1
|
Ibáñez A, Kühne K, Miklashevsky A, Monaco E, Muraki E, Ranzini M, Speed LJ, Tuena C. Ecological Meanings: A Consensus Paper on Individual Differences and Contextual Influences in Embodied Language. J Cogn 2023; 6:59. [PMID: 37841670 PMCID: PMC10573819 DOI: 10.5334/joc.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/20/2022] [Indexed: 10/17/2023] Open
Abstract
Embodied theories of cognition consider many aspects of language and other cognitive domains as the result of sensory and motor processes. In this view, the appraisal and the use of concepts are based on mechanisms of simulation grounded on prior sensorimotor experiences. Even though these theories continue receiving attention and support, increasing evidence indicates the need to consider the flexible nature of the simulation process, and to accordingly refine embodied accounts. In this consensus paper, we discuss two potential sources of variability in experimental studies on embodiment of language: individual differences and context. Specifically, we show how factors contributing to individual differences may explain inconsistent findings in embodied language phenomena. These factors include sensorimotor or cultural experiences, imagery, context-related factors, and cognitive strategies. We also analyze the different contextual modulations, from single words to sentences and narratives, as well as the top-down and bottom-up influences. Similarly, we review recent efforts to include cultural and language diversity, aging, neurodegenerative diseases, and brain disorders, as well as bilingual evidence into the embodiment framework. We address the importance of considering individual differences and context in clinical studies to drive translational research more efficiently, and we indicate recommendations on how to correctly address these issues in future research. Systematically investigating individual differences and context may contribute to understanding the dynamic nature of simulation in language processes, refining embodied theories of cognition, and ultimately filling the gap between cognition in artificial experimental settings and cognition in the wild (i.e., in everyday life).
Collapse
Affiliation(s)
- Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés and CONICET, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US
- Trinity College Dublin (TCD), Dublin, Ireland, IE
| | - Katharina Kühne
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, DE
| | - Alex Miklashevsky
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, DE
| | - Elisa Monaco
- Laboratory for Cognitive and Neurological Sciences, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, CH
| | - Emiko Muraki
- Department of Psychology & Hotchkiss Brain Institute, University of Calgary, CA
| | | | | | - Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, IT
| |
Collapse
|
2
|
Hazelton JL, Fittipaldi S, Fraile-Vazquez M, Sourty M, Legaz A, Hudson AL, Cordero IG, Salamone PC, Yoris A, Ibañez A, Piguet O, Kumfor F. Thinking versus feeling: How interoception and cognition influence emotion recognition in behavioural-variant frontotemporal dementia, Alzheimer's disease, and Parkinson's disease. Cortex 2023; 163:66-79. [PMID: 37075507 PMCID: PMC11177281 DOI: 10.1016/j.cortex.2023.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/18/2022] [Accepted: 02/17/2023] [Indexed: 04/05/2023]
Abstract
Disease-specific mechanisms underlying emotion recognition difficulties in behavioural-variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD) are unknown. Interoceptive accuracy, accurately detecting internal cues (e.g., one's heart beating), and cognitive abilities are candidate mechanisms underlying emotion recognition. One hundred and sixty-eight participants (52 bvFTD; 41 AD; 24 PD; 51 controls) were recruited. Emotion recognition was measured via the Facial Affect Selection Task or the Mini-Social and Emotional Assessment Emotion Recognition Task. Interoception was assessed with a heartbeat detection task. Participants pressed a button each time they: 1) felt their heartbeat (Interoception); or 2) heard a recorded heartbeat (Exteroception-control). Cognition was measured via the Addenbrooke's Cognitive Examination-III or the Montreal Cognitive Assessment. Voxel-based morphometry analyses identified neural correlates associated with emotion recognition and interoceptive accuracy. All patient groups showed worse emotion recognition and cognition than controls (all P's ≤ .008). Only the bvFTD showed worse interoceptive accuracy than controls (P < .001). Regression analyses revealed that in bvFTD worse interoceptive accuracy predicted worse emotion recognition (P = .008). Whereas worse cognition predicted worse emotion recognition overall (P < .001). Neuroimaging analyses revealed that the insula, orbitofrontal cortex, and amygdala were involved in emotion recognition and interoceptive accuracy in bvFTD. Here, we provide evidence for disease-specific mechanisms for emotion recognition difficulties. In bvFTD, emotion recognition impairment is driven by inaccurate perception of the internal milieu. Whereas, in AD and PD, cognitive impairment likely underlies emotion recognition deficits. The current study furthers our theoretical understanding of emotion and highlights the need for targeted interventions.
