1
|
Britt N, Haponenko H, Cochrane BA, Milliken B, Sun HJ. Distribution of attention in three-dimensional space. Neuropsychologia 2025; 212:109138. [PMID: 40187403 DOI: 10.1016/j.neuropsychologia.2025.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The distribution of spatial attention has mostly been studied for visual events presented within a two-dimensional space. In this study, we examined the distribution of spatial attention in a three-dimensional space (i.e., across the z-axis). Much previous research suggests that attention is universally biased toward stimuli appearing in near space compared to far space. However, the results of some studies suggest this 'near advantage' is task-specific, with some tasks instead producing an attention bias toward stimuli in far space. The current study investigated whether two tasks that differ in attentional priorities (i.e., target localization vs target discrimination) differentially bias attention across near and far depth. Across three experiments, we compared target localization and target discrimination tasks when a single target appeared as the stimulus (Experiment 1) and then, for a cue-target task, compared target localization (Experiment 2A) and target discrimination tasks (Experiment 2B). Our results support the proposal that the near advantage is task-specific. For target localization, reaction times (RTs) were shorter for near-targets than for far-targets, however, for target discrimination, RTs were shorter for far-targets than for near-targets. This result was revealed in both uncued and cue-target paradigms. The cue-target paradigm also showed that relative to same-depth conditions, the cueing effect pointed to greater facilitation when orienting attention from far-to-near space for target localization but from near-to-far space for target discrimination. These findings argue against a universal near advantage. Overall, the results were consistent with the notion that different task demands can differentially bias the distribution of attention across near and far depth, a proposal that has implications for the potential involvement of the dorsal and ventral visual processing streams.
Collapse
Affiliation(s)
- Noah Britt
- McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
2
|
Zafarana A, Lenatti C, Hunt L, Makwiramiti M, Farnè A, Tamè L. Visual perceptual learning is enhanced by training in the illusory far space. Q J Exp Psychol (Hove) 2025; 78:1077-1087. [PMID: 38785308 PMCID: PMC12095877 DOI: 10.1177/17470218241256870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Visual objects in the peripersonal space (PPS) are perceived faster than farther ones appearing in the extrapersonal space (EPS). This shows preferential processing for visual stimuli near our body. Such an advantage should favour visual perceptual learning occurring near, as compared with far from observers, but opposite evidence has been recently provided from online testing protocols, showing larger perceptual learning in the far space. Here, we ran two laboratory-based experiments investigating whether visual training in PPS and EPS has different effects. We used the horizontal Ponzo Illusion to create a lateralized depth perspective while participants completed a visual search task in which they reported whether or not a specific target object orientation (e.g., a triangle pointing upwards) was present among distractors. This task was completed before and after a training phase in either the (illusory) near or far space for 1 h. In Experiment 1, the near space was in the left hemispace, whereas in Experiment 2, it was in the right. Results showed that, in both experiments, participants were more accurate after training in the far space, whereas training in the near space led to either improvement in the far space (Experiment 1), or no change (Experiment 2). Moreover, we found a larger visual perceptual learning when stimuli were presented in the left compared with the right hemispace. Differently from visual processing, visual perceptual learning is more effective in the far space. We propose that depth is a key dimension that can be used to improve human visual learning.
Collapse
Affiliation(s)
| | | | - Laura Hunt
- School of Psychology, University of Kent, Canterbury, UK
| | | | - Alessandro Farnè
- Impact Team of the Lyon Neuroscience Research Centre, INSERM U1028, CNRS, UMR5292, University Claude Bernard Lyon I, Lyon, France
| | - Luigi Tamè
- School of Psychology, University of Kent, Canterbury, UK
| |
Collapse
|
3
|
Ahsan T, Wilcox LM, Freud E. Perceived depth modulates allocation of attention. Sci Rep 2025; 15:10233. [PMID: 40133421 PMCID: PMC11937427 DOI: 10.1038/s41598-025-93061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
There is growing evidence that the visual system processes objects perceived as closer more quickly and accurately than those farther away, a phenomenon known as the "close advantage effect" (CAE). The mechanisms underlying this effect, however, remain unknown. In this series of studies, we assessed whether perceived depth modulates allocation of attention. Using a Posner cueing task in Experiment 1a, we found greater accuracy for close surface targets (demonstrating the CAE). Critically, we also found a smaller Posner effect in the close surface, suggesting that attentional resources are better utilized in this space. Experiment 1b confirmed that these results were not due to differences in background surface sizes. In Experiment 2a, using the Egly-Driver task, we replicated and extended the results of Experiment 1a. Participants were more accurate when shifting attention from far to close surfaces and when shifting attention within the close surface, compared to when shifting attention within the far surface. These results suggest that perceived proximity makes attentional shifts more efficient. This effect persisted in Experiment 2b, even after controlling for the perceived size of the targets. Overall, our findings show that perceived depth modulates attention, with close space receiving preferential processing likely due to its relevance for immediate interaction.
