1
|
Zhao L, Silva AB, Kurteff GL, Chang EF. Inhibitory control of speech production in the human premotor frontal cortex. Nat Hum Behav 2025; 9:971-986. [PMID: 40033133 DOI: 10.1038/s41562-025-02118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/16/2025] [Indexed: 03/05/2025]
Abstract
Voluntary, flexible stopping of speech output is an essential aspect of speech motor control, especially during natural conversations. The cognitive and neural mechanisms of speech inhibition are not well understood. Here we have recorded direct high-density cortical activity while participants engaged in continuous speech production and were visually cued to stop speaking. Neural recordings revealed distinct activity in the premotor frontal cortex correlated with stopping speech. This activity was found in largely separate cortical sites from regions encoding vocal tract articulatory movements. Moreover, this activity primarily occurred with abrupt stopping in the middle of an utterance, rather than naturally completing a phrase. Electrocortical stimulation at many premotor sites with inhibitory stop activity caused involuntary speech arrest, which contradicts previous clinical interpretations of this effect as evidence for critical centres of speech production. Together, these results suggest a previously unknown premotor cortical network that supports the inhibitory control of speech, providing implications for understanding both natural and altered speech production.
Collapse
Affiliation(s)
- Lingyun Zhao
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alexander B Silva
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - G Lynn Kurteff
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Hervault M, Wessel JR. Common and Unique Neurophysiological Processes That Support the Stopping and Revising of Actions. J Neurosci 2025; 45:e1537242025. [PMID: 39909562 PMCID: PMC11949473 DOI: 10.1523/jneurosci.1537-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Inhibitory control is a crucial cognitive-control ability for behavioral flexibility, which has been extensively investigated through action-stopping tasks. Multiple neurophysiological features have been proposed as "signatures" of inhibitory control during action-stopping, though the processes indexed by these signatures are still controversially discussed. The present study aimed to disentangle these processes by comparing simple stopping situations with those in which additional action revisions were needed. Three experiments in female and male humans were performed to characterize the neurophysiological dynamics involved in action-stopping and action-changing, with hypotheses derived from recently developed two-stage "pause-then-cancel" models of inhibitory control. Both stopping and revising an action triggered an early, broad "pause"-process, marked by frontal EEG β-frequency bursting and nonselective suppression of corticospinal excitability. However, EMG showed that motor activity was only partially inhibited by this "pause" and that this activity could be modulated during action revision. In line with two-stage models of inhibitory control, subsequent frontocentral EEG activity after this initial "pause" selectively scaled depending on the required action revisions, with more activity observed for more complex revisions. This demonstrates the presence of a selective, effector-specific "retune" phase as the second process involved in action-stopping and action revision. Together, these findings show that inhibitory control is implemented over an extended period of time and in at least two phases. We are further able to align the most commonly proposed neurophysiological signatures to these phases and show that they are differentially modulated by the complexity of action revision.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
3
|
Takarada Y, Nozaki D. Unconscious goal pursuit strengthens voluntary force during sustained maximal effort via enhanced motor system state. Heliyon 2024; 10:e39762. [PMID: 39553609 PMCID: PMC11566863 DOI: 10.1016/j.heliyon.2024.e39762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Maximal voluntary force is known to be enhanced by shouting during sustained maximal voluntary contraction (MVC) via the enhancement of motor cortical excitability. However, whether excitatory input to the primary motor cortex from areas other than the motor-related cortical area induces muscular force-enhancing effects on the exertion of sustained maximal force remains unclear. Therefore, by examining motor evoked potentials to transcranial magnetic stimulation during sustained MVC and assessing handgrip force, the present study aimed to investigate the effects of subliminal goal-priming with motivational rewards on the state of the motor system. The findings revealed that when combined with rewards in the form of a consciously visible positive stimulus, barely visible priming of an action concept increased the maximal voluntary force and reduced the silent period (i.e., reduced motor cortical inhibition). To our knowledge, this is the first study to report a link between the muscular force of subliminal reward-goal priming during MVC and the enhancement of motor system activity through subliminal reward-goal priming operating on the motor system, possibly through the potentiation of activity of the reward-linked dopaminergic system.
