1
|
Cheng S. Distinct mechanisms and functions of episodic memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230411. [PMID: 39278239 PMCID: PMC11482257 DOI: 10.1098/rstb.2023.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024] Open
Abstract
The concept of episodic memory (EM) faces significant challenges by two claims: EM might not be a distinct memory system, and EM might be an epiphenomenon of a more general capacity for mental time travel (MTT). Nevertheless, the observations leading to these arguments do not preclude the existence of a mechanically and functionally distinct EM system. First, modular systems, like cognition, can have distinct subsystems that may not be distinguishable in the system's final output. EM could be such a subsystem, even though its effects may be difficult to distinguish from those of other subsystems. Second, EM could have a distinct and consistent low-level function, which is used in diverse high-level functions such as MTT. This article introduces the scenario construction framework, proposing that EM crucially rests on memory traces containing the gist of an episodic experience. During retrieval, EM traces trigger the reconstruction of semantic representations, which were active during the remembered episode, and are further enriched with semantic information, to generate a scenario of the past experience. This conceptualization of EM is consistent with studies on the neural basis of EM and resolves the two challenges while retaining the key properties associated with EM. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Sen Cheng
- Institute for Neural Computation Faculty of Computer Science, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
2
|
Grilli MD, Sabharwal-Siddiqi S, Thayer SC, Rapcsak SZ, Ekstrom AD. Evidence of Impaired Remote Experience-near Semantic Memory in Medial Temporal Lobe Amnesia. J Cogn Neurosci 2023; 35:2002-2013. [PMID: 37713665 PMCID: PMC10824049 DOI: 10.1162/jocn_a_02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Neuropsychological research suggests that "experience-near" semantic memory, meaning knowledge attached to a spatiotemporal or event context, is commonly impaired in individuals who have medial temporal lobe amnesia. It is not known if this impairment extends to remotely acquired experience-near knowledge, which is a question relevant to understanding hippocampal/medial temporal lobe functioning. In the present study, we administered a novel semantic memory task designed to target knowledge associated with remote, "dormant" concepts, in addition to knowledge associated with active concepts, to four individuals with medial temporal lobe amnesia and eight matched controls. We found that the individuals with medial temporal lobe amnesia generated significantly fewer experience-near semantic memories for both remote concepts and active concepts. In comparison, the generation of abstract or "experience-far" knowledge was largely spared in the individuals with medial temporal lobe amnesia, regardless of whether the targets for retrieval were remote or active concepts. We interpret these findings as evidence that the medial temporal lobes may have a sustained role in the retrieval of semantic memories associated with spatiotemporal and event contexts, which are cognitive features often ascribed to episodic memory. These results align with recent theoretical models proposing that the hippocampus/medial temporal lobes support cognitive processes that are involved in, but not exclusive to, episodic memory.
Collapse
Affiliation(s)
| | | | | | - Steven Z Rapcsak
- University of Arizona, Tucson AZ
- Banner Alzheimer's Institute, Tucson, AZ
| | | |
Collapse
|
3
|
Yang C, Naya Y. Sequential involvements of the perirhinal cortex and hippocampus in the recall of item-location associative memory in macaques. PLoS Biol 2023; 21:e3002145. [PMID: 37289802 DOI: 10.1371/journal.pbio.3002145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
The standard consolidation theory suggests that the hippocampus (HPC) is critically involved in acquiring new memory, while storage and recall gradually become independent of it. Converging studies have shown separate involvements of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) in item and spatial processes, whereas HPC relates the item to a spatial context. These 2 strands of literature raise the following question; which brain region is involved in the recall process of item-location associative memory? To solve this question, this study applied an item-location associative (ILA) paradigm in a single-unit study of nonhuman primates. We trained 2 macaques to associate 4 visual item pairs with 4 locations on a background map in an allocentric manner before the recording sessions. In each trial, 1 visual item and the map image at a tilt (-90° to 90°) were sequentially presented as the item-cue and the context-cue, respectively. The macaques chose the item-cue location relative to the context-cue by positioning their gaze. Neurons in the PRC, PHC, and HPC, but not area TE, exhibited item-cue responses which signaled retrieval of item-location associative memory. This retrieval signal first appeared in the PRC, followed by the HPC and PHC. We examined whether neural representations of the retrieved locations were related to the external space that the macaques viewed. A positive representation similarity was found in the HPC and PHC, but not in the PRC, thus suggesting a contribution of the HPC to relate the retrieved location from the PRC with a first-person perspective of the subjects and provide the self-referenced retrieved location to the PHC. These results imply distinct but complementary contributions of the PRC and HPC to recall of item-location associative memory that can be used across multiple spatial contexts.