Collapse
Affiliation(s)
- Tasfia Ahsan
- Department of Psychology, York University, York, Canada.
- The Centre for Vision Research, York University, York, Canada.
| | - Laurie M Wilcox
- Department of Psychology, York University, York, Canada
- The Centre for Vision Research, York University, York, Canada
| | - Erez Freud
- Department of Psychology, York University, York, Canada
- The Centre for Vision Research, York University, York, Canada
| |
Collapse
|
4
|
Castellotti S, Castaldi E, Blini E, Arrighi R. Pupil size as a biomarker of cognitive (dys)functions: Toward a physiologically informed screening of mental states. Acta Psychol (Amst) 2025; 253:104720. [PMID: 39799929 DOI: 10.1016/j.actpsy.2025.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
The objective assessment of cognitive processes is of critical importance to understanding the mechanisms underlying various mental functions and dysfunctions. In recent years, the technological innovations related to the eye-tracking industry made the time right to organically integrate pupillometry in the assessment of cognitive profiles. Here, we review evidence showing that pupillometry offers a uniquely sensitive biomarker of the functioning of several distinct networks, cognitive functions, emotional states, and individual differences in their instantiation. We outline why and how pupillometry can be effectively exploited to enrich current research and behavioral paradigms, including those designed for clinical testing. By making the cases of anxiety disorders (both generalized and specific - e.g., generalized anxiety vs. math anxiety) and substance use disorders, we then exemplify how pupillometry can be leveraged to obtain clinically meaningful variables. We finally conclude by arguing that measuring pupil size has the potential to complement more traditional, but coarse assessment methods, to return a more graded, objective, and physiologically informed picture of cognitive functioning.
Collapse
Affiliation(s)
- Serena Castellotti
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy; Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elvio Blini
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
5
|
Veranic K, Ewing L, Sambrook T, Watson EAG, Zhao M, Bayliss AP. Changes in interpersonal distance modulate social attention engagement: evidence from EEG alpha band suppression. Soc Cogn Affect Neurosci 2025; 20:nsaf008. [PMID: 39825867 PMCID: PMC11833688 DOI: 10.1093/scan/nsaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/21/2024] [Accepted: 01/17/2025] [Indexed: 01/20/2025] Open
Abstract
Interpersonal space is regulated carefully and updated dynamically during social interactions to maintain comfort. We investigated the naturalistic processing of interpersonal distance in real time and space using a powerful implicit neurophysiological measure of attentional engagement. In a sample of 37 young adults recruited at a UK university, we found greater EEG alpha band suppression when a person 'occupies' or'moves into' near-personal space than for a person occupying or moving into public space. In the dynamic condition only, the differences attenuated over the course of the experiment, and were sensitive to individual differences in social anxiety. These data show, for the first time, neurophysiological correlates of interpersonal distance coding in a naturalistic setting. Critically, while veridical distance is important for attentional response to the presence of a person in one's space, the behavioural relevance of their movement through public and personal space takes primacy.