Collapse
Affiliation(s)
- Jessica L Hazelton
- The University of Sydney, School of Psychology, Sydney, Australia; The University of Sydney, Brain & Mind Centre, Sydney, Australia
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC) Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Matias Fraile-Vazquez
- Cognitive Neuroscience Center (CNC) Universidad de San Andres, Buenos Aires, Argentina
| | - Marion Sourty
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; The University of Sydney, School of Engineering, Sydney, Australia
| | - Agustina Legaz
- Cognitive Neuroscience Center (CNC) Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Argentina
| | - Anna L Hudson
- Flinders University, College of Medicine and Public Health, Adelaide, Australia; Neuroscience Research Australia (NeuRA), Sydney, Australia; The University of New South Wales, School of Medical Sciences, Sydney, Australia
| | - Indira Garcia Cordero
- Cognitive Neuroscience Center (CNC) Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Paula C Salamone
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Adrian Yoris
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Institute of Cognitive and Translational Neuroscience (INCYT), Buenos Aires, Argentina
| | - Agustín Ibañez
- Cognitive Neuroscience Center (CNC) Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute, University of California, San Francisco, USA; Trinity College Dublin (TCD), Dublin, Ireland
| | - Olivier Piguet
- The University of Sydney, School of Psychology, Sydney, Australia; The University of Sydney, Brain & Mind Centre, Sydney, Australia
| | - Fiona Kumfor
- The University of Sydney, School of Psychology, Sydney, Australia; The University of Sydney, Brain & Mind Centre, Sydney, Australia.
| |
Collapse
|
3
|
Legaz A, Abrevaya S, Dottori M, Campo CG, Birba A, Caro MM, Aguirre J, Slachevsky A, Aranguiz R, Serrano C, Gillan CM, Leroi I, García AM, Fittipaldi S, Ibañez A. Multimodal mechanisms of human socially reinforced learning across neurodegenerative diseases. Brain 2021; 145:1052-1068. [PMID: 34529034 PMCID: PMC9128375 DOI: 10.1093/brain/awab345] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Social feedback can selectively enhance learning in diverse domains. Relevant
neurocognitive mechanisms have been studied mainly in healthy persons, yielding
correlational findings. Neurodegenerative lesion models, coupled with multimodal
brain measures, can complement standard approaches by revealing direct
multidimensional correlates of the phenomenon. To this end, we assessed socially reinforced and non-socially reinforced learning
in 40 healthy participants as well as persons with behavioural variant
frontotemporal dementia (n = 21), Parkinson’s
disease (n = 31) and Alzheimer’s disease
(n = 20). These conditions are typified by
predominant deficits in social cognition, feedback-based learning and
associative learning, respectively, although all three domains may be partly
compromised in the other conditions. We combined a validated behavioural task
with ongoing EEG signatures of implicit learning (medial frontal negativity) and
offline MRI measures (voxel-based morphometry). In healthy participants, learning was facilitated by social feedback relative to
non-social feedback. In comparison with controls, this effect was specifically
impaired in behavioural variant frontotemporal dementia and Parkinson’s
disease, while unspecific learning deficits (across social and non-social
conditions) were observed in Alzheimer’s disease. EEG results showed
increased medial frontal negativity in healthy controls during social feedback
and learning. Such a modulation was selectively disrupted in behavioural variant
frontotemporal dementia. Neuroanatomical results revealed extended
temporo-parietal and fronto-limbic correlates of socially reinforced learning,
with specific temporo-parietal associations in behavioural variant
frontotemporal dementia and predominantly fronto-limbic regions in
Alzheimer’s disease. In contrast, non-socially reinforced learning was
consistently linked to medial temporal/hippocampal regions. No associations with
cortical volume were found in Parkinson’s disease. Results are consistent
with core social deficits in behavioural variant frontotemporal dementia, subtle
disruptions in ongoing feedback-mechanisms and social processes in
Parkinson’s disease and generalized learning alterations in
Alzheimer’s disease. This multimodal approach highlights the impact of
different neurodegenerative profiles on learning and social feedback. Our findings inform a promising theoretical and clinical agenda in the fields of
social learning, socially reinforced learning and neurodegeneration.