Collapse
Affiliation(s)
- Cen Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Center for Life Sciences, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
4
|
Palombo DJ, Jones D, Strang C, Verfaellie M. Verbal recall in amnesia: Does scene construction matter? Neuropsychologia 2023; 184:108543. [PMID: 36931459 DOI: 10.1016/j.neuropsychologia.2023.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The hippocampus plays a critical role in episodic memory and imagination. One theoretical model posits that the hippocampus is important for scene construction, namely, the ability to conjure and maintain a scene-based representation in one's mind. To test one idea put forth by this view, we examined whether amnesia is associated with more severe impairment in memory when the to-be-remembered content places high demands on scene construction. To do so, we examined free recall performance for abstract (i.e., low scene imagery) and concrete, high scene-imagery single words in seven amnesic patients with hippocampal lesions and concomitant scene-construction deficits, and compared their performance to demographically matched healthy controls. As expected, amnesic patients were severely impaired in their free recall performance; however, their impairment did not differ as a function of word type. That is, their impairment was equally severe for words that evoke high versus low scene imagery. These findings suggest that the role of the hippocampus in verbal memory extends to content that does not place high demands on scene construction. Theoretical implications of these findings are discussed.
Collapse
Affiliation(s)
| | - Dominoe Jones
- Memory Disorders Research Center, VA Boston Healthcare System, USA
| | - Caroline Strang
- Memory Disorders Research Center, VA Boston Healthcare System, USA
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System, USA; Boston University School of Medicine, Department of Psychiatry, USA.
| |
Collapse
|
5
|
Rehabilitation of Memory Disorders. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2023. [DOI: 10.3390/ctn7010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Memory disorders are common in clinical practice. This review focuses on the rehabilitation of anterograde amnesia, the inability to learn and retrieve new information, in non-degenerative brain disease. Diverse mnemonic strategies may be helpful in learning specific pieces of information. Their success also depends on the severity of associated cognitive failures, in particular, executive dysfunction. However, unless transfer to everyday activities is specifically trained, such strategies are of limited value in promoting independence in daily life. External memory aids are often necessary to allow for independent living. Learning to use them requires intact capacities such as procedural learning or conditioning. This review further discusses the rehabilitation of confabulation, that is, the emergence of memories of events that never happened. The rehabilitation of memory disorders needs to be tailored to patients’ individual capacities and needs.