Collapse
|
6
|
Chang YH, Yep R, Wang CA. Pupil size correlates with heart rate, skin conductance, pulse wave amplitude, and respiration responses during emotional conflict and valence processing. Psychophysiology 2025; 62:e14726. [PMID: 39533166 DOI: 10.1111/psyp.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Pupil size is a non-invasive index for autonomic arousal mediated by the locus coeruleus-norepinephrine (LC-NE) system. While pupil size and its derivative (velocity) are increasingly used as indicators of arousal, limited research has investigated the relationships between pupil size and other well-known autonomic responses. Here, we simultaneously recorded pupillometry, heart rate, skin conductance, pulse wave amplitude, and respiration signals during an emotional face-word Stroop task, in which task-evoked (phasic) pupil dilation correlates with LC-NE responsivity. We hypothesized that emotional conflict and valence would affect pupil and other autonomic responses, and trial-by-trial correlations between pupil and other autonomic responses would be observed during both tonic and phasic epochs. Larger pupil dilations, higher pupil size derivative, and lower heart rates were observed in the incongruent condition compared to the congruent condition. Additionally, following incongruent trials, the congruency effect was reduced, and arousal levels indexed by previous-trial pupil dilation were correlated with subsequent reaction times. Furthermore, linear mixed models revealed that larger pupil dilations correlated with higher heart rates, higher skin conductance responses, higher respiration amplitudes, and lower pulse wave amplitudes on a trial-by-trial basis. Similar effects were seen between positive and negative valence conditions. Moreover, tonic pupil size before stimulus presentation significantly correlated with all other tonic autonomic responses, whereas tonic pupil size derivative correlated with heart rates and skin conductance responses. These results demonstrate a trial-by-trial relationship between pupil dynamics and other autonomic responses, highlighting pupil size as an effective real-time index for autonomic arousal during emotional conflict and valence processing.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| | - Rachel Yep
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Chin-An Wang
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Pelagatti C, Blini E, Vannucci M. Catching Mind Wandering With Pupillometry: Conceptual and Methodological Challenges. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2025; 16:e1695. [PMID: 39435485 DOI: 10.1002/wcs.1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Mind-wandering (MW) refers to the shift of attention away from an ongoing task and/or external environment towards mental contents (e.g., memories, prospective thoughts) unrelated to the task. Physiological measures (e.g., pupil size, EEG, and fMRI) have often been acquired as objective markers for MW states, which has greatly helped their study as well as triangulation with other measures. Pupillometry in particular has been used as a covert biomarker of MW because it is reliably modulated by several distinct processes spanning arousal, emotion, and attention, and it signals attentional lapses. Yet, coupling MW and the measurement of pupil size has led to seemingly contrasting results. We argue that, common to the studies reviewed here, one reason is resolving to the measurement of tonic pupil size, which reflects low-frequency, slow changes in one's physiological state, and thus implicitly assumes that MW is a static, long-lasting process. We then additionally focus on three major axes of variability in the reviewed studies: (i) the definition and measurement of MW; (ii) the impact of contextual aspects, such as task demands and individual arousal levels; (iii) the identification and tracking of MW in combination with pupillary measures. We provide an overview of these differences and put forward recommendations for using physiological measures-including, but not limited to, pupil size-in MW research effectively. In conclusion, pupillometry can be a very informative tool for MW research, provided that it is used with the due methodological caution.
Collapse
Affiliation(s)
- Claudia Pelagatti
- Department of NEUROFARBA, Section of Psychology, University of Florence, Florence, Italy
| | - Elvio Blini
- Department of NEUROFARBA, Section of Psychology, University of Florence, Florence, Italy
| | - Manila Vannucci
- Department of NEUROFARBA, Section of Psychology, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Blini E, Arrighi R, Anobile G. Pupillary manifolds: uncovering the latent geometrical structures behind phasic changes in pupil size. Sci Rep 2024; 14:27306. [PMID: 39516679 PMCID: PMC11549318 DOI: 10.1038/s41598-024-78772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The size of the pupils reflects directly the balance of different branches of the autonomic nervous system. This measure is inexpensive, non-invasive, and has provided invaluable insights on a wide range of mental processes, from attention to emotion and executive functions. Two outstanding limitations of current pupillometry research are the lack of consensus in the analytical approaches, which vary wildly across research groups and disciplines, and the fact that, unlike other neuroimaging techniques, pupillometry lacks the dimensionality to shed light on the different sources of the observed effects. In other words, pupillometry provides an integrated readout of several distinct networks, but it is unclear whether each has a specific fingerprint, stemming from its function or physiological substrate. Here we show that phasic changes in pupil size are inherently low-dimensional, with modes that are highly consistent across behavioral tasks of very different nature, suggesting that these changes occur along pupillary manifolds that are highly constrained by the underlying physiological structures rather than functions. These results provide not only a unified approach to analyze pupillary data, but also the opportunity for physiology and psychology to refer to the same processes by tracing the sources of the reported changes in pupil size in the underlying biology.
