1
|
Rysop AU, Williams KA, Schmitt LM, Meinzer M, Obleser J, Hartwigsen G. Aging modulates large-scale neural network interactions during speech comprehension. Neurobiol Aging 2025; 150:109-121. [PMID: 40088622 DOI: 10.1016/j.neurobiolaging.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Speech comprehension in noisy environments constitutes a critical challenge in everyday life and affects people of all ages. This challenging listening situation can be alleviated using semantic context to predict upcoming words (i.e., predictability gain)-a process associated with the domain-specific semantic network. When no such context can be used, speech comprehension in challenging listening conditions relies on cognitive control functions, underpinned by domain-general networks. Most previous studies focused on regional activity of pre-selected cortical regions or networks in healthy young listeners. Thus, it remains unclear how domain-specific and domain-general networks interact during speech comprehension in noise and how this may change across the lifespan. Here, we used correlational psychophysiological interaction (cPPI) to investigate functional network interactions during sentence comprehension under noisy conditions with varying predictability in healthy young and older listeners. Relative to young listeners, older adults showed increased task-related activity in several domain-general networks but reduced between-network connectivity. Across groups, higher predictability was associated with increased positive coupling between semantic and attention networks and increased negative coupling between semantic and control networks. These results highlight the complex interplay between the semantic network and several domain-general networks underlying the predictability gain. The observed differences in connectivity profiles with age inform the current debate on whether age-related changes in neural activity and functional connectivity reflect compensation or dedifferentiation.
Collapse
Affiliation(s)
- Anna Uta Rysop
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany; Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany.
| | - Kathleen Anne Williams
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| | - Lea-Maria Schmitt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, Nijmegen 6525 EN, the Netherlands
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Gesa Hartwigsen
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| |
Collapse
|
2
|
Wang XL, Chen Y, Hu JY, Wei H, Ling Q, He LQ, Chen C, Wang YX, Zeng YM, Wang XY, Ge QM, Chen X, Shao Y. Alterations of interhemispheric functional connectivity in patients with hypertensive retinopathy using voxel-mirrored homotopic connectivity: a resting state fMRI study. Int J Ophthalmol 2025; 18:297-307. [PMID: 39967983 PMCID: PMC11754017 DOI: 10.18240/ijo.2025.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 11/30/2024] [Indexed: 02/20/2025] Open
Abstract
AIM To analyze whether alterations of voxel mirror homology connectivity (VMHC) values, as determined by resting-state functional magnetic resonance imaging (rs-fMRI), occur in cerebral regions of patients with hypertensive retinopathy (HR) and to determine the relationship between VMHC values and clinical characteristics in patients with HR. METHODS Twenty-one patients with HR and 21 age-matched healthy controls (HCs) were assessed by rs-fMRI scanning. The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC, with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic (ROC) curve analysis. Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests. The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis. RESULTS Mean VMHC values of the bilateral cuneus gyrus (BA19), bilateral middle orbitofrontal gyrus (BA47), bilateral middle temporal gyrus (BA39) and bilateral superior medial frontal gyrus (BA9) were lower in the HR than in the HC group. CONCLUSION VMHC values can predict the development of early HR, prevent the transformation of hypertensive microangiopathy, and provide useful information explaining the changes in neural mechanism associated with HR.
Collapse
Affiliation(s)
- Xue-Lin Wang
- Department of Ophthalmology, the First Affiliated Hospital of Jiangxi Medical College, Shangrao Center Hospital, Eye Hospital of Shangrao City, Shangrao 334000, Jiangxi Province, China
| | - Yu Chen
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - Jin-Yu Hu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hong Wei
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian Ling
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Qi He
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cheng Chen
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi-Xin Wang
- School of Optometry and Vision Science, Cardiff University, Cardiff, CF24 4HQ, Wales, UK
| | - Yan-Mei Zeng
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Wang
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian-Min Ge
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xu Chen
- Ophthalmology Centre of Maastricht University, Maastricht 6200MS, Limburg Provincie, the Netherlands
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai 200080, China
| |
Collapse
|
3
|
Nieberlein L, Martin S, Williams KA, Gussew A, Cyriaks SD, Scheer M, Rampp S, Prell J, Hartwigsen G. Semantic Integration Demands Modulate Large-Scale Network Interactions in the Brain. Hum Brain Mapp 2024; 45:e70113. [PMID: 39723465 PMCID: PMC11669845 DOI: 10.1002/hbm.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The ability to integrate semantic information into the context of a sentence is essential for human communication. Several studies have shown that the predictability of a final keyword based on the sentence context influences semantic integration on the behavioral, neurophysiological, and neural level. However, the architecture of the underlying network interactions for semantic integration across the lifespan remains unclear. In this study, 32 healthy participants (30-75 years) performed an auditory cloze probability task during functional magnetic resonance imaging (fMRI), requiring lexical decisions on the sentence's final words. Semantic integration demands were implicitly modulated by presenting sentences with expected, unexpected, anomalous, or pseudoword endings. To elucidate network interactions supporting semantic integration, we combined univariate task-based fMRI analyses with seed-based connectivity and between-network connectivity analyses. Behavioral data revealed typical semantic integration effects, with increased integration demands being associated with longer response latencies and reduced accuracy. Univariate results demonstrated increased left frontal and temporal brain activity for sentences with higher integration demands. Between-network interactions highlighted the role of task-positive and default mode networks for sentence processing with increased semantic integration demands. Furthermore, increasing integration demands led to a higher number of behaviorally relevant network interactions, suggesting that the increased between-network coupling becomes more relevant for successful task performance as integration demands increase. Our findings elucidate the complex network interactions underlying semantic integration across the aging continuum. Stronger interactions between various task-positive and default mode networks correlated with more efficient processing of sentences with increased semantic integration demands. These results may inform future studies with healthy old and clinical populations.
Collapse
Affiliation(s)
- Laura Nieberlein
- Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute for PsychologyLeipzig UniversityLeipzigGermany
- Martin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Sandra Martin
- Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Kathleen A. Williams
- Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute for PsychologyLeipzig UniversityLeipzigGermany
| | - Alexander Gussew
- University Clinic and Outpatient Clinic for RadiologyUniversity Hospital Halle (Saale)HalleGermany
- Halle MR Imaging Core Facility (HMRICF)Halle (Saale)Germany
| | - Sophia D. Cyriaks
- Martin Luther University Halle‐WittenbergHalle (Saale)Germany
- Department of NeurosurgeryUniversity Hospital Halle (Saale)HalleGermany
| | - Maximilian Scheer
- Department of NeurosurgeryUniversity Hospital Halle (Saale)HalleGermany
| | - Stefan Rampp
- Department of NeurosurgeryUniversity Hospital Halle (Saale)HalleGermany
- Department of NeurosurgeryUniversity Hospital ErlangenErlangenGermany
| | - Julian Prell
- Department of NeurosurgeryUniversity Hospital Halle (Saale)HalleGermany
| | - Gesa Hartwigsen
- Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute for PsychologyLeipzig UniversityLeipzigGermany
| |
Collapse
|
4
|
Balgova E, Diveica V, Jackson RL, Binney RJ. Overlapping neural correlates underpin theory of mind and semantic cognition: Evidence from a meta-analysis of 344 functional neuroimaging studies. Neuropsychologia 2024; 200:108904. [PMID: 38759780 DOI: 10.1016/j.neuropsychologia.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Key unanswered questions for cognitive neuroscience include whether social cognition is underpinned by specialised brain regions and to what extent it simultaneously depends on more domain-general systems. Until we glean a better understanding of the full set of contributions made by various systems, theories of social cognition will remain fundamentally limited. In the present study, we evaluate a recent proposal that semantic cognition plays a crucial role in supporting social cognition. While previous brain-based investigations have focused on dissociating these two systems, our primary aim was to assess the degree to which the neural correlates are overlapping, particularly within two key regions, the anterior temporal lobe (ATL) and the temporoparietal junction (TPJ). We focus on activation associated with theory of mind (ToM) and adopt a meta-analytic activation likelihood approach to synthesise a large set of functional neuroimaging studies and compare their results with studies of semantic cognition. As a key consideration, we sought to account for methodological differences across the two sets of studies, including the fact that ToM studies tend to use nonverbal stimuli while the semantics literature is dominated by language-based tasks. Overall, we observed consistent overlap between the two sets of brain regions, especially in the ATL and TPJ. This supports the claim that tasks involving ToM draw upon more general semantic retrieval processes. We also identified activation specific to ToM in the right TPJ, bilateral anterior mPFC, and right precuneus. This is consistent with the view that, nested amongst more domain-general systems, there is specialised circuitry that is tuned to social processes.