Collapse
Affiliation(s)
- Yudai Takarada
- Faculty of Sports Sciences, Waseda University, Saitama 359-1192, Japan
| | - Daichi Nozaki
- Graduate School of Education, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. Eur J Neurosci 2024; 60:6129-6144. [PMID: 38659055 DOI: 10.1111/ejn.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
For decades, the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here, we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity and functional role of the GPe in behaviour. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behaviour.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| |
Collapse
|
5
|
Bardella G, Giuffrida V, Giarrocco F, Brunamonti E, Pani P, Ferraina S. Response inhibition in premotor cortex corresponds to a complex reshuffle of the mesoscopic information network. Netw Neurosci 2024; 8:597-622. [PMID: 38952814 PMCID: PMC11168728 DOI: 10.1162/netn_a_00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Recent studies have explored functional and effective neural networks in animal models; however, the dynamics of information propagation among functional modules under cognitive control remain largely unknown. Here, we addressed the issue using transfer entropy and graph theory methods on mesoscopic neural activities recorded in the dorsal premotor cortex of rhesus monkeys. We focused our study on the decision time of a Stop-signal task, looking for patterns in the network configuration that could influence motor plan maturation when the Stop signal is provided. When comparing trials with successful inhibition to those with generated movement, the nodes of the network resulted organized into four clusters, hierarchically arranged, and distinctly involved in information transfer. Interestingly, the hierarchies and the strength of information transmission between clusters varied throughout the task, distinguishing between generated movements and canceled ones and corresponding to measurable levels of network complexity. Our results suggest a putative mechanism for motor inhibition in premotor cortex: a topological reshuffle of the information exchanged among ensembles of neurons.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Franco Giarrocco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Hervault M, Wessel JR. Common and unique neurophysiological signatures for the stopping and revising of actions reveal the temporal dynamics of inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.597172. [PMID: 38948849 PMCID: PMC11212930 DOI: 10.1101/2024.06.18.597172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Inhibitory control is a crucial cognitive-control ability for behavioral flexibility that has been extensively investigated through action-stopping tasks. Multiple neurophysiological features have been proposed to represent 'signatures' of inhibitory control during action-stopping, though the processes signified by these signatures are still controversially discussed. The present study aimed to disentangle these processes by comparing simple stopping situations with those in which additional action revisions were needed. Three experiments in female and male humans were performed to characterize the neurophysiological dynamics involved in action-stopping and - changing, with hypotheses derived from recently developed two-stage 'pause-then-cancel' models of inhibitory control. Both stopping and revising an action triggered an early broad 'pause'-process, marked by frontal EEG β-bursts and non-selective suppression of corticospinal excitability. However, partial-EMG responses showed that motor activity was only partially inhibited by this 'pause', and that this activity can be further modulated during action-revision. In line with two-stage models of inhibitory control, subsequent frontocentral EEG activity after this initial 'pause' selectively scaled depending on the required action revisions, with more activity observed for more complex revisions. This demonstrates the presence of a selective, effector-specific 'retune' phase as the second process involved in action-stopping and -revision. Together, these findings show that inhibitory control is implemented over an extended period of time and in at least two phases. We are further able to align the most commonly proposed neurophysiological signatures to these phases and show that they are differentially modulated by the complexity of action-revision.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| | - Jan R. Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
7
|
