1
|
Malania M, Lin YS, Hörmandinger C, Werner JS, Greenlee MW, Plank T. Training-induced changes in population receptive field properties in visual cortex: Impact of eccentric vision training on population receptive field properties and the crowding effect. J Vis 2024; 24:7. [PMID: 38771584 PMCID: PMC11114612 DOI: 10.1167/jov.24.5.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/15/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to investigate the impact of eccentric-vision training on population receptive field (pRF) estimates to provide insights into brain plasticity processes driven by practice. Fifteen participants underwent functional magnetic resonance imaging (fMRI) measurements before and after behavioral training on a visual crowding task, where the relative orientation of the opening (gap position: up/down, left/right) in a Landolt C optotype had to be discriminated in the presence of flanking ring stimuli. Drifting checkerboard bar stimuli were used for pRF size estimation in multiple regions of interest (ROIs): dorsal-V1 (dV1), dorsal-V2 (dV2), ventral-V1 (vV1), and ventral-V2 (vV2), including the visual cortex region corresponding to the trained retinal location. pRF estimates in V1 and V2 were obtained along eccentricities from 0.5° to 9°. Statistical analyses revealed a significant decrease of the crowding anisotropy index (p = 0.009) after training, indicating improvement on crowding task performance following training. Notably, pRF sizes at and near the trained location decreased significantly (p = 0.005). Dorsal and ventral V2 exhibited significant pRF size reductions, especially at eccentricities where the training stimuli were presented (p < 0.001). In contrast, no significant changes in pRF estimates were found in either vV1 (p = 0.181) or dV1 (p = 0.055) voxels. These findings suggest that practice on a crowding task can lead to a reduction of pRF sizes in trained visual cortex, particularly in V2, highlighting the plasticity and adaptability of the adult visual system induced by prolonged training.
Collapse
Affiliation(s)
- Maka Malania
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Yih-Shiuan Lin
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - John S Werner
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Mark W Greenlee
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Tina Plank
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Sheth V, McLean RJ, Tu Z, Ather S, Gottlob I, Proudlock FA. Visual Field Deficits in Albinism in Comparison to Idiopathic Infantile Nystagmus. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 38319668 PMCID: PMC10854418 DOI: 10.1167/iovs.65.2.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose This is the first systematic comparison of visual field (VF) deficits in people with albinism (PwA) and idiopathic infantile nystagmus (PwIIN) using static perimetry. We also compare best-corrected visual acuity (BCVA) and optical coherence tomography measures of the fovea, parafovea, and circumpapillary retinal nerve fiber layer in PwA. Methods VF testing was performed on 62 PwA and 36 PwIIN using a Humphrey Field Analyzer (SITA FAST 24-2). Mean detection thresholds for each eye were calculated, along with quadrants and central measures. Retinal layers were manually segmented in the macular region. Results Mean detection thresholds were significantly lower than normative values for PwA (-3.10 ± 1.67 dB, P << 0.0001) and PwIIN (-1.70 ± 1.54 dB, P < 0.0001). Mean detection thresholds were significantly lower in PwA compared to PwIIN (P < 0.0001) and significantly worse for left compared to right eyes in PwA (P = 0.0002) but not in PwIIN (P = 0.37). In PwA, the superior nasal VF was significantly worse than other quadrants (P < 0.05). PwIIN appeared to show a mild relative arcuate scotoma. In PwA, central detection thresholds were correlated with foveal changes in the inner and outer retina. VF was strongly correlated to BCVA in both groups. Conclusions Clear peripheral and central VF deficits exist in PwA and PwIIN, and static VF results need to be interpreted with caution clinically. Since PwA exhibit considerably lower detection thresholds compared to PwIIN, VF defects are unlikely to be due to nystagmus in PwA. In addition to horizontal VF asymmetry, PwA exhibit both vertical and interocular asymmetries, which needs further exploration.