Collapse
Affiliation(s)
- Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Universidad Nacional de Córdoba. Facultad de Psicología, Córdoba, CU320, Argentina
| | - Sofía Abrevaya
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, C1021, Argentina
| | - Martín Dottori
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina
| | - Cecilia González Campo
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - Miguel Martorell Caro
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, C1021, Argentina
| | - Julieta Aguirre
- Instituto de Investigaciones Psicológicas (IIPsi), CONICET, Universidad Nacional de Córdoba, Córdoba, CB5000, Argentina
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital delSalvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile.,Gerosciences Center for Brain Health and Metabolism, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, Chile.,Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Chile
| | | | - Cecilia Serrano
- Neurología Cognitiva, Hospital Cesar Milstein, Buenos Aires, C1221, Argentina
| | - Claire M Gillan
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA.,Department of Psychology, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Iracema Leroi
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA.,Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Dublin 2, Ireland.,Faculty of Education, National University of Cuyo, Mendoza, M5502JMA, Argentina.,Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Universidad Nacional de Córdoba. Facultad de Psicología, Córdoba, CU320, Argentina
| | - Agustín Ibañez
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
4
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
5
|
Salamone PC, Legaz A, Sedeño L, Moguilner S, Fraile-Vazquez M, Campo CG, Fittipaldi S, Yoris A, Miranda M, Birba A, Galiani A, Abrevaya S, Neely A, Caro MM, Alifano F, Villagra R, Anunziata F, Okada de Oliveira M, Pautassi RM, Slachevsky A, Serrano C, García AM, Ibañez A. Interoception Primes Emotional Processing: Multimodal Evidence from Neurodegeneration. J Neurosci 2021; 41:4276-4292. [PMID: 33827935 PMCID: PMC8143206 DOI: 10.1523/jneurosci.2578-20.2021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Recent frameworks in cognitive neuroscience and behavioral neurology underscore interoceptive priors as core modulators of negative emotions. However, the field lacks experimental designs manipulating the priming of emotions via interoception and exploring their multimodal signatures in neurodegenerative models. Here, we designed a novel task that involves interoceptive and control-exteroceptive priming conditions followed by post-interoception and post-exteroception facial emotion recognition (FER). We recruited 114 participants, including healthy controls (HCs) as well as patients with behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease (PD), and Alzheimer's disease (AD). We measured online EEG modulations of the heart-evoked potential (HEP), and associations with both brain structural and resting-state functional connectivity patterns. Behaviorally, post-interoception negative FER was enhanced in HCs but selectively disrupted in bvFTD and PD, with AD presenting generalized disruptions across emotion types. Only bvFTD presented impaired interoceptive accuracy. Increased HEP modulations during post-interoception negative FER was observed in HCs and AD, but not in bvFTD or PD patients. Across all groups, post-interoception negative FER correlated with the volume of the insula and the ACC. Also, negative FER was associated with functional connectivity along the (a) salience network in the post-interoception condition, and along the (b) executive network in the post-exteroception condition. These patterns were selectively disrupted in bvFTD (a) and PD (b), respectively. Our approach underscores the multidimensional impact of interoception on emotion, while revealing a specific pathophysiological marker of bvFTD. These findings inform a promising theoretical and clinical agenda in the fields of nteroception, emotion, allostasis, and neurodegeneration.SIGNIFICANCE STATEMENT We examined whether and how emotions are primed by interoceptive states combining multimodal measures in healthy controls and neurodegenerative models. In controls, negative emotion recognition and ongoing HEP modulations were increased after interoception. These patterns were selectively disrupted in patients with atrophy across key interoceptive-emotional regions (e.g., the insula and the cingulate in frontotemporal dementia, frontostriatal networks in Parkinson's disease), whereas persons with Alzheimer's disease presented generalized emotional processing abnormalities with preserved interoceptive mechanisms. The integration of both domains was associated with the volume and connectivity (salience network) of canonical interoceptive-emotional hubs, critically involving the insula and the anterior cingulate. Our study reveals multimodal markers of interoceptive-emotional priming, laying the groundwork for new agendas in cognitive neuroscience and behavioral neurology.