Collapse
Affiliation(s)
- Elvio Blini
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy.
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy
| |
Collapse
|
9
|
Blini E, Anobile G, Arrighi R. What pupil size can and cannot tell about math anxiety. PSYCHOLOGICAL RESEARCH 2024; 88:2455-2468. [PMID: 39180562 PMCID: PMC11522078 DOI: 10.1007/s00426-024-02020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Math Anxiety (MA) consists of excessive fear and worry about math-related situations. It represents a major barrier to numerical competence and the pursuit of STEM careers. Yet, we currently do not dispose of many tools that can capture its multifaceted nature, e.g. moving beyond the exclusive reliance on self-reports and meta-cognition. Here we sought to probe Pupil Size (PS) as a viable tool in the study of MA by administering arithmetic problems to university students in the humanities (N = 70) with various levels of MA. We found that arithmetic competence and performance are indeed negatively associated with MA, and this is accurately tracked by PS. When performance is accounted for, MA does not further modulate PS (before, during, or after calculation). However, the latency of PS peak dilation can add a significant contribution to predicting MA scores, indicating that high MA may be accompanied by more prolonged cognitive effort. Results show that MA and mathematical competence may be too crystalized in young university students to be discernible. We therefore call for early educational interventions to tackle and mitigate this dysfunctional association early on.
Collapse
Affiliation(s)
- Elvio Blini
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, 50136, Italy.
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, 50136, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, 50136, Italy
| |
Collapse
|
10
|
de Vignemont F, Farnè A. Peripersonal space: why so last-second? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230159. [PMID: 39155714 PMCID: PMC11529623 DOI: 10.1098/rstb.2023.0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 08/20/2024] Open
Abstract
A vast range of neurophysiological, neuropsychological and behavioural results in monkeys and humans have shown that the immediate surroundings of the body, also known as peripersonal space (PPS), are processed in a unique way. Three roles have been ascribed to PPS mechanisms: to react to threats, to avoid obstacles and to act on objects. However, in many circumstances, one does not wait for objects or agents to enter PPS to plan these behaviours. Typically, one has more chances to survive if one starts running away from the lion when one sees it in the distance than if it is a few steps away. PPS makes sense in shortsighted creatures but we are not such creatures. The crucial question is thus twofold: (i) why are these adaptive processes triggered only at the last second or even milliseconds? And (ii) what is their exact contribution, especially for defensive and navigational behaviours? Here, we propose that PPS mechanisms correspond to a plan B, useful in unpredictable situations or when other anticipatory mechanisms have failed. Furthermore, we argue that there are energetic, cognitive and behavioural costs to PPS mechanisms, which explain why this plan B is triggered only at the last second. This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
| | - Alessandro Farnè
- Impact Team of the Lyon Neuroscience Research Centre INSERM U1028 CNRS UMR5292 University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Britt N, Sun HJ. Spatial attention in three-dimensional space: A meta-analysis for the near advantage in target detection and localization. Neurosci Biobehav Rev 2024; 165:105869. [PMID: 39214342 DOI: 10.1016/j.neubiorev.2024.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Studies have explored how human spatial attention appears allocated in three-dimensional (3D) space. It has been demonstrated that target distance from the viewer can modulate performance in target detection and localization tasks: reaction times are shorter when targets appear nearer to the observer compared to farther distances (i.e., near advantage). Times have reached to quantitatively analyze this literature. In the current meta-analysis, 29 studies (n = 1260 participants) examined target detection and localization across 3-D space. Moderator analyses included: detection vs localization tasks, spatial cueing vs uncued tasks, control of retinal size across depth, central vs peripheral targets, real-space vs stereoscopic vs monocular depth environments, and inclusion of in-trial motion. The analyses revealed a near advantage for spatial attention that was affected by the moderating variables of controlling for retinal size across depth, the use of spatial cueing tasks, and the inclusion of in-trial motion. Overall, these results provide an up-to-date quantification of the effect of depth and provide insight into methodological differences in evaluating spatial attention.