Bardella G, Franchini S, Pan L, Balzan R, Ramawat S, Brunamonti E, Pani P, Ferraina S. Neural Activity in Quarks Language: Lattice Field Theory for a Network of Real Neurons. ENTROPY (BASEL, SWITZERLAND) 2024; 26:495. [PMID: 38920504 PMCID: PMC11203154 DOI: 10.3390/e26060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Brain-computer interfaces have seen extraordinary surges in developments in recent years, and a significant discrepancy now exists between the abundance of available data and the limited headway made in achieving a unified theoretical framework. This discrepancy becomes particularly pronounced when examining the collective neural activity at the micro and meso scale, where a coherent formalization that adequately describes neural interactions is still lacking. Here, we introduce a mathematical framework to analyze systems of natural neurons and interpret the related empirical observations in terms of lattice field theory, an established paradigm from theoretical particle physics and statistical mechanics. Our methods are tailored to interpret data from chronic neural interfaces, especially spike rasters from measurements of single neuron activity, and generalize the maximum entropy model for neural networks so that the time evolution of the system is also taken into account. This is obtained by bridging particle physics and neuroscience, paving the way for particle physics-inspired models of the neocortex.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Simone Franchini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Liming Pan
- School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026, China;
| | - Riccardo Balzan
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, UFR Biomédicale et des Sciences de Base, Université Paris Descartes-CNRS, PRES Paris Sorbonne Cité, 75006 Paris, France;
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| |
Collapse
|
8
|
Thunberg C, Wiker T, Bundt C, Huster RJ. On the (un)reliability of common behavioral and electrophysiological measures from the stop signal task: Measures of inhibition lack stability over time. Cortex 2024; 175:81-105. [PMID: 38508968 DOI: 10.1016/j.cortex.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Response inhibition, the intentional stopping of planned or initiated actions, is often considered a key facet of control, impulsivity, and self-regulation. The stop signal task is argued to be the purest inhibition task we have, and it is thus central to much work investigating the role of inhibition in areas like development and psychopathology. Most of this work quantifies stopping behavior by calculating the stop signal reaction time as a measure of individual stopping latency. Individual difference studies aiming to investigate why and how stopping latencies differ between people often do this under the assumption that the stop signal reaction time indexes a stable, dispositional trait. However, empirical support for this assumption is lacking, as common measures of inhibition and control tend to show low test-retest reliability and thus appear unstable over time. The reasons for this could be methodological, where low stability is driven by measurement noise, or substantive, where low stability is driven by a larger influence of state-like and situational factors. To investigate this, we characterized the split-half and test-retest reliability of a range of common behavioral and electrophysiological measures derived from the stop signal task. Across three independent studies, different measurement modalities, and a systematic review of the literature, we found a pattern of low temporal stability for inhibition measures and higher stability for measures of manifest behavior and non-inhibitory processing. This pattern could not be explained by measurement noise and low internal consistency. Consequently, response inhibition appears to have mostly state-like and situational determinants, and there is little support for the validity of conceptualizing common inhibition measures as reflecting stable traits.
Collapse
Affiliation(s)
- Christina Thunberg
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| | - Thea Wiker
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Carsten Bundt
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Dolfini E, Cardellicchio P, Fadiga L, D'Ausilio A. The role of dorsal premotor cortex in joint action inhibition. Sci Rep 2024; 14:4675. [PMID: 38409309 PMCID: PMC10897189 DOI: 10.1038/s41598-024-54448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Behavioral interpersonal coordination requires smooth negotiation of actions in time and space (joint action-JA). Inhibitory control may play a role in fine-tuning appropriate coordinative responses. To date, little research has been conducted on motor inhibition during JA and on the modulatory influence that premotor areas might exert on inhibitory control. Here, we used an interactive task in which subjects were required to reach and open a bottle using one hand. The bottle was held and stabilized by a co-actor (JA) or by a mechanical holder (vice clamp, no-JA). We recorded two TMS-based indices of inhibition (short-interval intracortical inhibition-sICI; cortical silent period-cSP) during the reaching phase of the task. These reflect fast intracortical (GABAa-mediated) and slow corticospinal (GABAb-mediated) inhibition. Offline continuous theta burst stimulation (cTBS) was used to interfere with dorsal premotor cortex (PMd), ventral premotor cortex (PMv), and control site (vertex) before the execution of the task. Our results confirm a dissociation between fast and slow inhibition during JA coordination and provide evidence that premotor areas drive only slow inhibitory mechanisms, which in turn may reflect behavioral co-adaptation between trials. Exploratory analyses further suggest that PMd, more than PMv, is the key source of modulatory drive sculpting movements, according to the socio-interactive context.
Collapse
Affiliation(s)
- Elisa Dolfini
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy.