Collapse
Affiliation(s)
- Eva Balgova
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Department of Psychology, Aberystwyth University, Ceredigion, Wales, UK
| | - Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK.
| |
Collapse
|
5
|
Fernandino L, Binder JR. How does the "default mode" network contribute to semantic cognition? BRAIN AND LANGUAGE 2024; 252:105405. [PMID: 38579461 PMCID: PMC11135161 DOI: 10.1016/j.bandl.2024.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
This review examines whether and how the "default mode" network (DMN) contributes to semantic processing. We review evidence implicating the DMN in the processing of individual word meanings and in sentence- and discourse-level semantics. Next, we argue that the areas comprising the DMN contribute to semantic processing by coordinating and integrating the simultaneous activity of local neuronal ensembles across multiple unimodal and multimodal cortical regions, creating a transient, global neuronal ensemble. The resulting ensemble implements an integrated simulation of phenomenological experience - that is, an embodied situation model - constructed from various modalities of experiential memory traces. These situation models, we argue, are necessary not only for semantic processing but also for aspects of cognition that are not traditionally considered semantic. Although many aspects of this proposal remain provisional, we believe it provides new insights into the relationships between semantic and non-semantic cognition and into the functions of the DMN.
Collapse
Affiliation(s)
- Leonardo Fernandino
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biomedical Engineering, Medical College of Wisconsin, USA.
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biophysics, Medical College of Wisconsin, USA
| |
Collapse
|
6
|
Kemmerer D. Transmodal neural substrates of general semantic knowledge: From single words to sentences, stories, and the default mode network. BRAIN AND LANGUAGE 2024; 252:105412. [PMID: 38574556 DOI: 10.1016/j.bandl.2024.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Affiliation(s)
- David Kemmerer
- Department of Speech, Language, and Hearing Sciences, Department of Psychological Sciences, Purdue University, United States.
| |
Collapse
|
7
|
Zadegan SA, Kupcha L, Patino J, Rocha NP, Teixeira AL, Furr Stimming E. Obsessive-compulsive and perseverative behaviors in Huntington's disease. Behav Brain Res 2024; 458:114767. [PMID: 37984520 DOI: 10.1016/j.bbr.2023.114767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Obsessive-compulsive and perseverative behaviors (OCBs/PBs) are characteristic features of Huntington's Disease (HD). Although a few recent research have attempted to discriminate between OCBs and PBs, most of the available evidence on OCBs does not consistently make this distinction. In this article, we aimed to explore the current inconsistencies in assessing and reporting OCBs/PBs and map the body of existing evidence. Up to half of the patients with motor manifest HD can experience OCBs. Separate reporting of PBs in HD patients has been uncommon among the studies and was frequently reported as a part of obsessive-compulsive symptoms. The structural limitation of the currently used rating scales and the overlaps in neuropathology and definition of OCBs and PBs are among the main reasons for the mixed reporting of OCBs/PBs. Perseverative thinking or behavior as a separate item is found in a few assessment tools, such as the Problem Behaviors Assessment - Short form (PBA-s). Even when the item exists, it is commonly reported as a composite score in combination with the obsessive-compulsive item. In addition to the significant psychological burden in individuals with HD, PBs are associated with somatic effects (e.g., cardiovascular symptoms) and high-risk behaviors (e.g., suicide). Recognition and monitoring of PBs in HD can aid in early detection of concerning symptoms and differentiating overlapping illnesses.
Collapse
Affiliation(s)
- Shayan Abdollah Zadegan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Huntington's Disease Society of America (HDSA) Center of Excellence at the University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Luke Kupcha
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jorge Patino
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Huntington's Disease Society of America (HDSA) Center of Excellence at the University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Natalia Pessoa Rocha
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Huntington's Disease Society of America (HDSA) Center of Excellence at the University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| | - Antonio L Teixeira
- Huntington's Disease Society of America (HDSA) Center of Excellence at the University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Erin Furr Stimming
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Huntington's Disease Society of America (HDSA) Center of Excellence at the University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
8
|
Sasaki T, Makris N, Shenton ME, Savadjiev P, Rathi Y, Eckbo R, Bouix S, Yeterian E, Dickerson BC, Kubicki M. Structural connectivity of cytoarchitectonically distinct human left temporal pole subregions: a diffusion MRI tractography study. Front Neuroanat 2023; 17:1240545. [PMID: 38090110 PMCID: PMC10713846 DOI: 10.3389/fnana.2023.1240545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/09/2023] [Indexed: 02/01/2024] Open
Abstract
The temporal pole (TP) is considered one of the major paralimbic cortical regions, and is involved in a variety of functions such as sensory perception, emotion, semantic processing, and social cognition. Based on differences in cytoarchitecture, the TP can be further subdivided into smaller regions (dorsal, ventrolateral and ventromedial), each forming key nodes of distinct functional networks. However, the brain structural connectivity profile of TP subregions is not fully clarified. Using diffusion MRI data in a set of 31 healthy subjects, we aimed to elucidate the comprehensive structural connectivity of three cytoarchitectonically distinct TP subregions. Diffusion tensor imaging (DTI) analysis suggested that major association fiber pathways such as the inferior longitudinal, middle longitudinal, arcuate, and uncinate fasciculi provide structural connectivity to the TP. Further analysis suggested partially overlapping yet still distinct structural connectivity patterns across the TP subregions. Specifically, the dorsal subregion is strongly connected with wide areas in the parietal lobe, the ventrolateral subregion with areas including constituents of the default-semantic network, and the ventromedial subregion with limbic and paralimbic areas. Our results suggest the involvement of the TP in a set of extensive but distinct networks of cortical regions, consistent with its functional roles.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry, Neurology, and Radiology Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry, Neurology, and Radiology Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter Savadjiev
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Software Engineering and Information Technology, École de Technologie Supérieure, Montréal, QC, Canada
| | - Edward Yeterian
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry, Neurology, and Radiology Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
9
|
Diveica V, Riedel MC, Salo T, Laird AR, Jackson RL, Binney RJ. Graded functional organization in the left inferior frontal gyrus: evidence from task-free and task-based functional connectivity. Cereb Cortex 2023; 33:11384-11399. [PMID: 37833772 PMCID: PMC10690868 DOI: 10.1093/cercor/bhad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The left inferior frontal gyrus has been ascribed key roles in numerous cognitive domains, such as language and executive function. However, its functional organization is unclear. Possibilities include a singular domain-general function, or multiple functions that can be mapped onto distinct subregions. Furthermore, spatial transition in function may be either abrupt or graded. The present study explored the topographical organization of the left inferior frontal gyrus using a bimodal data-driven approach. We extracted functional connectivity gradients from (i) resting-state fMRI time-series and (ii) coactivation patterns derived meta-analytically from heterogenous sets of task data. We then sought to characterize the functional connectivity differences underpinning these gradients with seed-based resting-state functional connectivity, meta-analytic coactivation modeling and functional decoding analyses. Both analytic approaches converged on graded functional connectivity changes along 2 main organizational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior functional connectivity) to being more tightly coupled with perceptually driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal functional connectivity), and with the semantic network, on the other (ventral). These results provide novel insights into an overarching graded functional organization of the functional connectivity that explains its role in multiple cognitive domains.
