1
|
Jurkiewicz T, Vialatte A, Yeshurun Y, Pisella L. Attentional modulation of peripheral pointing hypometria in healthy participants: An insight into optic ataxia? Neuropsychologia 2025; 208:109084. [PMID: 39890056 DOI: 10.1016/j.neuropsychologia.2025.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Damage to the superior parietal lobule and intraparietal sulcus (SPL-IPS) causes optic ataxia (OA), characterized by pathological gaze-centered hypometric pointing to targets in the affected peripheral visual field. The SPL-IPS is also involved in covert attention. Here, we investigated the possible link between attention and action. This study investigated the effect of attention on pointing performance in healthy participants and two OA patients. In invalid trials, targets appeared unpredictably across different visual fields and eccentricities. Valid trials involved cued targets at specific locations. The first experiment used a central cue with 75% validity, the second used a peripheral cue with 50% validity. The effect of attention on pointing variability (noise) or time was expected as a confirmation of cueing efficiency. Critically, if OA reflects an attentional deficit, then healthy participants, in the invalid condition (without attention), were expected to produce the gaze-centered hypometric pointing bias characteristic of OA. RESULTS: revealed main effects of validity on pointing biases in all participants with central predictive cueing, but not with peripheral low predictive cueing. This suggests that the typical underestimation of visual eccentricity in OA (visual field effect) at least partially results from impaired endogenous attention orientation toward the affected visual field.
Collapse
Affiliation(s)
- Tristan Jurkiewicz
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500, Bron, France; Centre d'Exploration de la Rétine Kléber (CERK), 50 cours Franklin Roosevelt, 69006, Lyon, France
| | - Audrey Vialatte
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Yaffa Yeshurun
- School of Psychological Science, University of Haifa, Haifa, Israel
| | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500, Bron, France
| |
Collapse
|
2
|
Drissi H, Jurkiewicz T, Vialatte A, Khan AZ, Pisella L. Impact of macular scotoma and tubular vision on oculomotor behavior and performance in visuospatial comparison tasks. J Vis 2024; 24:2. [PMID: 39226068 PMCID: PMC11373732 DOI: 10.1167/jov.24.9.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Our aim in this study was to understand how we perform visuospatial comparison tasks by analyzing ocular behavior and to examine how restrictions in macular or peripheral vision disturb ocular behavior and task performance. Two groups of 18 healthy participants with normal or corrected visual acuity performed visuospatial comparison tasks (computerized version of the elementary visuospatial perception [EVSP] test) (Pisella et al., 2013) with a gaze-contingent mask simulating either tubular vision (first group) or macular scotoma (second group). After these simulations of pathological conditions, all participants also performed the EVSP test in full view, enabling direct comparison of their oculomotor behavior and performance. In terms of oculomotor behavior, compared with the full view condition, alternation saccades between the two objects to compare were less numerous in the absence of peripheral vision, whereas the number of within-object exploration saccades decreased in the absence of macular vision. The absence of peripheral vision did not affect accuracy except for midline judgments, but the absence of central vision impaired accuracy across all visuospatial subtests. Besides confirming the crucial role of the macula for visuospatial comparison tasks, these experiments provided important insights into how sensory disorder modifies oculomotor behavior with or without consequences on performance accuracy.
Collapse
Affiliation(s)
- Hind Drissi
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1, INSERM U1028, Bron, France
| | - Tristan Jurkiewicz
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1, INSERM U1028, Bron, France
| | - Audrey Vialatte
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1, INSERM U1028, Bron, France
| | | | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1, INSERM U1028, Bron, France
- https://orcid.org/0000-0001-6550-3774
| |
Collapse
|
3
|
Jurkiewicz T, Delporte L, Revol P, Rossetti Y, Pisella L. Effect of juggling expertise on pointing performance in peripheral vision. PLoS One 2024; 19:e0306630. [PMID: 38995902 PMCID: PMC11244809 DOI: 10.1371/journal.pone.0306630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Juggling is a very complex activity requiring motor, visual and coordination skills. Expert jugglers experience a "third eye" monitoring leftward and rightward ball zenith positions alternately, in the upper visual fields, while maintaining their gaze straight-ahead. This "third eye" reduces their motor noise (improved body stability and decrease in hand movement variability) as it avoids the numerous head and eye movements that add noise into the system and make trajectories more uncertain. Neuroimaging studies have shown that learning to juggle induces white and grey matter hypertrophy at the posterior intraparietal sulcus. Damage to this brain region leads to optic ataxia, a clinical condition characterised by peripheral pointing bias toward gaze position. We predicted that expert jugglers would, conversely, present better accuracy in a peripheral pointing task. The mean pointing accuracy of expert jugglers was better for peripheral pointing within the upper visual field, compatible with their subjective experience of the "third eye". Further analyses showed that experts exhibited much less between-subject variability than beginners, reinforcing the interpretation of a vertically asymmetrical calibration of peripheral space, characteristic of juggling and homogenous in the expert group. On the contrary, individual pointing variability did not differ between groups neither globally nor in any sector of space, showing that the reduced motor noise of experts in juggling did not transfer to pointing. It is concluded that the plasticity of the posterior intraparietal sulcus related to juggling expertise does not consist of globally improved visual-to-motor ability. It rather consists of peripheral space calibration by practicing horizontal covert shifts of the attentional spotlight within the upper visual field, between left and right ball zenith positions.