| | - Pasquale Cardellicchio
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| |
Collapse
|
10
|
Novembre G, Lacal I, Benusiglio D, Quarta E, Schito A, Grasso S, Caratelli L, Caminiti R, Mayer AB, Iannetti GD. A Cortical Mechanism Linking Saliency Detection and Motor Reactivity in Rhesus Monkeys. J Neurosci 2024; 44:e0422232023. [PMID: 37949654 PMCID: PMC10851684 DOI: 10.1523/jneurosci.0422-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sudden and surprising sensory events trigger neural processes that swiftly adjust behavior. To study the phylogenesis and the mechanism of this phenomenon, we trained two male rhesus monkeys to keep a cursor inside a visual target by exerting force on an isometric joystick. We examined the effect of surprising auditory stimuli on exerted force, scalp electroencephalographic (EEG) activity, and local field potentials (LFPs) recorded from the dorsolateral prefrontal cortex. Auditory stimuli elicited (1) a biphasic modulation of isometric force, a transient decrease followed by a corrective tonic increase, and (2) EEG and LFP deflections dominated by two large negative-positive waves (N70 and P130). The EEG potential was symmetrical and maximal at the scalp vertex, highly reminiscent of the human "vertex potential." Electrocortical potentials and force were tightly coupled: the P130 amplitude predicted the magnitude of the corrective force increase, particularly in the LFPs recorded from deep rather than superficial cortical layers. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to salient sensory events.Significance Statement Survival in the natural world depends on an animal's capacity to adapt ongoing behavior to abrupt unexpected events. To study the neural mechanisms underlying this capacity, we trained monkeys to apply constant force on a joystick while we recorded their brain activity from the scalp and the prefrontal cortex contralateral to the hand holding the joystick. Unexpected auditory stimuli elicited a biphasic force modulation: a transient reduction followed by a corrective adjustment. The same stimuli also elicited EEG and LFP responses, dominated by a biphasic wave that predicted the magnitude of the behavioral adjustment. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to unexpected events.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Rome 00161, Italy
| | - Irene Lacal
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, 37077 Göttingen, Germany
| | - Diego Benusiglio
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- European Molecular Biology Laboratory (EMBL), Epigenetics and Neurobiology Unit, Rome 00015, Italy
| | - Eros Quarta
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Andrea Schito
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Stefano Grasso
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Ludovica Caratelli
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | | | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London WC1E6BT, United Kingdom
| |
Collapse
|
11
|
Wadsley CG, Cirillo J, Nieuwenhuys A, Byblow WD. A global pause generates nonselective response inhibition during selective stopping. Cereb Cortex 2023; 33:9729-9740. [PMID: 37395336 PMCID: PMC10472494 DOI: 10.1093/cercor/bhad239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
Selective response inhibition may be required when stopping a part of a multicomponent action. A persistent response delay (stopping-interference effect) indicates nonselective response inhibition during selective stopping. This study aimed to elucidate whether nonselective response inhibition is the consequence of a global pause process during attentional capture or specific to a nonselective cancel process during selective stopping. Twenty healthy human participants performed a bimanual anticipatory response inhibition paradigm with selective stop and ignore signals. Frontocentral and sensorimotor beta-bursts were recorded with electroencephalography. Corticomotor excitability and short-interval intracortical inhibition in primary motor cortex were recorded with transcranial magnetic stimulation. Behaviorally, responses in the non-signaled hand were delayed during selective ignore and stop trials. The response delay was largest during selective stop trials and indicated that stopping-interference could not be attributed entirely to attentional capture. A stimulus-nonselective increase in frontocentral beta-bursts occurred during stop and ignore trials. Sensorimotor response inhibition was reflected in maintenance of beta-bursts and short-interval intracortical inhibition relative to disinhibition observed during go trials. Response inhibition signatures were not associated with the magnitude of stopping-interference. Therefore, nonselective response inhibition during selective stopping results primarily from a nonselective pause process but does not entirely account for the stopping-interference effect.
Collapse
Affiliation(s)
- Corey G Wadsley
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1142, New Zealand
| | - John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1142, New Zealand
| | - Arne Nieuwenhuys
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Giuffrida V, Marc IB, Ramawat S, Fontana R, Fiori L, Bardella G, Fagioli S, Ferraina S, Brunamonti E, Pani P. Reward prospect affects strategic adjustments in stop signal task. Front Psychol 2023; 14:1125066. [PMID: 37008850 PMCID: PMC10064060 DOI: 10.3389/fpsyg.2023.1125066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Interaction with the environment requires us to predict the potential reward that will follow our choices. Rewards could change depending on the context and our behavior adapts accordingly. Previous studies have shown that, depending on reward regimes, actions can be facilitated (i.e., increasing the reward for response) or interfered (i.e., increasing the reward for suppression). Here we studied how the change in reward perspective can influence subjects' adaptation strategy. Students were asked to perform a modified version of the Stop-Signal task. Specifically, at the beginning of each trial, a Cue Signal informed subjects of the value of the reward they would receive; in one condition, Go Trials were rewarded more than Stop Trials, in another, Stop Trials were rewarded more than Go Trials, and in the last, both trials were rewarded equally. Subjects participated in a virtual competition, and the reward consisted of points to be earned to climb the leaderboard and win (as in a video game contest). The sum of points earned was updated with each trial. After a learning phase in which the three conditions were presented separately, each subject performed 600 trials testing phase in which the three conditions were randomly mixed. Based on the previous studies, we hypothesized that subjects could employ different strategies to perform the task, including modulating inhibition efficiency, adjusting response speed, or employing a constant behavior across contexts. We found that to perform the task, subjects preferentially employed a strategy-related speed of response adjustment, while the duration of the inhibition process did not change significantly across the conditions. The investigation of strategic motor adjustments to reward's prospect is relevant not only to understanding how action control is typically regulated, but also to work on various groups of patients who exhibit cognitive control deficits, suggesting that the ability to inhibit can be modulated by employing reward prospects as motivational factors.