Collapse
Affiliation(s)
- Veronica Diveica
- Department of Psychology & Cognitive Neuroscience Institute, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom
| | - Richard J Binney
- Department of Psychology & Cognitive Neuroscience Institute, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
| |
Collapse
|
10
|
Dove G. Concepts require flexible grounding. BRAIN AND LANGUAGE 2023; 245:105322. [PMID: 37713771 DOI: 10.1016/j.bandl.2023.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/30/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Research on semantic memory has a problem. On the one hand, a robust body of evidence implicates sensorimotor regions in conceptual processing. On the other hand, a different body of evidence implicates a modality independent semantic system. The standard solution to this tension is to posit a hub-and-spoke system with modality independent hubs and modality specific spokes. In this paper, I argue in support of an alternative view of grounding which remains committed to neural reenactment but emphasizes the multimodal and multilevel nature of the semantic system. This view is built upon the recognition that abstraction is a design feature of concepts. Semantic memory employs hierarchically structured representations to capture different degrees of abstraction. Grounding does not work the way that many embodied approaches have assumed.
Collapse
Affiliation(s)
- Guy Dove
- Department of Philosophy, University of Louisville, United States.
| |
Collapse
|
11
|
Alonso-Sánchez MF, Limongi R, Gati J, Palaniyappan L. Language network self-inhibition and semantic similarity in first-episode schizophrenia: A computational-linguistic and effective connectivity approach. Schizophr Res 2023; 259:97-103. [PMID: 35568676 DOI: 10.1016/j.schres.2022.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION A central feature of schizophrenia is the disorganization and impoverishment of language. Recently, we observed higher semantic similarity in first-episode-schizophrenia (FES) patients. In this study, we investigate if this aberrant similarity relates to the 'causal' connectivity between two key nodes of the word production system: inferior frontal gyrus (IFG) and the semantic-hub at the ventral anterior temporal lobe (vATL). METHODS Resting-state fMRI scans were collected from 60 participants (30 untreated FES and 30 healthy controls). The semantic distance was measured with the CoVec semantic tool based on GloVe. A spectral dynamic causal model with Parametrical Empirical Bayes was constructed modelling the intrinsic self-inhibitory and extrinsic-excitatory connections within the brain regions. We estimated the parameters of a fully connected model with the semantic distance as a covariate. RESULTS FES patients chose words with higher semantic similarity when describing the pictures compared to the HC group. Among patients, an increased semantic similarity was related with an increase in intrinsic connections within both the vATL and IFG, suggesting that reduced 'synaptic gain' in these regions likely contribute to aberrant sampling of the semantic space during discourse in schizophrenia. CONCLUSIONS Lexical impoverishment relates to increased self-inhibition in both the IFG and vATL. The associated reduction in synaptic gain may relate to reduced precision of locally generated neural activity, forcing the choice of words that are already 'activated' in a lexical network. One approach to improve word sampling may be via promoting synaptic gain via supra-physiological stimulation within the Broca's-vATL network; this proposal needs verification.
Collapse
Affiliation(s)
- María Francisca Alonso-Sánchez
- CIDCL, Fonoaudiología, Facultad de Medicina, Universidad de Valparaíso, Chile; Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Joseph Gati
- Robarts Research Institute, Western University, London, Ontario, Canada; Centre for Youth Mental Health Service Innovation, Research and Training, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Western University, London, Ontario, Canada; Centre for Youth Mental Health Service Innovation, Research and Training, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Jackson RL, Humphreys GF, Rice GE, Binney RJ, Lambon Ralph MA. A network-level test of the role of the co-activated default mode network in episodic recall and social cognition. Cortex 2023; 165:141-159. [PMID: 37285763 PMCID: PMC10284259 DOI: 10.1016/j.cortex.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 06/09/2023]
Abstract
Resting-state network research is extremely influential, yet the functions of many networks remain unknown. In part, this is due to typical (e.g., univariate) analyses independently testing the function of individual regions and not examining the full set of regions that form a network whilst co-activated. Connectivity is dynamic and the function of a region may change based on its current connections. Therefore, determining the function of a network requires assessment at this network-level. Yet popular theories implicating the default mode network (DMN) in episodic memory and social cognition, rest principally upon analyses performed at the level of individual brain regions. Here we use independent component analysis to formally test the role of the DMN in episodic and social processing at the network level. As well as an episodic retrieval task, two independent datasets were employed to assess DMN function across the breadth of social cognition; a person knowledge judgement and a theory of mind task. Each task dataset was separated into networks of co-activated regions. In each, the co-activated DMN, was identified through comparison to an a priori template and its relation to the task model assessed. This co-activated DMN did not show greater activity in episodic or social tasks than high-level baseline conditions. Thus, no evidence was found to support hypotheses that the co-activated DMN is involved in explicit episodic or social tasks at a network-level. The networks associated with these processes are described. Implications for prior univariate findings and the functional significance of the co-activated DMN are considered.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK; MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Grace E Rice
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
13
|
Yan J, Li W, Zhang T, Zhang J, Jin Z, Li L. Structural and functional neural substrates underlying the concreteness effect. Brain Struct Funct 2023; 228:1493-1510. [PMID: 37389616 DOI: 10.1007/s00429-023-02668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
The concreteness effect refers to the advantage in speed and accuracy of processing concrete words over abstract words. Previous studies have shown that the processing of the two types of words is mediated by distinct neural mechanisms, but these studies were mainly conducted with task-based functional magnetic resonance imaging. This study investigates the associations between the concreteness effect and grey matter volume (GMV) of brain regions as well as resting-state functional connectivity (rsFC) of these identified regions. The results show that the GMV of left inferior frontal gyrus (IFG), right middle temporal gyrus (MTG), right supplementary motor area and right anterior cingulate cortex (ACC) negatively correlates with the concreteness effect. The rsFC of the left IFG, the right MTG and the right ACC with the nodes, mainly in default mode network, frontoparietal network and dorsal attention network positively correlates with the concreteness effect. The GMV and rsFC jointly and respectively predict the concreteness effect in individuals. In conclusion, stronger connectivity amongst functional networks and higher coherent engagement of the right hemisphere predict a greater difference in the verbal memory of abstract and concrete words.