Collapse
Affiliation(s)
- Noah Britt
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Hong-Jin Sun
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Zafarana A, Farnè A, Tamè L. Visual perceptual learning is effective in the illusory far but not in the near space. Psychon Bull Rev 2024; 31:1206-1215. [PMID: 37932577 PMCID: PMC11192680 DOI: 10.3758/s13423-023-02389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 11/08/2023]
Abstract
Visual shape discrimination is faster for objects close to the body, in the peripersonal space (PPS), compared with objects far from the body. Visual processing enhancement in PPS occurs also when perceived depth is based on 2D pictorial cues. This advantage has been observed from relatively low-level (detection, size, orientation) to high-level visual features (face processing). While multisensory association also displays proximal advantages, whether PPS influences visual perceptual learning remains unclear. Here, we investigated whether perceptual learning effects vary according to the distance of visual stimuli (near or far) from the observer, illusorily induced by leveraging the Ponzo illusion. Participants performed a visual search task in which they reported whether a specific target object orientation (e.g., triangle pointing downward) was present among distractors. Performance was assessed before and after practicing the visual search task (30 minutes/day for 5 days) at either the close (near group) or far (far group) distance. Results showed that participants that performed the training in the near space did not improve. By contrast, participants that performed the training in the far space showed an improvement in the visual search task in both the far and near spaces. We suggest that such improvement following the far training is due to a greater deployment of attention in the far space, which could make the learning more effective and generalize across spaces.
Collapse
Affiliation(s)
- Antonio Zafarana
- School of Psychology, University of Kent, Canterbury, CT2 7NP, UK.
| | - Alessandro Farnè
- Lyon Neuroscience Research Centre, Impact Team, INSERM U1028, CNRS UMR5292, University Claude Bernard Lyon I, Lyon, France
| | - Luigi Tamè
- School of Psychology, University of Kent, Canterbury, CT2 7NP, UK.
| |
Collapse
|
13
|
Ziereis A, Schacht A. Additive effects of emotional expression and stimulus size on the perception of genuine and artificial facial expressions: an ERP study. Sci Rep 2024; 14:5574. [PMID: 38448642 PMCID: PMC10918072 DOI: 10.1038/s41598-024-55678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Seeing an angry individual in close physical proximity can not only result in a larger retinal representation of that individual and an enhanced resolution of emotional cues, but may also increase motivation for rapid visual processing and action preparation. The present study investigated the effects of stimulus size and emotional expression on the perception of happy, angry, non-expressive, and scrambled faces. We analyzed event-related potentials (ERPs) and behavioral responses of N = 40 participants who performed a naturalness classification task on real and artificially created facial expressions. While the emotion-related effects on accuracy for recognizing authentic expressions were modulated by stimulus size, ERPs showed only additive effects of stimulus size and emotional expression, with no significant interaction with size. This contrasts with previous research on emotional scenes and words. Effects of size were present in all included ERPs, whereas emotional expressions affected the N170, EPN, and LPC, irrespective of size. These results imply that the decoding of emotional valence in faces can occur even for small stimuli. Supra-additive effects in faces may necessitate larger size ranges or dynamic stimuli that increase arousal.
Collapse
Affiliation(s)
- Annika Ziereis
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Georg-August-University of Göttingen, 37073, Göttingen, Germany.