Collapse
Affiliation(s)
- Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Isabel Beatrice Marc
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Roberto Fontana
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Lorenzo Fiori
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sabrina Fagioli
- Department of Education, University of Roma Tre, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
13
|
Marc IB, Giuffrida V, Ramawat S, Fiori L, Fontana R, Bardella G, Fagioli S, Ferraina S, Pani P, Brunamonti E. Restart errors reaction time of a two-step inhibition process account for the violation of the race model's independence in multi-effector selective stop signal task. Front Hum Neurosci 2023; 17:1106298. [PMID: 36845879 PMCID: PMC9950112 DOI: 10.3389/fnhum.2023.1106298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Goal-oriented actions often require the coordinated movement of two or more effectors. Sometimes multi-effector movements need to be adjusted according to a continuously changing environment, requiring stopping an effector without interrupting the movement of the others. This form of control has been investigated by the selective Stop Signal Task (SST), requiring the inhibition of an effector of a multicomponent action. This form of selective inhibition has been hypothesized to act through a two-step process, where a temporary global inhibition deactivating all the ongoing motor responses is followed by a restarting process that reactivates only the moving effector. When this form of inhibition takes place, the reaction time (RT) of the moving effector pays the cost of the previous global inhibition. However, it is poorly investigated if and how this cost delays the RT of the effector that was required to be stopped but was erroneously moved (Stop Error trials). Here we measure the Stop Error RT in a group of participants instructed to simultaneously rotate the wrist and lift the foot when a Go Signal occurred, and interrupt both movements (non-selective Stop version) or only one of them (selective Stop version) when a Stop Signal was presented. We presented this task in two experimental conditions to evaluate how different contexts can influence a possible proactive inhibition on the RT of the moving effector in the selective Stop versions. In one context, we provided the foreknowledge of the effector to be inhibited by presenting the same selective or non-selective Stop versions in the same block of trials. In a different context, while providing no foreknowledge of the effector(s) to be stopped, the selective and non-selective Stop versions were intermingled, and the information on the effector to be stopped was delivered at the time of the Stop Signal presentation. We detected a cost in both Correct and Error selective Stop RTs that was influenced by the different task conditions. Results are discussed within the framework of the race model related to the SST, and its relationship with a restart model developed for selective versions of this paradigm.
Collapse
Affiliation(s)
- Isabel Beatrice Marc
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy,Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy,Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Lorenzo Fiori
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy,Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy,Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Roberto Fontana
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sabrina Fagioli
- Department of Education, University of Roma Tre, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy,*Correspondence: Emiliano Brunamonti,
| |
Collapse
|
14
|
Bartolomeo P, di Pellegrino G, Chelazzi L. The Brain's brake: Inhibitory mechanisms in cognition and action. Cortex 2022; 157:323-326. [PMID: 36402063 DOI: 10.1016/j.cortex.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Paolo Bartolomeo
- Sorbonne Université, Institut Du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France.
| | - Giuseppe di Pellegrino
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena, FC, Italy.
| | - Leonardo Chelazzi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, Verona, Italy.