Collapse
Affiliation(s)
- Jing Yan
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- School of Foreign Languages, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wenjuan Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tingting Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Sun M, Gabrielson B, Akhonda MABS, Yang H, Laport F, Calhoun V, Adali T. A Scalable Approach to Independent Vector Analysis by Shared Subspace Separation for Multi-Subject fMRI Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:5333. [PMID: 37300060 PMCID: PMC10256022 DOI: 10.3390/s23115333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Joint blind source separation (JBSS) has wide applications in modeling latent structures across multiple related datasets. However, JBSS is computationally prohibitive with high-dimensional data, limiting the number of datasets that can be included in a tractable analysis. Furthermore, JBSS may not be effective if the data's true latent dimensionality is not adequately modeled, where severe overparameterization may lead to poor separation and time performance. In this paper, we propose a scalable JBSS method by modeling and separating the "shared" subspace from the data. The shared subspace is defined as the subset of latent sources that exists across all datasets, represented by groups of sources that collectively form a low-rank structure. Our method first provides the efficient initialization of the independent vector analysis (IVA) with a multivariate Gaussian source prior (IVA-G) specifically designed to estimate the shared sources. Estimated sources are then evaluated regarding whether they are shared, upon which further JBSS is applied separately to the shared and non-shared sources. This provides an effective means to reduce the dimensionality of the problem, improving analyses with larger numbers of datasets. We apply our method to resting-state fMRI datasets, demonstrating that our method can achieve an excellent estimation performance with significantly reduced computational costs.
Collapse
Affiliation(s)
- Mingyu Sun
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| | - Ben Gabrielson
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| | - Mohammad Abu Baker Siddique Akhonda
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| | - Hanlu Yang
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| | - Francisco Laport
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
- CITIC Research Center, University of A Coruña, 15008 A Coruña, Spain
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA;
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| |
Collapse
|
15
|
Martin S, Williams KA, Saur D, Hartwigsen G. Age-related reorganization of functional network architecture in semantic cognition. Cereb Cortex 2023; 33:4886-4903. [PMID: 36190445 PMCID: PMC10110455 DOI: 10.1093/cercor/bhac387] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cognitive aging is associated with widespread neural reorganization processes in the human brain. However, the behavioral impact of such reorganization is not well understood. The current neuroimaging study investigated age differences in the functional network architecture during semantic word retrieval in young and older adults. Combining task-based functional connectivity, graph theory and cognitive measures of fluid and crystallized intelligence, our findings show age-accompanied large-scale network reorganization even when older adults have intact word retrieval abilities. In particular, functional networks of older adults were characterized by reduced decoupling between systems, reduced segregation and efficiency, and a larger number of hub regions relative to young adults. Exploring the predictive utility of these age-related changes in network topology revealed high, albeit less efficient, performance for older adults whose brain graphs showed stronger dedifferentiation and reduced distinctiveness. Our results extend theoretical accounts on neurocognitive aging by revealing the compensational potential of the commonly reported pattern of network dedifferentiation when older adults can rely on their prior knowledge for successful task processing. However, we also demonstrate the limitations of such compensatory reorganization and show that a youth-like network architecture in terms of balanced integration and segregation is associated with more economical processing.
Collapse
Affiliation(s)
- Sandra Martin
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Kathleen A Williams
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Jung J, Lambon Ralph MA. Distinct but cooperating brain networks supporting semantic cognition. Cereb Cortex 2023; 33:2021-2036. [PMID: 35595542 PMCID: PMC9977382 DOI: 10.1093/cercor/bhac190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/25/2022] [Accepted: 04/07/2022] [Indexed: 02/02/2023] Open
Abstract
Semantic cognition is a complex multifaceted brain function involving multiple processes including sensory, semantic, and domain-general cognitive systems. However, it remains unclear how these systems cooperate with each other to achieve effective semantic cognition. Here, we used independent component analysis (ICA) to investigate the functional brain networks that support semantic cognition. We used a semantic judgment task and a pattern-matching control task, each with 2 levels of difficulty, to disentangle task-specific networks from domain-general networks. ICA revealed 2 task-specific networks (the left-lateralized semantic network [SN] and a bilateral, extended semantic network [ESN]) and domain-general networks including the frontoparietal network (FPN) and default mode network (DMN). SN was coupled with the ESN and FPN but decoupled from the DMN, whereas the ESN was synchronized with the FPN alone and did not show a decoupling with the DMN. The degree of decoupling between the SN and DMN was associated with semantic task performance, with the strongest decoupling for the poorest performing participants. Our findings suggest that human higher cognition is achieved by the multiple brain networks, serving distinct and shared cognitive functions depending on task demands, and that the neural dynamics between these networks may be crucial for efficient semantic cognition.
Collapse
Affiliation(s)
- JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Science Unit (CBU), University of Cambridge, Cambridge, CB2 7EF United Kingdom
| |
Collapse
|
17
|
Chiou R, Cox CR, Lambon Ralph MA. Bipartite functional fractionation within the neural system for social cognition supports the psychological continuity of self versus other. Cereb Cortex 2023; 33:1277-1299. [PMID: 35394005 PMCID: PMC9930627 DOI: 10.1093/cercor/bhac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Research of social neuroscience establishes that regions in the brain's default-mode network (DN) and semantic network (SN) are engaged by socio-cognitive tasks. Research of the human connectome shows that DN and SN regions are both situated at the transmodal end of a cortical gradient but differ in their loci along this gradient. Here we integrated these 2 bodies of research, used the psychological continuity of self versus other as a "test-case," and used functional magnetic resonance imaging to investigate whether these 2 networks would encode social concepts differently. We found a robust dissociation between the DN and SN-while both networks contained sufficient information for decoding broad-stroke distinction of social categories, the DN carried more generalizable information for cross-classifying across social distance and emotive valence than did the SN. We also found that the overarching distinction of self versus other was a principal divider of the representational space while social distance was an auxiliary factor (subdivision, nested within the principal dimension), and this representational landscape was more manifested in the DN than in the SN. Taken together, our findings demonstrate how insights from connectome research can benefit social neuroscience and have implications for clarifying the 2 networks' differential contributions to social cognition.
Collapse
Affiliation(s)
| | - Christopher R Cox
- Department of Psychology, Louisiana State University, LA 70803, Baton Rouge, United States
| | - Matthew A Lambon Ralph
- MRC Cognition & Brain Science Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| |
Collapse
|
18
|
Diveica V, Riedel MC, Salo T, Laird AR, Jackson RL, Binney RJ. Graded functional organisation in the left inferior frontal gyrus: evidence from task-free and task-based functional connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526818. [PMID: 36778322 PMCID: PMC9915604 DOI: 10.1101/2023.02.02.526818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The left inferior frontal gyrus (LIFG) has been ascribed key roles in numerous cognitive domains, including language, executive function and social cognition. However, its functional organisation, and how the specific areas implicated in these cognitive domains relate to each other, is unclear. Possibilities include that the LIFG underpins a domain-general function or, alternatively, that it is characterized by functional differentiation, which might occur in either a discrete or a graded pattern. The aim of the present study was to explore the topographical organisation of the LIFG using a bimodal data-driven approach. To this end, we extracted functional connectivity (FC) gradients from 1) the resting-state fMRI time-series of 150 participants (77 female), and 2) patterns of co-activation derived meta-analytically from task data across a diverse set of cognitive domains. We then sought to characterize the FC differences driving these gradients with seed-based resting-state FC and meta-analytic co-activation modelling analyses. Both analytic approaches converged on an FC profile that shifted in a graded fashion along two main organisational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior LIFG) to being more tightly coupled with perceptually-driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal LIFG), and with the semantic network, on the other (ventral). These results provide novel insights into a graded functional organisation of the LIFG underpinning both task-free and task-constrained mental states, and suggest that the LIFG is an interface between distinct large-scale functional networks.