Collapse
Affiliation(s)
- Paula C Salamone
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agustina Legaz
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sebastián Moguilner
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Nuclear Medicine School Foundation, National Commission of Atomic Energy, Mendoza, Argentina
| | | | - Cecilia Gonzalez Campo
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sol Fittipaldi
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adrián Yoris
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Magdalena Miranda
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Agustina Birba
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agostina Galiani
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Sofía Abrevaya
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Alejandra Neely
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Miguel Martorell Caro
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Florencia Alifano
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Roque Villagra
- Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Florencia Anunziata
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Maira Okada de Oliveira
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
- Department of Neurology, Hospital Santa Marcelina, Sao Paulo, SP Brazil
| | - Ricardo M Pautassi
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile
- Gerosciences Center for Brain Health and Metabolism, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Serrano
- Neurología Cognitiva, Hospital Cesar Milstein, Buenos Aires, Argentina
| | - Adolfo M García
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Faculty of Education, National University of Cuyo, Mendoza, M5502JMA, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Agustín Ibañez
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
6
|
Ibanez A, Yokoyama JS, Possin KL, Matallana D, Lopera F, Nitrini R, Takada LT, Custodio N, Sosa Ortiz AL, Avila-Funes JA, Behrens MI, Slachevsky A, Myers RM, Cochran JN, Brusco LI, Bruno MA, Brucki SMD, Pina-Escudero SD, Okada de Oliveira M, Donnelly Kehoe P, Garcia AM, Cardona JF, Santamaria-Garcia H, Moguilner S, Duran-Aniotz C, Tagliazucchi E, Maito M, Longoria Ibarrola EM, Pintado-Caipa M, Godoy ME, Bakman V, Javandel S, Kosik KS, Valcour V, Miller BL. The Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat): Driving Multicentric Research and Implementation Science. Front Neurol 2021; 12:631722. [PMID: 33776890 PMCID: PMC7992978 DOI: 10.3389/fneur.2021.631722] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Dementia is becoming increasingly prevalent in Latin America, contrasting with stable or declining rates in North America and Europe. This scenario places unprecedented clinical, social, and economic burden upon patients, families, and health systems. The challenges prove particularly pressing for conditions with highly specific diagnostic and management demands, such as frontotemporal dementia. Here we introduce a research and networking initiative designed to tackle these ensuing hurdles, the Multi-partner consortium to expand dementia research in Latin America (ReDLat). First, we present ReDLat's regional research framework, aimed at identifying the unique genetic, social, and economic factors driving the presentation of frontotemporal dementia and Alzheimer's disease in Latin America relative to the US. We describe ongoing ReDLat studies in various fields and ongoing research extensions. Then, we introduce actions coordinated by ReDLat and the Latin America and Caribbean Consortium on Dementia (LAC-CD) to develop culturally appropriate diagnostic tools, regional visibility and capacity building, diplomatic coordination in local priority areas, and a knowledge-to-action framework toward a regional action plan. Together, these research and networking initiatives will help to establish strong cross-national bonds, support the implementation of regional dementia plans, enhance health systems' infrastructure, and increase translational research collaborations across the continent.