| | - Anne Schacht
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Georg-August-University of Göttingen, 37073, Göttingen, Germany
| |
Collapse
|
14
|
Saneyoshi A, Takayama R, Michimata C. Tool use moves the peri-personal space from the hand to the tip of the tool. Front Psychol 2023; 14:1142850. [PMID: 37251033 PMCID: PMC10213688 DOI: 10.3389/fpsyg.2023.1142850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In this study, we used a visual target detection task to investigate three hypotheses about how the peri-personal space is extended after tool-use training: Addition, Extension, and Projection hypotheses. We compared the target detection performance before and after tool-use training. In both conditions, the participants held a hockey stick-like tool in their hands during the detection task. Furthermore, we added the no-tool-holding condition to the experimental design. In the no-tool-holding condition, a peri-hand space advantage in the visual target detection task was observed. When the participants held the tool with their hands, this peri-hand space advantage was lost. Furthermore, there was no peri-tool space advantage before tool training. After tool training, the peri-tool space advantage was observed. However, after tool training, the advantage of the peri-hand space was not observed. This result suggested that the peri-hand advantage was reduced by simply holding the tool because the participants lost the functionality of their hands. Furthermore, tool-use training improved detection performance only in the peri-tool space. Thus, these results supported the projection hypothesis that the peri-personal space advantage would move from the body to the functional part of the tool.
Collapse
Affiliation(s)
- Ayako Saneyoshi
- Department of Psychology, Teikyo University, Hachioji-shi, Tokyo, Japan
| | - Ryota Takayama
- Department of Psychology, Sophia University, Chiyoda-ku, Tokyo, Japan
| | - Chikashi Michimata
- Department of Psychology, Teikyo University, Hachioji-shi, Tokyo, Japan
- Department of Psychology, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
15
|
Pupil size as a robust marker of attentional bias toward nicotine-related stimuli in smokers. Psychon Bull Rev 2022; 30:596-607. [PMID: 36229711 PMCID: PMC9559544 DOI: 10.3758/s13423-022-02192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2022] [Indexed: 12/02/2022]
Abstract
Spatial attention can be magnetically attracted by behaviorally salient stimuli. This phenomenon occasionally conflicts with behavioral goals, leading to maladaptive consequences, as in the case of addiction, in which attentional biases have been described and linked with clinically meaningful variables, such as craving level or dependence intensity. Here, we sought to probe the markers of attentional priority in smokers through eye-tracking measures, by leveraging the established link between eye movements and spatial attention. We were particularly interested in potential markers related to pupil size, because pupil diameter reflects a range of autonomic, affective, and cognitive/attentional reactions to behaviorally significant stimuli and is a robust marker of appetitive and aversive learning. We found that changes in pupil size to nicotine-related visual stimuli could reliably predict, in cross-validated logistic regression, the smoking status of young smokers (showing pupil constriction) better than more traditional proxy measures. The possibility that pupil constriction may reflect a bias toward central vision, for example, attentional capture, is discussed in terms of sensory tuning with respect to nicotine-related stimuli. Pupil size was more sensitive at lower nicotine dependence levels, and at increased abstinence time (though these two variables were collinear). We conclude that pupillometry can provide a robust marker for attentional priority computation and useful indications regarding motivational states and individual attitudes toward conditioned stimuli.
Collapse
|
16
|
Dureux A, Zigiotto L, Sarubbo S, Desoche C, Farnè A, Bolognini N, Hadj-Bouziane F. Personal space regulation is affected by unilateral temporal lesions beyond the amygdala. Cereb Cortex Commun 2022; 3:tgac031. [PMID: 36072709 PMCID: PMC9441012 DOI: 10.1093/texcom/tgac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
We constantly face situations involving interactions with others that require us to automatically adjust our physical distances to avoid discomfort or anxiety. A previous case study has demonstrated that the integrity of both amygdalae is essential to regulate interpersonal distances. Despite unilateral lesion to the amygdala, as to other sectors of the medial temporal cortex, are known to also affect social behavior, their role in the regulation of interpersonal distances has never been investigated. Here, we sought to fill this gap by testing three patients with unilateral temporal lesions following surgical resections, including one patient with a lesion mainly centered on the amygdala and two with lesions to adjacent medial temporal cortex, on two versions of the stop distance paradigm (i.e. in a virtual reality environment and in a real setting). Our results showed that all three patients set shorter interpersonal distances compared to neurotypical controls. In addition, compared to controls, none of the patients adjusted such physical distances depending on facial emotional expressions, despite they preserved ability to categorize them. Finally, patients' heart rate responses differed from controls when viewing approaching faces. Our findings bring compelling evidence that unilateral lesions within the medial temporal cortex, not necessarily restricted to the amygdala, are sufficient to alter interpersonal distance, thus shedding new light on the neural circuitry regulating distance in social interactions.