Collapse
Affiliation(s)
- Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, School of Human and Behavioural Sciences, Bangor University, Wales, UK
| | - Michael C. Riedel
- Department of Physics, Florida International University, Miami, FL, USA
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Rebecca L. Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, UK
| | - Richard J. Binney
- Cognitive Neuroscience Institute, Department of Psychology, School of Human and Behavioural Sciences, Bangor University, Wales, UK
| |
Collapse
|
19
|
Coexistence of the social semantic effect and non-semantic effect in the default mode network. Brain Struct Funct 2023; 228:321-339. [PMID: 35394555 DOI: 10.1007/s00429-022-02476-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
Neuroimaging studies have found both semantic and non-semantic effects in the default mode network (DMN), leading to an intense debate on the role of the DMN in semantic processes. Four different views have been proposed: (1) the general semantic view holds that the DMN contains several hub regions supporting general semantic processes; (2) the non-semantic view holds that the semantic effects observed in the DMN (especially the ventral angular gyrus) are confounded by difficulty and do not reflect semantic processing per se; (3) the multifunction view holds that the same areas in the DMN can support both semantic and non-semantic functions; and (4) the multisystem view holds that the DMN contains multiple subnetworks supporting different aspects of semantic processes separately. Using an fMRI experiment, we found that in one of the subnetworks of the DMN, called the social semantic network, all areas showed social semantic activation and difficulty-induced deactivation. The distributions of two non-semantic effects, that is, difficulty-induced and task-induced deactivations, showed dissociation in the DMN. In the bilateral angular gyri, the ventral subdivisions showed social semantic activation independent of difficulty, while the dorsal subdivisions showed no semantic effect but difficulty-induced activation. Our findings provide two insights into the semantic and non-semantic functions of the DMN, which are consistent with both the multisystem and multifunction views: first, the same areas of the DMN can support both social semantic and non-semantic functions; second, similar to the multiple semantic effects of the DMN, the non-semantic effects also vary across its subsystems.
Collapse
|
20
|
Hodgson VJ, Lambon Ralph MA, Jackson RL. The cross-domain functional organization of posterior lateral temporal cortex: insights from ALE meta-analyses of 7 cognitive domains spanning 12,000 participants. Cereb Cortex 2022; 33:4990-5006. [PMID: 36269034 PMCID: PMC10110446 DOI: 10.1093/cercor/bhac394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
The posterior lateral temporal cortex is implicated in many verbal, nonverbal, and social cognitive domains and processes. Yet without directly comparing these disparate domains, the region's organization remains unclear; do distinct processes engage discrete subregions, or could different domains engage shared neural correlates and processes? Here, using activation likelihood estimation meta-analyses, the bilateral posterior lateral temporal cortex subregions engaged in 7 domains were directly compared. These domains comprised semantics, semantic control, phonology, biological motion, face processing, theory of mind, and representation of tools. Although phonology and biological motion were predominantly associated with distinct regions, other domains implicated overlapping areas, perhaps due to shared underlying processes. Theory of mind recruited regions implicated in semantic representation, tools engaged semantic control areas, and faces engaged subregions for biological motion and theory of mind. This cross-domain approach provides insight into how posterior lateral temporal cortex is organized and why.
Collapse
Affiliation(s)
- Victoria J Hodgson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Rebecca L Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.,Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
21
|
Mancuso L, Cavuoti-Cabanillas S, Liloia D, Manuello J, Buzi G, Cauda F, Costa T. Tasks activating the default mode network map multiple functional systems. Brain Struct Funct 2022; 227:1711-1734. [PMID: 35179638 PMCID: PMC9098625 DOI: 10.1007/s00429-022-02467-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
Recent developments in network neuroscience suggest reconsidering what we thought we knew about the default mode network (DMN). Although this network has always been seen as unitary and associated with the resting state, a new deconstructive line of research is pointing out that the DMN could be divided into multiple subsystems supporting different functions. By now, it is well known that the DMN is not only deactivated by tasks, but also involved in affective, mnestic, and social paradigms, among others. Nonetheless, it is starting to become clear that the array of activities in which it is involved, might also be extended to more extrinsic functions. The present meta-analytic study is meant to push this boundary a bit further. The BrainMap database was searched for all experimental paradigms activating the DMN, and their activation likelihood estimation maps were then computed. An additional map of task-induced deactivations was also created. A multidimensional scaling indicated that such maps could be arranged along an anatomo-psychological gradient, which goes from midline core activations, associated with the most internal functions, to that of lateral cortices, involved in more external tasks. Further multivariate investigations suggested that such extrinsic mode is especially related to reward, semantic, and emotional functions. However, an important finding was that the various activation maps were often different from the canonical representation of the resting-state DMN, sometimes overlapping with it only in some peripheral nodes, and including external regions such as the insula. Altogether, our findings suggest that the intrinsic-extrinsic opposition may be better understood in the form of a continuous scale, rather than a dichotomy.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | | | - Donato Liloia
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Giulia Buzi
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | - Franco Cauda
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| |
Collapse
|
22
|
Williams KA, Numssen O, Hartwigsen G. Task-specific network interactions across key cognitive domains. Cereb Cortex 2022; 32:5050-5071. [PMID: 35158372 PMCID: PMC9667178 DOI: 10.1093/cercor/bhab531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Human cognition is organized in distributed networks in the brain. Although distinct specialized networks have been identified for different cognitive functions, previous work also emphasizes the overlap of key cognitive domains in higher level association areas. The majority of previous studies focused on network overlap and dissociation during resting states whereas task-related network interactions across cognitive domains remain largely unexplored. A better understanding of network overlap and dissociation during different cognitive tasks may elucidate flexible (re-)distribution of resources during human cognition. The present study addresses this issue by providing a broad characterization of large-scale network dynamics in three key cognitive domains. Combining prototypical tasks of the larger domains of attention, language, and social cognition with whole-brain multivariate activity and connectivity approaches, we provide a spatiotemporal characterization of multiple large-scale, overlapping networks that differentially interact across cognitive domains. We show that network activity and interactions increase with increased cognitive complexity across domains. Interaction patterns reveal a common core structure across domains as well as dissociable domain-specific network activity. The observed patterns of activation and deactivation of overlapping and strongly coupled networks provide insight beyond region-specific activity within a particular cognitive domain toward a network perspective approach across diverse key cognitive functions.