Collapse
|
6
|
Fan CL, Sokolowski HM, Rosenbaum RS, Levine B. What about "space" is important for episodic memory? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1645. [PMID: 36772875 DOI: 10.1002/wcs.1645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Early cognitive neuroscientific research revealed that the hippocampus is crucial for spatial navigation in rodents, and for autobiographical episodic memory in humans. Researchers quickly linked these streams to propose that the human hippocampus supports memory through its role in representing space, and research on the link between spatial cognition and episodic memory in humans has proliferated over the past several decades. Different researchers apply the term "spatial" in a variety of contexts, however, and it remains unclear what aspect of space may be critical to memory. Similarly, "episodic" has been defined and tested in different ways. Naturalistic assessment of spatial memory and episodic memory (i.e., episodic autobiographical memory) is required to unify the scale and biological relevance in comparisons of spatial and mnemonic processing. Limitations regarding the translation of rodent to human research, human ontogeny, and inter-individual variability require greater consideration in the interpretation of this literature. In this review, we outline the aspects of space that are (and are not) commonly linked to episodic memory, and then we discuss these dimensions through the lens of individual differences in naturalistic autobiographical memory. Future studies should carefully consider which aspect(s) of space are being linked to memory within the context of naturalistic human cognition. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Carina L Fan
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | | | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Moscovitch M, Gilboa A. Has the concept of systems consolidation outlived its usefulness? Identification and evaluation of premises underlying systems consolidation. Fac Rev 2022; 11:33. [PMID: 36532709 PMCID: PMC9720899 DOI: 10.12703/r/11-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Systems consolidation has mostly been treated as a neural construct defined by the time-dependent change in memory representation from the hippocampus (HPC) to other structures, primarily the neocortex. Here, we identify and evaluate the explicit and implicit premises that underlie traditional or standard models and theories of systems consolidation based on evidence from research on humans and other animals. We use the principle that changes in neural representation over time and experience are accompanied by corresponding changes in psychological representations, and vice versa, to argue that each of the premises underlying traditional or standard models and theories of systems consolidation is found wanting. One solution is to modify or abandon the premises or theories and models. This is reflected in moderated models of systems consolidation that emphasize the early role of the HPC in training neocortical memories until they stabilize. The fault, however, may lie in the very concept of systems consolidation and its defining feature. We propose that the concept be replaced by one of memory systems reorganization, which does not carry the theoretical baggage of systems consolidation and is flexible enough to capture the dynamic nature of memory from inception to very long-term retention and retrieval at a psychological and neural level. The term "memory system reorganization" implies that memory traces are not fixed, even after they are presumably consolidated. Memories can continue to change as a result of experience and interactions among memory systems across the lifetime. As will become clear, hippocampal training of neocortical memories is only one type of such interaction, and not always the most important one, even at inception. We end by suggesting some principles of memory reorganization that can help guide research on dynamic memory processes that capture corresponding changes in memory at the psychological and neural levels.
Collapse
Affiliation(s)
- Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Asaf Gilboa
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Semantic memory before episodic memory: How memory research can inform knowledge and belief representations. Behav Brain Sci 2021; 44:e166. [PMID: 34796823 DOI: 10.1017/s0140525x20001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Knowledge and belief attribution are discussed in the context of episodic and semantic memory theory and research, with reference to patient-lesion and developmental studies under naturalistic conditions. Consideration of how episodic and semantic memory relate to each other and intersect in the real world, including how they fail, can illuminate the approach to studying how people represent others' minds.
Collapse
|
9
|
Deficient semantic knowledge of the life course-Examining the cultural life script in Alzheimer's disease. Mem Cognit 2021; 50:1-15. [PMID: 34191273 DOI: 10.3758/s13421-021-01202-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Cultural life scripts are culturally transmitted semantic knowledge of the expected order and timing of major transitional events in a prototypical life course. This cognitive schema has been shown to serve as an important mnemonic template that guides retrieval from autobiographical memory, especially for positive and important life events. Autobiographical memory deficits are one of the earliest and most prominent symptoms in Alzheimer's disease (AD). However, no studies have examined cultural life scripts in patients with AD, despite semantic memory impairments being reported even in the early stages of the disease. The aim of the present work was to assess life-script knowledge in older adults diagnosed with AD, particularly in terms of knowledge for the content of life-script events and the timing and temporal order of these events. Twenty-one older adults diagnosed with AD and 22 healthy age-matched controls completed the standard life-script task (Berntsen & Rubin, 2004, Memory & Cognition, 32[3], 427-442). We found that while AD patients produced significantly fewer life-script events, the content of the generated events were quite consistent with those of the controls and the cultural norms. AD patients were particular impaired with regard to the normative timing and order of life-script events, suggesting that these components of the cultural life script are more vulnerable to cognitive decline. The findings are discussed in relation to impaired script knowledge and semantic memory deficits in AD.
Collapse
|