Collapse
Affiliation(s)
- Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team - ImpAct , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- Neuroscience Research Center (CRNL) , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
| | - Luca Zigiotto
- Department of Neurosurgery, Azienda Provinciale per i Servizi Sanitari (APSS), “Santa Chiara Hospital” , 38122 Trento , Italy
- Department of Psychology, Azienda Provinciale per i Servizi Sanitari (APSS), “Santa Chiara Hospital” , 38122 Trento , Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Azienda Provinciale per i Servizi Sanitari (APSS), “Santa Chiara Hospital” , 38122 Trento , Italy
| | - Clément Desoche
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
- Hospices Civils de Lyon, Neuro-Immersion & Mouvement et Handicap , 69677 Lyon , France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team - ImpAct , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- Neuroscience Research Center (CRNL) , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
- Hospices Civils de Lyon, Neuro-Immersion & Mouvement et Handicap , 69677 Lyon , France
- Center for Mind/Brain Sciences (CIMeC), University of Trento , Trento , Italy
| | - Nadia Bolognini
- Department of Psychology, University of Milano Bicocca , 20126 Milano , Italy
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano , 20122 Milano , Italy
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team - ImpAct , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- Neuroscience Research Center (CRNL) , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
| |
Collapse
|
17
|
Driver's Visual Attention Characteristics and Their Emotional Influencing Mechanism under Different Cognitive Tasks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095059. [PMID: 35564459 PMCID: PMC9099627 DOI: 10.3390/ijerph19095059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
The visual attention system is the gateway to the human information processing system, and emotion is an important part of the human perceptual system. In this paper, the driver's visual attention characteristics and the influences of typical driving emotions on those were explored through analyzing driver's fixation time and identification accuracy to different visual cognitive tasks during driving. The results showed that: the increasing complexity of the cognitive object led to the improvement of visual identification speed. The memory and recall process increased drivers' fixation time to cognitive objects, and the recall accuracy decreased with the increase in time interval. The increase in the number of cognitive objects resulted in the driver improving the visual identification speed for the cognitive object at the end of the sequence consciously. The results also showed that: the visual cognitive efficiency was improved in the emotional states of anger and contempt, and was decreased in the emotional states of surprise, fear, anxiety, helplessness and pleasure, and the emotional state of relief had no significant effect on the visual cognitive efficiency. The findings reveal the driver's visual information processing mechanism to a certain extent, which are of great significance to understand the inner micro-psychology of driver's cognition.
Collapse
|
18
|
Saporta N, Peled-Avron L, Scheele D, Lieberz J, Hurlemann R, Shamay-Tsoory SG. Touched by loneliness-how loneliness impacts the response to observed human touch: a tDCS study. Soc Cogn Affect Neurosci 2022; 17:142-150. [PMID: 34907421 PMCID: PMC8824677 DOI: 10.1093/scan/nsab122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Lonely people often crave connectedness. However, they may also experience their environment as threatening, entering a self-preserving state that perpetuates loneliness. Research shows conflicting evidence about their response to positive social cues, and little is known about their experience of observed human touch. The right inferior frontal gyrus (rIFG) is part of an observation-execution network implicated in observed touch perception. Correlative studies also point to rIFG's involvement in loneliness. We examined the causal effect of rIFG anodal transcranial direct current stimulation on high- and low-loneliness individuals observing human touch. In a cross-over design study, 40 participants watched pictures of humans or objects touching or not touching during anodal and sham stimulations. Participants indicated whether pictures contained humans or objects, and their reaction time was measured. Results show that the reaction time of low-loneliness individuals to observed human touch was significantly slower during anodal stimulation compared to high-loneliness individuals, possibly due to them being more emotionally distracted by it. Lonely individuals also reported less liking of touch. Our findings support the notion that lonely individuals are not drawn to positive social cues. This may help explain the perpetuation of loneliness, despite social opportunities that could be available to lonely people.