Collapse
Affiliation(s)
- Agustin Ibanez
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- School of Psychology, Center for Social and Cognitive Neuroscience, Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile
| | - Jennifer S. Yokoyama
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Katherine L. Possin
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Diana Matallana
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Mental Health Unit, Hospital Universitario Santa Fe de Bogotá, Bogotá, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Ricardo Nitrini
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Nilton Custodio
- Unit Cognitive Impairment and Dementia Prevention, Cognitive Neurology Center, Peruvian Institute of Neurosciences, Lima, Perú
| | - Ana Luisa Sosa Ortiz
- Instituto Nacional de Neurologia y Neurocirugia MVS, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - José Alberto Avila-Funes
- Department of Geriatrics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | - Maria Isabel Behrens
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Facultad de Medicina Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Neurociencia, Facultad de Medicina Universidad de Chile, Santiago, Chile
- Clínica Alemana Santiago, Universidad del Desarrollo, Santiago, Chile
| | - Andrea Slachevsky
- Clínica Alemana Santiago, Universidad del Desarrollo, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, Institute of Biomedical Sciences, Neuroscience and East Neuroscience, Santiago, Chile
- Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Faculty of Medicine, Hospital del Salvador, University of Chile, Santiago, Chile
| | - Richard M. Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | | | - Luis Ignacio Brusco
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- ALZAR – Alzheimer, Buenos Aires, Argentina
| | - Martin A. Bruno
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad Ciencias Médicas, Instituto Ciencias Biomédicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Sonia M. D. Brucki
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Santa Marcelina, São Paulo, São Paulo, Brazil
| | - Stefanie Danielle Pina-Escudero
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Maira Okada de Oliveira
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Santa Marcelina, São Paulo, São Paulo, Brazil
| | - Patricio Donnelly Kehoe
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Multimedia Signal Processing Group - Neuroimage Division, French-Argentine International Center for Information and Systems Sciences, Rosario, Argentina
| | - Adolfo M. Garcia
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Faculty of Education, National University of Cuyo, Mendoza, Argentina
| | | | - Hernando Santamaria-Garcia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Ph.D. Program in Neuroscience, Department of Psychiatry, Physiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sebastian Moguilner
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Claudia Duran-Aniotz
- School of Psychology, Center for Social and Cognitive Neuroscience, Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile
| | - Enzo Tagliazucchi
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Maito
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | | | - Maritza Pintado-Caipa
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Unit Cognitive Impairment and Dementia Prevention, Cognitive Neurology Center, Peruvian Institute of Neurosciences, Lima, Perú
| | - Maria Eugenia Godoy
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Vera Bakman
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Shireen Javandel
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kenneth S. Kosik
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Victor Valcour
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce L. Miller
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Bertoux M, Duclos H, Caillaud M, Segobin S, Merck C, de La Sayette V, Belliard S, Desgranges B, Eustache F, Laisney M. When affect overlaps with concept: emotion recognition in semantic variant of primary progressive aphasia. Brain 2021; 143:3850-3864. [PMID: 33221846 PMCID: PMC7805810 DOI: 10.1093/brain/awaa313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
The most recent theories of emotions have postulated that their expression and recognition depend on acquired conceptual knowledge. In other words, the conceptual knowledge derived from prior experiences guide our ability to make sense of such emotions. However, clear evidence is still lacking to contradict more traditional theories, considering emotions as innate, distinct and universal physiological states. In addition, whether valence processing (i.e. recognition of the pleasant/unpleasant character of emotions) also relies on semantic knowledge is yet to be determined. To investigate the contribution of semantic knowledge to facial emotion recognition and valence processing, we conducted a behavioural and neuroimaging study in 20 controls and 16 patients with the semantic variant of primary progressive aphasia, a neurodegenerative disease that is prototypical of semantic memory impairment, and in which an emotion recognition deficit has already been described. We assessed participants’ knowledge of emotion concepts and recognition of 10 basic (e.g. anger) or self-conscious (e.g. embarrassment) facial emotional expressions presented both statically (images) and dynamically (videos). All participants also underwent a brain MRI. Group comparisons revealed deficits in both emotion concept knowledge and emotion recognition in patients, independently of type of emotion and presentation. These measures were significantly correlated with each other in patients and with semantic fluency in patients and controls. Neuroimaging analyses showed that both emotion recognition and emotion conceptual knowledge were correlated with reduced grey matter density in similar areas within frontal ventral, temporal, insular and striatal regions, together with white fibre degeneration in tracts connecting frontal regions with each other as well as with temporal regions. We then performed a qualitative analysis of responses made during the facial emotion recognition task, by delineating valence errors (when one emotion was mistaken for another of a different valence), from other errors made during the emotion recognition test. We found that patients made more valence errors. The number of valence errors correlated with emotion conceptual knowledge as well as with reduced grey matter volume in brain regions already retrieved to correlate with this score. Specificity analyses allowed us to conclude that this cognitive relationship and anatomical overlap were not mediated by a general effect of disease severity. Our findings suggest that semantic knowledge guides the recognition of emotions and is also involved in valence processing. Our study supports a constructionist view of emotion recognition and valence processing, and could help to refine current theories on the interweaving of semantic knowledge and emotion processing.
Collapse
Affiliation(s)
- Maxime Bertoux
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,Univ. Lille, Inserm, CHU Lille, UMRS1172, Lille Neurosciences & Cognition Institute, F-59000 Lille, France
| | - Harmony Duclos
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,CRP-CPO, Picardy Jules Verne University, Amiens, France
| | - Marie Caillaud
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| | - Shailendra Segobin
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| | - Catherine Merck
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,Neurology Department, Pontchaillou University Hospital, Rennes, France
| | - Vincent de La Sayette
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,Neurology Department, Caen University Hospital, Caen, France
| | - Serge Belliard
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,Neurology Department, Pontchaillou University Hospital, Rennes, France
| | - Béatrice Desgranges
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| | - Francis Eustache
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| | - Mickaël Laisney
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| |
Collapse
|
8
|
Ibanez A, Schulte M. Situated minds: conceptual and emotional blending in neurodegeneration and beyond. Brain 2021; 143:3523-3525. [PMID: 33439982 DOI: 10.1093/brain/awaa392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This scientific commentary refers to ‘When affect overlaps with concept: emotion recognition in semantic variant of primary progressive aphasia’, by Bertoux et al. (doi:10.1093/brain/awaa313).
Collapse
Affiliation(s)
- Agustin Ibanez
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina.,National Scientific and Technical Research Council (CONICET), Argentina.,Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez, Santiago de Chile, Chile.,Universidad Autónoma del Caribe, Colombia.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), USA
| | - Michael Schulte
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina
| |
Collapse
|
9
|
Richter F, Ibáñez A. Time is body: Multimodal evidence of crosstalk between interoception and time estimation. Biol Psychol 2021; 159:108017. [PMID: 33450326 DOI: 10.1016/j.biopsycho.2021.108017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Theoretical approaches propose a blending between interoception and time estimation. Interoception might constitute a neurophysiological mechanism for encoding duration. However, no study has assessed the convergence between interoception and time estimation using behavioral, neurophysiological, and functional anatomy signatures. We examined the multimodal convergence between interoception and time estimation using a two-fold approach. In study 1, we developed a dual design combining interoception (measuring heartbeat detection - HBD, and heartbeat evoked potential - HEP) with a time estimation paradigm (TEP, estimation of duration of a 120 s interval). In study 2, we performed a conjoint metanalysis (Multi-level Kernel Density Analysis, MKDA) of neuroimaging, including reports of interoception and time estimation. Both studies provide convergent evidence of time estimation's significant involvement in behavioral, electrophysiological (enhanced HEP), and neuroimaging (overlapping cluster in the right insula and operculum) signatures of interoception. Convergent results from both studies offer direct support for a shared mechanism of interoception and time estimation.