| |
Collapse
|
15
|
Pani P, Giamundo M, Giarrocco F, Mione V, Fontana R, Brunamonti E, Mattia M, Ferraina S. Neuronal population dynamics during motor plan cancellation in nonhuman primates. Proc Natl Acad Sci U S A 2022; 119:e2122395119. [PMID: 35867763 PMCID: PMC9282441 DOI: 10.1073/pnas.2122395119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 01/11/2023] Open
Abstract
To understand the cortical neuronal dynamics behind movement generation and control, most studies have focused on tasks where actions were planned and then executed using different instances of visuomotor transformations. However, to fully understand the dynamics related to movement control, one must also study how movements are actively inhibited. Inhibition, indeed, represents the first level of control both when different alternatives are available and only one solution could be adopted and when it is necessary to maintain the current position. We recorded neuronal activity from a multielectrode array in the dorsal premotor cortex (PMd) of monkeys performing a countermanding reaching task that requires, in a subset of trials, them to cancel a planned movement before its onset. In the analysis of the neuronal state space of PMd, we found a subspace in which activities conveying temporal information were confined during active inhibition and position holding. Movement execution required activities to escape from this subspace toward an orthogonal subspace and, furthermore, surpass a threshold associated with the maturation of the motor plan. These results revealed further details in the neuronal dynamics underlying movement control, extending the hypothesis that neuronal computation confined in an "output-null" subspace does not produce movements.
Collapse
Affiliation(s)
- Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Margherita Giamundo
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Franco Giarrocco
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Valentina Mione
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Roberto Fontana
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Maurizio Mattia
- National Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
16
|
Pani P, Giarrocco F, Bardella G, Brunamonti E, Ferraina S. Action-stopping models must consider the role of the dorsal premotor cortex. Cortex 2022; 152:160-163. [DOI: 10.1016/j.cortex.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
|
17
|
Cardellicchio P, Dolfini E, D'Ausilio A. The role of dorsal premotor cortex in joint action stopping. iScience 2021; 24:103330. [PMID: 34805791 PMCID: PMC8586805 DOI: 10.1016/j.isci.2021.103330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Human sensorimotor interaction requires mutual behavioral adaptation as well as shared cognitive task representations (Joint Action, JA). Yet, an under-investigated aspect of JA is the neurobehavioral mechanisms employed to stop actions if the context calls for it. Sparse evidence points to the possible contribution of the left dorsal premotor cortex (lPMd) in sculpting movements according to the socio-interactive context. To clarify this issue, we ran two experiments integrating a classical stop signal paradigm with an ecological JA task. The first behavioral study shows longer Stop performance in the JA condition. In the second, we use transcranial magnetic stimulation to inhibit the lPMd or a control site (vertex). Results show that lPMd modulates the JA stopping performance. Action stopping is an important component of JA coordination, and here we provide evidence that lPMd is a key node of a brain network recruited for online mutual co-adaptation in social contexts. Interaction requires mutual adaptation and a shared cognitive task representation Sensorimotor representations must be negotiated between partners to achieve the goal Motor suppression mechanisms might be essential in Joint Action coordination Dorsal premotor cortex (PMd) plays a key role in guiding Joint Action coordination
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
19
|
Hannah R, Jana S, Muralidharan V. Does action-stopping involve separate pause and cancel processes? A view from premotor cortex. Cortex 2021; 152:157-159. [PMID: 34366120 DOI: 10.1016/j.cortex.2021.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Ricci Hannah
- Department of Psychology, University of California San Diego, La Jolla, CA, USA.
| | - Sumitash Jana
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
20
|
Jana S, Gopal A, Murthy A. Computational Mechanisms Mediating Inhibitory Control of Coordinated Eye-Hand Movements. Brain Sci 2021; 11:607. [PMID: 34068477 PMCID: PMC8150398 DOI: 10.3390/brainsci11050607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Significant progress has been made in understanding the computational and neural mechanisms that mediate eye and hand movements made in isolation. However, less is known about the mechanisms that control these movements when they are coordinated. Here, we outline our computational approaches using accumulation-to-threshold and race-to-threshold models to elucidate the mechanisms that initiate and inhibit these movements. We suggest that, depending on the behavioral context, the initiation and inhibition of coordinated eye-hand movements can operate in two modes-coupled and decoupled. The coupled mode operates when the task context requires a tight coupling between the effectors; a common command initiates both effectors, and a unitary inhibitory process is responsible for stopping them. Conversely, the decoupled mode operates when the task context demands weaker coupling between the effectors; separate commands initiate the eye and hand, and separate inhibitory processes are responsible for stopping them. We hypothesize that the higher-order control processes assess the behavioral context and choose the most appropriate mode. This computational mechanism can explain the heterogeneous results observed across many studies that have investigated the control of coordinated eye-hand movements and may also serve as a general framework to understand the control of complex multi-effector movements.
Collapse
Affiliation(s)
- Sumitash Jana
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Atul Gopal
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20814, USA
| | - Aditya Murthy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka 560012, India;
| |
Collapse
|