Collapse
Affiliation(s)
- Kathleen A Williams
- Address correspondence to Kathleen A. Williams, Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
23
|
Meersmans K, Storms G, De Deyne S, Bruffaerts R, Dupont P, Vandenberghe R. Orienting to Different Dimensions of Word Meaning Alters the Representation of Word Meaning in Early Processing Regions. Cereb Cortex 2021; 32:3302-3317. [PMID: 34963135 PMCID: PMC9340395 DOI: 10.1093/cercor/bhab416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/14/2022] Open
Abstract
Conscious processing of word meaning can be guided by attention. In this event-related functional magnetic resonance imaging study in 22 healthy young volunteers, we examined in which regions orienting attention to two fundamental and generic dimensions of word meaning, concreteness versus valence, alters the semantic representations coded in activity patterns. The stimuli consisted of 120 nouns in written or spoken modality which varied factorially along the concreteness and valence axis. Participants performed a forced-choice judgement of either concreteness or valence. Rostral and subgenual anterior cingulate were strongly activated during valence judgement, and precuneus and the dorsal attention network during concreteness judgement. Task and stimulus type interacted in right posterior fusiform gyrus, left lingual gyrus, precuneus, and insula. In the right posterior fusiform gyrus and the left lingual gyrus, the correlation between the pairwise similarity in activity patterns evoked by words and the pairwise distance in valence and concreteness was modulated by the direction of attention, word valence or concreteness. The data indicate that orienting attention to basic dimensions of word meaning exerts effects on the representation of word meaning in more peripheral nodes, such as the ventral occipital cortex, rather than the core perisylvian language regions.
Collapse
Affiliation(s)
- Karen Meersmans
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Gerrit Storms
- Laboratory of Experimental Psychology, 3000 Leuven, Belgium
| | - Simon De Deyne
- Computational Cognitive Science Lab, Melbourne School of Psychological Sciences, University of Melbourne, 3010 Melbourne, Australia
| | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.,Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Establishing a role of the semantic control network in social cognitive processing: A meta-analysis of functional neuroimaging studies. Neuroimage 2021; 245:118702. [PMID: 34742940 DOI: 10.1016/j.neuroimage.2021.118702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
The contribution and neural basis of cognitive control is under-specified in many prominent models of socio-cognitive processing. Important outstanding questions include whether there are multiple, distinguishable systems underpinning control and whether control is ubiquitously or selectively engaged across different social behaviours and task demands. Recently, it has been proposed that the regulation of social behaviours could rely on brain regions specialised in the controlled retrieval of semantic information, namely the anterior inferior frontal gyrus (IFG) and posterior middle temporal gyrus. Accordingly, we investigated for the first time whether the neural activation commonly found in social functional neuroimaging studies extends to these 'semantic control' regions. We conducted five coordinate-based meta-analyses to combine results of 499 fMRI/PET experiments and identified the brain regions consistently involved in semantic control, as well as four social abilities: theory of mind, trait inference, empathy and moral reasoning. This allowed an unprecedented parallel review of the neural networks associated with each of these cognitive domains. The results confirmed that the anterior left IFG region involved in semantic control is reliably engaged in all four social domains. This supports the hypothesis that social cognition is partly regulated by the neurocognitive system underpinning semantic control.
Collapse
|
25
|
Wang Y, Tang S, Zhang L, Bu X, Lu L, Li H, Gao Y, Hu X, Kuang W, Jia Z, Sweeney JA, Gong Q, Huang X. Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features. Br J Psychiatry 2021; 219:606-613. [PMID: 35048829 DOI: 10.1192/bjp.2021.103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a clinically and biologically heterogeneous syndrome. Identifying discrete subtypes of illness with distinguishing neurobiological substrates and clinical features is a promising strategy for guiding personalised therapeutics. AIMS This study aimed to identify depression subtypes with correlated patterns of functional network connectivity and clinical symptoms by clustering patients according to a weighted linear combination of both features in a relatively large, medication-naïve depression sample. METHOD We recruited 115 medication-naïve adults with MDD and 129 matched healthy controls, and evaluated all participants with magnetic resonance imaging. We used regularised canonical correlation analysis to identify component mapping relationships between functional network connectivity and symptom profiles, and K-means clustering was used to define distinct subtypes of patients. RESULTS Two subtypes of MDD were identified: insomnia-dominated subtype 1 and anhedonia-dominated subtype 2. Subtype 1 was characterised by abnormal hyperconnectivity within the ventral attention network and sleep maintenance insomnia. Subtype 2 was characterised by abnormal hypoconnectivity in the subcortical and dorsal attention networks, and prominent anhedonia symptoms. CONCLUSIONS Our study identified two distinct subtypes of patients with specific neurobiological and clinical symptom profiles. These findings advance understanding of the biological and clinical heterogeneity of MDD, offering a pathway for defining categorical subtypes of illness via consideration of both biological and clinical features.
Collapse
Affiliation(s)
- Yanlin Wang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China
| | - Shi Tang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China
| | - Lianqing Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China
| | - Xuan Bu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China
| | - Lu Lu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China
| | - Hailong Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China
| | - Yingxue Gao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China
| | - Xinyu Hu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital, Sichuan University, China
| | - Zhiyun Jia
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, China; and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - John A Sweeney
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China; and Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Ohio, USA
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, China; and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, China; and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
26
|
Briggs RG, Tanglay O, Dadario NB, Young IM, Fonseka RD, Hormovas J, Dhanaraj V, Lin YH, Kim SJ, Bouvette A, Chakraborty AR, Milligan TM, Abraham CJ, Anderson CD, O'Donoghue DL, Sughrue ME. The Unique Fiber Anatomy of Middle Temporal Gyrus Default Mode Connectivity. Oper Neurosurg (Hagerstown) 2021; 21:E8-E14. [PMID: 33929019 DOI: 10.1093/ons/opab109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The middle temporal gyrus (MTG) is understood to play a role in language-related tasks such as lexical comprehension and semantic cognition. However, a more specific understanding of its key white matter connections could promote the preservation of these functions during neurosurgery. OBJECTIVE To provide a detailed description of the underlying white matter tracts associated with the MTG to improve semantic preservation during neurosurgery. METHODS Tractography was performed using diffusion imaging obtained from 10 healthy adults from the Human Connectome Project. All tracts were mapped between cerebral hemispheres with a subsequent laterality index calculated based on resultant tract volumes. Ten postmortem dissections were performed for ex vivo validation of the tractography based on qualitative visual agreement. RESULTS We identified 2 major white matter bundles leaving the MTG: the inferior longitudinal fasciculus and superior longitudinal fasciculus. In addition to long association fibers, a unique linear sequence of U-shaped fibers was identified, possibly representing a form of visual semantic transfer down the temporal lobe. CONCLUSION We elucidate the underlying fiber-bundle anatomy of the MTG, an area highly involved in the brain's language network. Improved understanding of the unique, underlying white matter connections in and around this area may augment our overall understanding of language processing as well as the involvement of higher order cerebral networks like the default mode network in these functions.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery , University of Southern California, Los Angeles, California, USA
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Nicholas B Dadario
- Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey, USA
| | | | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Sihyong J Kim
- Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey, USA
| | - Adam Bouvette
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Arpan R Chakraborty
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Ty M Milligan
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Carol J Abraham
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Christopher D Anderson
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Daniel L O'Donoghue
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
27
|
Jackson RL, Rogers TT, Lambon Ralph MA. Reverse-engineering the cortical architecture for controlled semantic cognition. Nat Hum Behav 2021; 5:774-786. [PMID: 33462472 PMCID: PMC7611056 DOI: 10.1038/s41562-020-01034-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/09/2020] [Indexed: 12/02/2022]
Abstract
We employ a reverse-engineering approach to illuminate the neurocomputational building blocks that combine to support controlled semantic cognition: the storage and context-appropriate use of conceptual knowledge. By systematically varying the structure of a computational model and assessing the functional consequences, we identified the architectural properties that best promote some core functions of the semantic system. Semantic cognition presents a challenging test case, as the brain must achieve two seemingly contradictory functions: abstracting context-invariant conceptual representations across time and modalities, while producing specific context-sensitive behaviours appropriate for the immediate task. These functions were best achieved in models possessing a single, deep multimodal hub with sparse connections from modality-specific regions, and control systems acting on peripheral rather than deep network layers. The reverse-engineered model provides a unifying account of core findings in the cognitive neuroscience of controlled semantic cognition, including evidence from anatomy, neuropsychology and functional brain imaging.