Collapse
Affiliation(s)
- Fabian Richter
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina.
| | - Agustín Ibáñez
- Cognitive Neurosience Center (CNC), Universidad de San Andrés, Argentina; National Scientific and Technical Research Council (CONICET), Argentina; Center for Social and Cognitive Neuroscience (CSCN), Latin American Institute of Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile; Universidad Autónoma del Caribe, Colombia; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), US.
| |
Collapse
|
10
|
Garcia-Cordero I, Migeot J, Fittipaldi S, Aquino A, Campo CG, García A, Ibáñez A. Metacognition of emotion recognition across neurodegenerative diseases. Cortex 2021; 137:93-107. [PMID: 33609899 DOI: 10.1016/j.cortex.2020.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Metacognition (monitoring) of emotion recognition is fundamental for social interactions. Correct recognition of and confidence in the emotional meaning inferred from others' faces are fundamental for guiding and adjusting interpersonal behavior. Yet, although emotion recognition impairments are well documented across neurodegenerative diseases, the role of metacognition in this domain remains poorly understood. Here, we evaluate multimodal neurocognitive markers of metacognition in 83 subjects, encompassing patients with behavioral variant frontotemporal dementia [bvFTD, n = 18], Alzheimer's disease [AD, n = 27], and demographically-matched controls (n = 38). Participants performed a classical facial emotion recognition task and, after each trial, they rated their confidence in their performance. We examined two measures of metacognition: (i) calibration: how well confidence tracks accuracy; and (ii) a metacognitive index (MI) capturing the magnitude of the difference between confidence and accuracy. Then, whole-brain grey matter volume and fMRI-derived resting-state functional connectivity were analyzed to track associations with metacognition. Results showed that metacognition deficits were linked to basic emotion recognition. Metacognition of negative emotions was compromised in patients, especially disgust in bvFTD as well as sadness in AD. Metacognition impairments were associated with reduced volume of fronto-temporo-insular and subcortical areas in bvFTD and fronto-parietal regions in AD. Metacognition deficits were associated with disconnection of large-scale fronto-posterior networks for both groups. This study reveals a link between emotion recognition and metacognition in neurodegenerative diseases. The characterization of metacognitive impairments in bvFTD and AD would be relevant for understanding patients' daily life changes in social behavior.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Joaquín Migeot
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Sol Fittipaldi
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | | | - Cecilia Gonzalez Campo
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Adolfo García
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Faculty of Education, National University of Cuyo, Mendoza, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile; Global Brain Health Institute, University of California, San Francisco, USA
| | - Agustín Ibáñez
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile; Global Brain Health Institute, University of California, San Francisco, USA.