Collapse
Affiliation(s)
- Tristan Jurkiewicz
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Centre d’Exploration de la Rétine Kléber, Ophthalmology Department, Lyon, France
| | - Ludovic Delporte
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Patrice Revol
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Yves Rossetti
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
| |
Collapse
|
4
|
Métais C, Nicolas J, Diarra M, Cheviet A, Koun E, Pélisson D. Neural substrates of saccadic adaptation: Plastic changes versus error processing and forward versus backward learning. Neuroimage 2022; 262:119556. [PMID: 35964865 DOI: 10.1016/j.neuroimage.2022.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Previous behavioral, clinical, and neuroimaging studies suggest that the neural substrates of adaptation of saccadic eye movements involve, beyond the central role of the cerebellum, several, still incompletely determined, cortical areas. Furthermore, no neuroimaging study has yet tackled the differences between saccade lengthening ("forward adaptation") and shortening ("backward adaptation") and neither between their two main components, i.e. error processing and oculomotor changes. The present fMRI study was designed to fill these gaps. Blood-oxygen-level-dependent (BOLD) signal and eye movements of 24 healthy volunteers were acquired while performing reactive saccades under 4 conditions repeated in short blocks of 16 trials: systematic target jump during the saccade and in the saccade direction (forward: FW) or in the opposite direction (backward: BW), randomly directed FW or BW target jump during the saccade (random: RND) and no intra-saccadic target jump (stationary: STA). BOLD signals were analyzed both through general linear model (GLM) approaches applied at the whole-brain level and through sensitive Multi-Variate Pattern Analyses (MVPA) applied to 34 regions of interest (ROIs) identified from independent 'Saccade Localizer' functional data. Oculomotor data were consistent with successful induction of forward and backward adaptation in FW and BW blocks, respectively. The different analyses of voxel activation patterns (MVPAs) disclosed the involvement of 1) a set of ROIs specifically related to adaptation in the right occipital cortex, right and left MT/MST, right FEF and right pallidum; 2) several ROIs specifically involved in error signal processing in the left occipital cortex, left PEF, left precuneus, Medial Cingulate cortex (MCC), left inferior and right superior cerebellum; 3) ROIs specific to the direction of adaptation in the occipital cortex and MT/MST (left and right hemispheres for FW and BW, respectively) and in the pallidum of the right hemisphere (FW). The involvement of the left PEF and of the (left and right) occipital cortex were further supported and qualified by the whole brain GLM analysis: clusters of increased activity were found in PEF for the RND versus STA contrast (related to error processing) and in the left (right) occipital cortex for the FW (BW) versus STA contrasts [related to the FW (BW) direction of error and/or adaptation]. The present study both adds complementary data to the growing literature supporting a role of the cerebral cortex in saccadic adaptation through feedback and feedforward relationships with the cerebellum and provides the basis for improving conceptual frameworks of oculomotor plasticity and of its link with spatial cognition.
Collapse
Affiliation(s)
- Camille Métais
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Judith Nicolas
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France; Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Moussa Diarra
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France; Université Bourgogne Franche-Comté, LEAD - CNRS UMR5022, Université de Bourgogne, Pôle AAFE, 11 Esplanade Erasme, 21000, Dijon, France
| | - Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Eric Koun
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France.
| |
Collapse
|
5
|
Ford L, Shaw TB, Mattingley JB, Robinson GA. Enhanced semantic memory in a case of highly superior autobiographical memory. Cortex 2022; 151:1-14. [DOI: 10.1016/j.cortex.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
|
6
|
Gibson EC, Ford L, Robinson GA. Investigating the role of future thinking in highly superior autobiographical memory. Cortex 2022; 149:188-201. [DOI: 10.1016/j.cortex.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
7
|
Cheviet A, Masselink J, Koun E, Salemme R, Lappe M, Froment-Tilikete C, Pélisson D. Cerebellar Signals Drive Motor Adjustments and Visual Perceptual Changes during Forward and Backward Adaptation of Reactive Saccades. Cereb Cortex 2022; 32:3896-3916. [PMID: 34979550 DOI: 10.1093/cercor/bhab455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/12/2022] Open
Abstract
Saccadic adaptation ($SA$) is a cerebellar-dependent learning of motor commands ($MC$), which aims at preserving saccade accuracy. Since $SA$ alters visual localization during fixation and even more so across saccades, it could also involve changes of target and/or saccade visuospatial representations, the latter ($CDv$) resulting from a motor-to-visual transformation (forward dynamics model) of the corollary discharge of the $MC$. In the present study, we investigated if, in addition to its established role in adaptive adjustment of $MC$, the cerebellum could contribute to the adaptation-associated perceptual changes. Transfer of backward and forward adaptation to spatial perceptual performance (during ocular fixation and trans-saccadically) was assessed in eight cerebellar patients and eight healthy volunteers. In healthy participants, both types of $SA$ altered $MC$ as well as internal representations of the saccade target and of the saccadic eye displacement. In patients, adaptation-related adjustments of $MC$ and adaptation transfer to localization were strongly reduced relative to healthy participants, unraveling abnormal adaptation-related changes of target and $CDv$. Importantly, the estimated changes of $CDv$ were totally abolished following forward session but mainly preserved in backward session, suggesting that an internal model ensuring trans-saccadic localization could be located in the adaptation-related cerebellar networks or in downstream networks, respectively.
Collapse
Affiliation(s)
- Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| | - Jana Masselink
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster 48149, Germany
| | - Eric Koun
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| | - Roméo Salemme
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster 48149, Germany
| | - Caroline Froment-Tilikete
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France.,Hospices Civils de Lyon - Pierre-Wertheimer Hospital, Neuro-Ophtalmology unit, Bron cedex 69500, France
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| |
Collapse
|