1
|
Konsman JP. Expanding the notion of mechanism to further understanding of biopsychosocial disorders? Depression and medically-unexplained pain as cases in point. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 103:123-136. [PMID: 38157672 DOI: 10.1016/j.shpsa.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Evidence-Based Medicine has little consideration for mechanisms and philosophers of science and medicine have recently made pleas to increase the place of mechanisms in the medical evidence hierarchy. However, in this debate the notions of mechanisms seem to be limited to 'mechanistic processes' and 'complex-systems mechanisms,' understood as 'componential causal systems'. I believe that this will not do full justice to how mechanisms are used in biological, psychological and social sciences and, consequently, in a more biopsychosocial approach to medicine. Here, I propose, following (Kuorikoski, 2009), to pay more attention to 'abstract forms of interaction' mechanisms. The present work scrutinized review articles on depression and medically unexplained pain, which are considered to be of multifactorial pathogenesis, for their use of mechanisms. In review articles on these disorders there seemed to be a range of uses between more 'abstract forms of interaction' and 'componential causal system' mechanisms. I therefore propose to expand the notions of mechanisms considered in medicine to include that of more 'abstract forms of interaction' to better explain and manage biopsychosocial disorders.
Collapse
Affiliation(s)
- Jan Pieter Konsman
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
2
|
Orepic P, Iannotti GR, Haemmerli J, Goga C, Park HD, Betka S, Blanke O, Michel CM, Bondolfi G, Schaller K. Experimentally-evidenced personality alterations following meningioma resection: A case report. Cortex 2023; 168:157-166. [PMID: 37716111 DOI: 10.1016/j.cortex.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 09/18/2023]
Abstract
Personality changes following neurosurgical procedures remain poorly understood and pose a major concern for patients, rendering a strong need for predictive biomarkers. Here we report a case of a female patient in her 40s who underwent resection of a large sagittal sinus meningioma with bilateral extension, including resection and ligation of the superior sagittal sinus, that resulted in borderline personality disorder. Importantly, we captured clinically-observed personality changes in a series of experiments assessing self-other voice discrimination, one of the experimental markers for self-consciousness. In all experiments, the patient consistently confused self- and other voices - i.e., she misattributed other-voice stimuli to herself and self-voice stimuli to others. Moreover, the electroencephalogram (EEG) microstate, that was in healthy participants observed when hearing their own voice, in this patient occurred for other-voice stimuli. We hypothesize that the patient's personality alterations resulted from a gradual development of a venous collateral hemodynamic network that impacted venous drainage of brain areas associated with self-consciousness. In addition, resection and ligation of the superior sagittal sinus significantly aggravated personality alterations through postoperative decompensation of a direct frontal lobe compression. Experimentally mirroring clinical observations, these findings are of high relevance for developing biomarkers of post-surgical personality alterations.
Collapse
Affiliation(s)
- Pavo Orepic
- Laboratory of Cognitive Neuroscience, NeuroX Institute and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Giannina Rita Iannotti
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland; Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Haemmerli
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cristina Goga
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hyeong-Dong Park
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Centre, Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Sophie Betka
- Laboratory of Cognitive Neuroscience, NeuroX Institute and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, NeuroX Institute and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne and Geneva, Switzerland
| | - Guido Bondolfi
- Department of Psychiatry, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Song Z, Fan X, Dong J, Zhang X, Xu X, Li W, Pu F. The third-person perspective full-body illusion induced by visual-tactile stimulation in virtual reality for stroke patients. Conscious Cogn 2023; 115:103578. [PMID: 37738769 DOI: 10.1016/j.concog.2023.103578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
This paper attempts to induce the third-person perspective full body illusion (3PP-FBI) with virtual reality (VR) in stroke patients. Nineteen individuals with stroke were recruited. The 3PP-FBI induction method, which was well-established in healthy individuals, using synchronous visual-tactile stimulation on one body part was used. Questionnaire scores and proprioceptive drift values were collected under different conditions for characterizing the induced 3PP-FBI. Results showed that synchronous visual-tactile stimulation of a single body part (back or upper limb) was sufficient to elicit 3PP-FBI in stroke patients, forming a sense of ownership (SOO) over the entire virtual body. Moreover, the intensity of 3PP-FBI was stronger when the back was stimulated, compared to stimulating the impaired upper limb. This study demonstrated the viability of visual-guided rehabilitation training while having a SOO to a virtual body from the third-person perspective, in anticipation of achieving better rehabilitation outcome for movements beyond the first-person perspective.