Collapse
Affiliation(s)
- Viral Sheth
- Health Sciences School, University of Sheffield, Sheffield, Yorkshire, United Kingdom
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Rebecca J. McLean
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Zhanhan Tu
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Sarim Ather
- Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, Oxfordshire, United Kingdom
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
- Department of Neurology, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, United States
| | - Frank A. Proudlock
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|
3
|
Neveu MM, Padhy SK, Ramamurthy S, Takkar B, Jalali S, CP D, Padhi TR, Robson AG. Ophthalmological Manifestations of Oculocutaneous and Ocular Albinism: Current Perspectives. Clin Ophthalmol 2022; 16:1569-1587. [PMID: 35637898 PMCID: PMC9148211 DOI: 10.2147/opth.s329282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Albinism describes a heterogeneous group of genetically determined disorders characterized by disrupted synthesis of melanin and a range of developmental ocular abnormalities. The main ocular features common to both oculocutaneous albinism (OCA), and ocular albinism (OA) include reduced visual acuity, refractive errors, foveal hypoplasia, congenital nystagmus, iris and fundus hypopigmentation and visual pathway misrouting, but clinical signs vary and there is phenotypic overlap with other pathologies. This study reviews the prevalence, genetics and ocular manifestations of OCA and OA, including abnormal development of the optic chiasm. The role of visual electrophysiology in the detection of chiasmal dysfunction and visual pathway misrouting is emphasized, highlighting how age-associated changes in visual evoked potential (VEP) test results must be considered to enable accurate diagnosis, and illustrated further by the inclusion of novel VEP data in genetically confirmed cases. Differential diagnosis is considered in the context of suspected retinal and other disorders, including rare syndromes that may masquerade as albinism.
Collapse
Affiliation(s)
- Magella M Neveu
- Department Electrophysiology, Moorfields Eye Hospital, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
| | | | | | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Subhadra Jalali
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Deepika CP
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Tapas Ranjan Padhi
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar, India
| | - Anthony G Robson
- Department Electrophysiology, Moorfields Eye Hospital, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
4
|
Klink PC, Chen X, Vanduffel V, Roelfsema P. Population receptive fields in non-human primates from whole-brain fMRI and large-scale neurophysiology in visual cortex. eLife 2021; 10:67304. [PMID: 34730515 PMCID: PMC8641953 DOI: 10.7554/elife.67304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023] Open
Abstract
Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.
Collapse
Affiliation(s)
| | - Xing Chen
- Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | - Pieter Roelfsema
- Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
5
|
Duwell EJ, Woertz EN, Mathis J, Carroll J, DeYoe EA. Aberrant visual population receptive fields in human albinism. J Vis 2021; 21:19. [PMID: 34007988 PMCID: PMC8142699 DOI: 10.1167/jov.21.5.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/15/2021] [Indexed: 11/27/2022] Open
Abstract
Retinotopic organization is a fundamental feature of visual cortex thought to play a vital role in encoding spatial information. One important aspect of normal retinotopy is the representation of the right and left hemifields in contralateral visual cortex. However, in human albinism, many temporal retinal afferents decussate aberrantly at the optic chiasm resulting in partially superimposed representations of opposite hemifields in each hemisphere of visual cortex. Previous functional magnetic resonance imaging (fMRI) studies in human albinism suggest that the right and left hemifield representations are superimposed in a mirror-symmetric manner. This should produce imaging voxels which respond to two separate locations mirrored across the vertical meridian. However, it is not yet clear how retino-cortical miswiring in albinism manifests at the level of single voxel population receptive fields (pRFs). Here, we used pRF modeling to fit both single and dual pRF models to the visual responses of voxels in visual areas V1 to V3 of five subjects with albinism. We found that subjects with albinism (but not controls) have sizable clusters of voxels with unequivocal dual pRFs consistently corresponding to, but not fully coextensive with, regions of hemifield overlap. These dual pRFs were typically positioned at locations roughly mirrored across the vertical meridian and were uniquely clustered within a portion of the visual field for each subject.
Collapse
Affiliation(s)
- Ethan J Duwell
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Erica N Woertz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Joseph Carroll
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|