Collapse
Affiliation(s)
- Rebecca L Jackson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Timothy T Rogers
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
28
|
Jiang S, Li H, Liu L, Yao D, Luo C. Voxel-wise functional connectivity of the default mode network in epilepsies: a systematic review and meta-analysis. Curr Neuropharmacol 2021; 20:254-266. [PMID: 33823767 PMCID: PMC9199542 DOI: 10.2174/1570159x19666210325130624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Default Mode Network (DMN) is recognized to be involved in the generation and propagation of epileptic activities in various epilepsies. Converging evidence has suggested disturbed Functional Connectivity (FC) in epilepsies, which was inferred to be related to underlying pathological mechanisms. However, abnormal changes of FC in DMN revealed by different studies are controversial, which obscures the role of DMN in distinct epilepsies. Objective: The present work aims to investigate the voxel-wise FC in DMN across epilepsies. Methods: A systematic review was conducted on 22 published articles before October 2020, indexed in PubMed and Web of Science. A meta-analysis with a random-effect model was performed using the effect-size signed differential mapping approach. Subgroup analyses were performed in three groups: Idiopathic Generalized Epilepsy (IGE), mixed Temporal Lobe Epilepsy (TLE), and mixed Focal Epilepsy (FE) with different foci. Results: The meta-analysis suggested commonly decreased FC in mesial prefrontal cortices across different epilepsies. Additionally decreased FC in posterior DMN was observed in IGE. The TLE showed decreased FC in temporal lobe regions and increased FC in the dorsal posterior cingulate cortex. Interestingly, an opposite finding in the ventral and dorsal middle frontal gyrus was observed in TLE. The FE demonstrated increased FC in the cuneus.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Linli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| |
Collapse
|
29
|
Jackson RL, Bajada CJ, Lambon Ralph MA, Cloutman LL. The Graded Change in Connectivity across the Ventromedial Prefrontal Cortex Reveals Distinct Subregions. Cereb Cortex 2021; 30:165-180. [PMID: 31329834 PMCID: PMC7029692 DOI: 10.1093/cercor/bhz079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
The functional heterogeneity of the ventromedial prefrontal cortex (vmPFC) suggests it may include distinct functional subregions. To date these have not been well elucidated. Regions with differentiable connectivity (and as a result likely dissociable functions) may be identified using emergent data-driven approaches. However, prior parcellations of the vmPFC have only considered hard splits between distinct regions, although both hard and graded connectivity changes may exist. Here we determine the full pattern of change in structural and functional connectivity across the vmPFC for the first time and extract core distinct regions. Both structural and functional connectivity varied along a dorsomedial to ventrolateral axis from relatively dorsal medial wall regions to relatively lateral basal orbitofrontal cortex. The pattern of connectivity shifted from default mode network to sensorimotor and multimodal semantic connections. This finding extends the classical distinction between primate medial and orbital regions by demonstrating a similar gradient in humans for the first time. Additionally, core distinct regions in the medial wall and orbitofrontal cortex were identified that may show greater correspondence to functional differences than prior hard parcellations. The possible functional roles of the orbitofrontal cortex and medial wall are discussed.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Claude J Bajada
- Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology (Zochonis Building), University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Williams MW, Ulrich N, Woods SP. Semantic Clustering During Verbal List Learning Is Associated With Employment Status in a Community Sample. Percept Mot Skills 2021; 128:1235-1251. [PMID: 33641505 DOI: 10.1177/0031512521996875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ability to learn and remember verbal information is highly relevant to many work roles and environments, but we know little about the underlying cognitive mechanisms of those associations. This study examined the hypothesis that unemployment is associated with decreased spontaneous use of higher-order encoding strategies deployed during list learning and recall. Participants were 120 employed and 59 unemployed community-dwelling adults who completed the California Verbal Learning Test-Second Edition (CVLT-II) as part of a broader neuropsychological assessment. Standardized measures of semantic, serial, and subjective clustering were generated from the CVLT-II. After adjusting for data-driven covariates, a significant interaction emerged between employment status and clustering strategy, whereby participants in the employed group exhibited significantly higher scores on semantic clustering, but not serial or subjective clustering, than the unemployed group. The semantic clustering slope score was higher among the employed group and was positively associated with executive functions and declarative memory. These findings suggest that higher-order semantic organizational strategies during supraspan list learning may be relevant to maintaining gainful employment (e.g., mentally organizing work-related instructions and task lists). Future studies might examine semantic clustering in relation to employment changes and work performance, as well as the potential benefit of metacognitive interventions for learning and employment success.
Collapse
Affiliation(s)
- Michael W Williams
- Department of Psychology, University of Houston, Houston, Texas, United States
| | - Nathalie Ulrich
- Department of Psychology, University of Houston, Houston, Texas, United States
| | - Steven Paul Woods
- Department of Psychology, University of Houston, Houston, Texas, United States
| |
Collapse
|
31
|
Jackson RL. The neural correlates of semantic control revisited. Neuroimage 2021; 224:117444. [PMID: 33059049 PMCID: PMC7779562 DOI: 10.1016/j.neuroimage.2020.117444] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 11/01/2022] Open
Abstract
Semantic control, the ability to selectively access and manipulate meaningful information on the basis of context demands, is a critical component of semantic cognition. The precise neural correlates of semantic control are disputed, with particular debate surrounding parietal involvement, the spatial extent of the posterior temporal contribution and network lateralisation. Here semantic control is revisited, utilising improved analysis techniques and a decade of additional data to refine our understanding of the network. A meta-analysis of 925 peaks over 126 contrasts illuminated a left-focused network consisting of inferior frontal gyrus, posterior middle temporal gyrus, posterior inferior temporal gyrus and dorsomedial prefrontal cortex. This extended the temporal region implicated, and found no parietal involvement. Although left-lateralised overall, relative lateralisation varied across the implicated regions. Supporting analyses confirmed the multimodal nature of the semantic control network and situated it within the wider set of regions implicated in semantic cognition.