Collapse
Affiliation(s)
- Nira Saporta
- School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel
| | - Leehe Peled-Avron
- School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dirk Scheele
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg 26129, Germany
| | - Jana Lieberz
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg 26129, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg 26129, Germany
| | | |
Collapse
|
19
|
Bogdanova OV, Bogdanov VB, Miller LE, Hadj-Bouziane F. Simulated proximity enhances perceptual and physiological responses to emotional facial expressions. Sci Rep 2022; 12:109. [PMID: 34996925 PMCID: PMC8741866 DOI: 10.1038/s41598-021-03587-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Physical proximity is important in social interactions. Here, we assessed whether simulated physical proximity modulates the perceived intensity of facial emotional expressions and their associated physiological signatures during observation or imitation of these expressions. Forty-four healthy volunteers rated intensities of dynamic angry or happy facial expressions, presented at two simulated locations, proximal (0.5 m) and distant (3 m) from the participants. We tested whether simulated physical proximity affected the spontaneous (in the observation task) and voluntary (in the imitation task) physiological responses (activity of the corrugator supercilii face muscle and pupil diameter) as well as subsequent ratings of emotional intensity. Angry expressions provoked relative activation of the corrugator supercilii muscle and pupil dilation, whereas happy expressions induced a decrease in corrugator supercilii muscle activity. In proximal condition, these responses were enhanced during both observation and imitation of the facial expressions, and were accompanied by an increase in subsequent affective ratings. In addition, individual variations in condition related EMG activation during imitation of angry expressions predicted increase in subsequent emotional ratings. In sum, our results reveal novel insights about the impact of physical proximity in the perception of emotional expressions, with early proximity-induced enhancements of physiological responses followed by an increased intensity rating of facial emotional expressions.
Collapse
Affiliation(s)
- Olena V Bogdanova
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France. .,INCIA, CNRS UMR 5287, Université de Bordeaux, Bordeaux, France.
| | - Volodymyr B Bogdanov
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France.,Université de Bordeaux, Collège Science de la Sante, Institut Universitaire des Sciences de la Réadaptation, Handicap Activité Cognition Santé EA 4136, Bordeaux, France
| | - Luke E Miller
- Donders Centre for Cognition of Radboud University in Nijmegen, Nijmegen, The Netherlands
| | - Fadila Hadj-Bouziane
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France
| |
Collapse
|
20
|
Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021; 226:2967-2988. [PMID: 34508272 PMCID: PMC8541987 DOI: 10.1007/s00429-021-02378-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| | - Alessia Sepe
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
21
|
Bogdanova OV, Bogdanov VB, Dureux A, Farnè A, Hadj-Bouziane F. The Peripersonal Space in a social world. Cortex 2021; 142:28-46. [PMID: 34174722 DOI: 10.1016/j.cortex.2021.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/27/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
The PeriPersonal Space (PPS) has been defined as the space surrounding the body, where physical interactions with elements of the environment take place. As our world is social in nature, recent evidence revealed the complex modulation of social factors onto PPS representation. In light of the growing interest in the field, in this review we take a close look at the experimental approaches undertaken to assess the impact of social factors onto PPS representation. Our social world also influences the personal space (PS), a concept stemming from social psychology, defined as the space we keep between us and others to avoid discomfort. Here we analytically compare PPS and PS with the aim of understanding if and how they relate to each other. At the behavioral level, the multiplicity of experimental methodologies, whether well-established or novel, lead to somewhat divergent results and interpretations. Beyond behavior, we review physiological and neural signatures of PPS representation to discuss how interoceptive signals could contribute to PPS representation, as well as how these internal signals could shape the neural responses of PPS representation. In particular, by merging exteroceptive information from the environment and internal signals that come from the body, PPS may promote an integrated representation of the self, as distinct from the environment and the others. We put forward that integrating internal and external signals in the brain for perception of proximal environmental stimuli may also provide us with a better understanding of the processes at play during social interactions. Adopting such an integrative stance may offer novel insights about PPS representation in a social world. Finally, we discuss possible links between PPS research and social cognition, a link that may contribute to the understanding of intentions and feelings of others around us and promote appropriate social interactions.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; INCIA, UMR 5287, CNRS, Université de Bordeaux, France.
| | - Volodymyr B Bogdanov
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Ecole Nationale des Travaux Publics de l'Etat, Laboratoire Génie Civil et Bâtiment, Vaulx-en-Velin, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France.
| |
Collapse
|