| |
Collapse
|
11
|
Baez S, Herrera E, Trujillo C, Cardona JF, Diazgranados JA, Pino M, Santamaría-García H, Ibáñez A, García AM. Classifying Parkinson's Disease Patients With Syntactic and Socio-emotional Verbal Measures. Front Aging Neurosci 2020; 12:586233. [PMID: 33328964 PMCID: PMC7719774 DOI: 10.3389/fnagi.2020.586233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023] Open
Abstract
Frontostriatal disorders, such as Parkinson's disease (PD), are characterized by progressive disruption of cortico-subcortical dopaminergic loops involved in diverse higher-order domains, including language. Indeed, syntactic and emotional language tasks have emerged as potential biomarkers of frontostriatal disturbances. However, relevant studies and models have typically considered these linguistic dimensions in isolation, overlooking the potential advantages of targeting multidimensional markers. Here, we examined whether patient classification can be improved through the joint assessment of both dimensions using sentential stimuli. We evaluated 31 early PD patients and 24 healthy controls via two syntactic measures (functional-role assignment, parsing of long-distance dependencies) and a verbal task tapping social emotions (envy, Schadenfreude) and compared their classification accuracy when analyzed in isolation and in combination. Complementarily, we replicated our approach to discriminate between patients on and off medication. Results showed that specific measures of each dimension were selectively impaired in PD. In particular, joint analysis of outcomes in functional-role assignment and Schadenfreude improved the classification accuracy of patients and controls, irrespective of their overall cognitive and affective state. These results suggest that multidimensional linguistic assessments may better capture the complexity and multi-functional impact of frontostriatal disruptions, highlighting their potential contributions in the ongoing quest for sensitive markers of PD.
Collapse
Affiliation(s)
- Sandra Baez
- Department of Psychology, Universidad de los Andes, Bogotá, Colombia
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia
| | | | - Juan F. Cardona
- Instituto de Psicología, Universidad del Valle, Cali, Colombia
| | | | - Mariana Pino
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Hernando Santamaría-García
- Centro de Memoria y Cognición, Intellectus-Hospital Universitario San Ignacio, Bogotá, Colombia
- Department of Psychiatry-Physiology and Ph.D. Program in Neuroscience, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Agustín Ibáñez
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
- Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Adolfo M. García
- Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
12
|
Legaz A, Yoris A, Sedeño L, Abrevaya S, Martorell M, Alifano F, García AM, Ibañez A. Heart-brain interactions during social and cognitive stress in hypertensive disease: A multidimensional approach. Eur J Neurosci 2020; 55:2836-2850. [PMID: 32965070 PMCID: PMC8231407 DOI: 10.1111/ejn.14979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
Hypertensive disease (HTD), a prominent risk factor for cardiovascular and cerebrovascular diseases, is characterized by elevated stress-proneness. Since stress levels are underpinned by both cardiac and neural factors, multidimensional insights are required to robustly understand their disruption in HTD. Yet, despite their crucial relevance, heart rate variability (HRV) and multimodal neurocognitive markers of stress in HTD remain controversial and unexplored respectively. To bridge this gap, we studied cardiodynamic as well as electrophysiological and neuroanatomical measures of stress in HTD patients and healthy controls. Both groups performed the Trier Social Stress Test (TSST), a validated stress-inducing task comprising a baseline and a mental stress period. During both stages, we assessed a sensitive HRV parameter (the low frequency/high frequency [LF/HF ratio]) and an online neurophysiological measure (the heartbeat-evoked potential [HEP]). Also, we obtained neuroanatomical data via voxel-based morphometry (VBM) for correlation with online markers. Relative to controls, HTD patients exhibited increased LF/HF ratio and greater HEP modulations during baseline, reduced changes between baseline and stress periods, and lack of significant stress-related HRV modulations associated with the grey matter volume of putative frontrostriatal regions. Briefly, HTD patients presented signs of stress-related autonomic imbalance, reflected in a potential basal stress overload and a lack of responsiveness to acute psychosocial stress, accompanied by neurophysiological and neuroanatomical alterations. These multimodal insights underscore the relevance of neurocognitive data for developing innovations in the characterization, prognosis and treatment of HTD and other conditions with autonomic imbalance. More generally, these findings may offer new insights into heart-brain interactions.
Collapse
Affiliation(s)
- Agustina Legaz
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adrián Yoris
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sofía Abrevaya
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Miguel Martorell
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Florencia Alifano
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Adolfo M García
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo, Mendoza, Argentina.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Agustín Ibañez
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|