speech. In contrast, listeners' judgments of height were most accurate for speech stimuli. These results support the prediction that vocalizers maximize impressions of physical strength in aggressive compared to distress contexts, and that inter-individual variation in strength may only be honestly communicated in vocalizations that function to communicate threat, particularly roars. Thus, in continuity with nonhuman mammals, the acoustic structure of human aggressive roars may have been selected to communicate, and to some extent exaggerate, functional cues to physical formidability.
Collapse
Affiliation(s)
- Jordan Raine
- Mammal Vocal Communication and Cognition Research Group, University of Sussex, Brighton, United Kingdom
| | - Katarzyna Pisanski
- Mammal Vocal Communication and Cognition Research Group, University of Sussex, Brighton, United Kingdom
- Equipe Neuro-Ethologie Sensorielle, ENES/Neuro-PSI CNRS UMR 9197, Bioacoustics Team, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - Rod Bond
- Mammal Vocal Communication and Cognition Research Group, University of Sussex, Brighton, United Kingdom
| | - Julia Simner
- MULTISENSE Research Lab, University of Sussex, Brighton, United Kingdom
| | - David Reby
- Mammal Vocal Communication and Cognition Research Group, University of Sussex, Brighton, United Kingdom
| |
Collapse
|