Collapse
Affiliation(s)
- Rebecca L Jackson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom.
| |
Collapse
|
32
|
Both activation and deactivation of functional networks support increased sentence processing costs. Neuroimage 2020; 225:117475. [PMID: 33169698 DOI: 10.1016/j.neuroimage.2020.117475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
The research on the neural correlates underlying the language system has gradually moved away from the traditional Broca-Wernicke framework to a network perspective in the past 15 years. Language processing is found to be supported by the co-activation of both core and peripheral brain regions. However, the dynamic co-activation patterns of these brain regions serving different language functions remain to be fully revealed. The present functional magnetic resonance imaging (fMRI) study focused on sentence processing at different syntactic complexity levels to examine how the co-activation of different brain networks will be modulated by increased processing costs. Chinese relative clauses were used to probe the two dimensions of syntactic complexity: embeddedness (left-branching vs. center-embedded) and gap-filler dependency (subject-gap vs. object-gap) using the general linear model (GLM) approach, independent component analysis (ICA) and graph theoretical analysis. In contrast to localized activation revealed by the GLM approach, ICA identified more extensive networks both positively and negatively correlated with the task. We found that the posterior default mode network was anti-correlated to the gap-filler integration costs with increased deactivation for the left-branching object relative clauses compared to subject relative clauses, suggesting the involvement of this network in leveraging the cognitive resources based on the complexity level of the language task. Concurrent activation and deactivation of networks were found to be associated with the higher costs induced by center-embedding and its interaction with gap-filler integration. The graph theoretical analysis further unveiled that center-embeddedness imposed more attentional demand on the subject relative clause, as characterized by its higher degree and strength in the ventral attention network, and higher processing costs of syntactic reanalysis on the object relative clause, as characterized by increased intermodular connections of the language network with other networks. The results suggest that network activation and deactivation profiles are modulated by different dimensions of syntactic complexity to serve the higher demand of creating a coherent semantic representation.
Collapse
|
33
|
Benhamou E, Marshall CR, Russell LL, Hardy CJD, Bond RL, Sivasathiaseelan H, Greaves CV, Friston KJ, Rohrer JD, Warren JD, Razi A. The neurophysiological architecture of semantic dementia: spectral dynamic causal modelling of a neurodegenerative proteinopathy. Sci Rep 2020; 10:16321. [PMID: 33004840 PMCID: PMC7530731 DOI: 10.1038/s41598-020-72847-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/08/2020] [Indexed: 01/11/2023] Open
Abstract
The selective destruction of large-scale brain networks by pathogenic protein spread is a ubiquitous theme in neurodegenerative disease. Characterising the circuit architecture of these diseases could illuminate both their pathophysiology and the computational architecture of the cognitive processes they target. However, this is challenging using standard neuroimaging techniques. Here we addressed this issue using a novel technique-spectral dynamic causal modelling-that estimates the effective connectivity between brain regions from resting-state fMRI data. We studied patients with semantic dementia-the paradigmatic disorder of the brain system mediating world knowledge-relative to healthy older individuals. We assessed how the effective connectivity of the semantic appraisal network targeted by this disease was modulated by pathogenic protein deposition and by two key phenotypic factors, semantic impairment and behavioural disinhibition. The presence of pathogenic protein in SD weakened the normal inhibitory self-coupling of network hubs in both antero-mesial temporal lobes, with development of an abnormal excitatory fronto-temporal projection in the left cerebral hemisphere. Semantic impairment and social disinhibition were linked to a similar but more extensive profile of abnormally attenuated inhibitory self-coupling within temporal lobe regions and excitatory projections between temporal and inferior frontal regions. Our findings demonstrate that population-level dynamic causal modelling can disclose a core pathophysiological feature of proteinopathic network architecture-attenuation of inhibitory connectivity-and the key elements of distributed neuronal processing that underwrite semantic memory.
Collapse
Affiliation(s)
- Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
| | - Charles R Marshall
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Caroline V Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Adeel Razi
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
34
|
Dynamic Properties of Human Default Mode Network in Eyes-Closed and Eyes-Open. Brain Topogr 2020; 33:720-732. [PMID: 32803623 DOI: 10.1007/s10548-020-00792-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
The default mode network (DMN) reflects spontaneous activity in the resting human brain. Previous studies examined the difference in static functional connectivity (sFC) of the DMN between eyes-closed (EC) and eyes-open (EO) using the resting-state functional magnetic resonance imaging (rs-fMRI) data. However, it remains unclear about the difference in dynamic FC (dFC) of the DMN between EC and EO. To this end, we acquired rs-fMRI data from 19 subjects in two different statues (EC and EO) and selected a seed region-of-interest (ROI) at the posterior cingulate cortex (PCC) to generate the sFC map. We identified the DMN consisting of ten clusters that were significantly correlated with the PCC. By using a sliding-window approach, we analyzed the dFC of the DMN. Then, the Newman's modularity algorithm was applied to identify dFC states based on nodal total connectivity strength in each sliding-window. In addition, graph-theory based network analysis was applied to detect dynamic topological properties of the DMN. We identified three group-level dFC states (State1, 2 and 3) that reflects the strength of dFC within the DMN between EC and EO in different time. The following results were reached: (1) no significant difference in sFC between EC and EO, (2) dFC was lower in State2 but higher in State3 in EC than in EO, (3) lower clustering coefficient, local efficiency, and global efficiency, but higher characteristic path length in State2 in EC than in EO, and (4) lower nodal strength in the precuneus (PCUN), PCC, angular gyrus (ANG), middle temporal gyrus (MTG) and medial prefrontal cortex (MPFC) in State3 in EC. These results suggested different resting statuses, EC and EO, may induce different time-varying neural activity in the DMN.
Collapse
|
35
|
Branco P, Seixas D, Castro SL. Mapping language with resting-state functional magnetic resonance imaging: A study on the functional profile of the language network. Hum Brain Mapp 2020; 41:545-560. [PMID: 31609045 PMCID: PMC7268076 DOI: 10.1002/hbm.24821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/05/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (rsfMRI) is a promising technique for language mapping that does not require task-execution. This can be an advantage when language mapping is limited by poor task performance, as is common in clinical settings. Previous studies have shown that language maps extracted with rsfMRI spatially match their task-based homologs, but no study has yet demonstrated the direct participation of the rsfMRI language network in language processes. This demonstration is critically important because spatial similarity can be influenced by the overlap of domain-general regions that are recruited during task-execution. Furthermore, it is unclear which processes are captured by the language network: does it map rather low-level or high-level (e.g., syntactic and lexico-semantic) language processes? We first identified the rsfMRI language network and then investigated task-based responses within its regions when processing stimuli of increasing linguistic content: symbols, pseudowords, words, pseudosentences and sentences. The language network responded only to language stimuli (not to symbols), and higher linguistic content elicited larger brain responses. The left fronto-parietal, the default mode, and the dorsal attention networks were examined and yet none showed language involvement. These findings demonstrate for the first time that the language network extracted through rsfMRI is able to map language in the brain, including regions subtending higher-level syntactic and semantic processes.
Collapse
Affiliation(s)
- Paulo Branco
- Centre for PsychologyUniversity of PortoPortoPortugal
- Department of BiomedicineUniversity of PortoPortoPortugal
| | - Daniela Seixas
- Department of BiomedicineUniversity of PortoPortoPortugal
| | - São L. Castro
- Centre for PsychologyUniversity of PortoPortoPortugal
| |
Collapse
|
36
|
Degrees of lateralisation in semantic cognition: Evidence from intrinsic connectivity. Neuroimage 2019; 202:116089. [DOI: 10.1016/j.neuroimage.2019.116089] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/27/2019] [Accepted: 08/08/2019] [Indexed: 11/15/2022] Open
|