Collapse
Affiliation(s)
- Zhe Song
- State Key Laboratory of Virtual Reality Technology and System, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoya Fan
- Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, Dalian, Liaoning 116620, China
| | - Jiaoyang Dong
- State Key Laboratory of Virtual Reality Technology and System, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiting Zhang
- State Key Laboratory of Virtual Reality Technology and System, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaotian Xu
- State Key Laboratory of Virtual Reality Technology and System, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Wei Li
- Department of Rehabilitation, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256600, China.
| | - Fang Pu
- State Key Laboratory of Virtual Reality Technology and System, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Research Unit of Virtual Body and Virtual Surgery Technologies, Chinese Academy of Medical Sciences, 2019RU004, China.
| |
Collapse
|
4
|
Bassolino M, Franza M, Guanziroli E, Sorrentino G, Canzoneri E, Colombo M, Crema A, Bertoni T, Mastria G, Vissani M, Sokolov AA, Micera S, Molteni F, Blanke O, Serino A. Body and peripersonal space representations in chronic stroke patients with upper limb motor deficits. Brain Commun 2022; 4:fcac179. [PMID: 35950092 PMCID: PMC9356734 DOI: 10.1093/braincomms/fcac179] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The continuous stream of multisensory information between the brain and the body during body–environment interactions is crucial to maintain the updated representation of the perceived dimensions of body parts (metric body representation) and the space around the body (the peripersonal space). Such flow of multisensory signals is often limited by upper limb sensorimotor deficits after stroke. This would suggest the presence of systematic distortions of metric body representation and peripersonal space in chronic patients with persistent sensorimotor deficits. We assessed metric body representation and peripersonal space representation in 60 chronic stroke patients with unilateral upper limb motor deficits, in comparison with age-matched healthy controls. We also administered a questionnaire capturing explicit feelings towards the affected limb. These novel measures were analysed with respect to patients’ clinical profiles and brain lesions to investigate the neural and functional origin of putative deficits. Stroke patients showed distortions in metric body representation of the affected limb, characterized by an underestimation of the arm length and an alteration of the arm global shape. A descriptive lesion analysis (subtraction analysis) suggests that these distortions may be more frequently associated with lesions involving the superior corona radiata and the superior frontal gyrus. Peripersonal space representation was also altered, with reduced multisensory facilitation for stimuli presented around the affected limb. These deficits were more common in patients reporting pain during motion. Explorative lesion analyses (subtraction analysis, disconnection maps) suggest that the peripersonal space distortions would be more frequently associated with lesions involving the parietal operculum and white matter frontoparietal connections. Moreover, patients reported altered feelings towards the affected limb, which were associated with right brain damage, proprioceptive deficits and a lower cognitive profile. These results reveal implicit and explicit distortions involving metric body representation, peripersonal space representation and the perception of the affected limb in chronic stroke patients. These findings might have important clinical implications for the longitudinal monitoring and the treatments of often-neglected deficits in body perception and representation.
Collapse
Affiliation(s)
- Michela Bassolino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
- Institute of Health, School of Health Sciences, HES-SO Valais-Wallis , Sion 1950 , Switzerland
| | - Matteo Franza
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital Como , Costa Masnaga 23845 , Italy
| | - Giuliana Sorrentino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
| | - Elisa Canzoneri
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
| | - Maria Colombo
- Villa Beretta Rehabilitation Center, Valduce Hospital Como , Costa Masnaga 23845 , Italy
| | - Andrea Crema
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- AGO Neurotechnologies, Sàrl , Geneva 1201 , Switzerland
| | - Tommaso Bertoni
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
| | - Giulio Mastria
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
| | - Matteo Vissani
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pontedera, Pisa 56025 , Italy
| | - Arseny A Sokolov
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London , London WC1N 3BG , UK
- Service de Neurologie, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV) , Lausanne 1011 , Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pontedera, Pisa 56025 , Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital Como , Costa Masnaga 23845 , Italy
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School , Geneva 1211 , Switzerland
| | - Andrea Serino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
| |
Collapse
|
7
|
Klaus MP, Wyssen GC, Frank SM, Malloni WM, Greenlee MW, Mast FW. Vestibular Stimulation Modulates Neural Correlates of Own-body Mental Imagery. J Cogn Neurosci 2019; 32:484-496. [PMID: 31682567 DOI: 10.1162/jocn_a_01496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There is growing evidence that vestibular information is not only involved in reflexive eye movements and the control of posture but it also plays an important role in higher order cognitive processes. Previous behavioral research has shown that concomitant vestibular stimuli influence performance in tasks that involve imagined self-rotations. These results suggest that imagined and perceived body rotations share common mechanisms. However, the nature and specificity of these effects remain largely unknown. Here, we investigated the neural mechanisms underlying this vestibulocognitive interaction. Participants (n = 20) solved an imagined self-rotation task during caloric vestibular stimulation. We found robust main effects of caloric vestibular stimulation in the core region of the vestibular network, including the rolandic operculum and insula bilaterally, and of the cognitive task in parietal and frontal regions. Interestingly, we found an interaction of stimulation and task in the left inferior parietal lobe, suggesting that this region represents the modulation of imagined body rotations by vestibular input. This result provides evidence that the inferior parietal lobe plays a crucial role in the neural integration of mental and physical body rotation.
Collapse
|