1
|
Environmentally Toxic Solid Nanoparticles in Noradrenergic and Dopaminergic Nuclei and Cerebellum of Metropolitan Mexico City Children and Young Adults with Neural Quadruple Misfolded Protein Pathologies and High Exposures to Nano Particulate Matter. TOXICS 2022; 10:toxics10040164. [PMID: 35448425 PMCID: PMC9028025 DOI: 10.3390/toxics10040164] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Quadruple aberrant hyperphosphorylated tau, beta-amyloid, α-synuclein and TDP-43 neuropathology and metal solid nanoparticles (NPs) are documented in the brains of children and young adults exposed to Metropolitan Mexico City (MMC) pollution. We investigated environmental NPs reaching noradrenergic and dopaminergic nuclei and the cerebellum and their associated ultrastructural alterations. Here, we identify NPs in the locus coeruleus (LC), substantia nigrae (SN) and cerebellum by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 197 samples from 179 MMC residents, aged 25.9 ± 9.2 years and seven older adults aged 63 ± 14.5 years. Fe, Ti, Hg, W, Al and Zn spherical and acicular NPs were identified in the SN, LC and cerebellar neural and vascular mitochondria, endoplasmic reticulum, Golgi, neuromelanin, heterochromatin and nuclear pore complexes (NPCs) along with early and progressive neurovascular damage and cerebellar endothelial erythrophagocytosis. Strikingly, FeNPs 4 ± 1 nm and Hg NPs 8 ± 2 nm were seen predominantly in the LC and SN. Nanoparticles could serve as a common denominator for misfolded proteins and could play a role in altering and obstructing NPCs. The NPs/carbon monoxide correlation is potentially useful for evaluating early neurodegeneration risk in urbanites. Early life NP exposures pose high risk to brains for development of lethal neurologic outcomes. NP emissions sources ought to be clearly recognized, regulated, and monitored; future generations are at stake.
Collapse
|
2
|
Vignando M, Ffytche D, Lewis SJG, Lee PH, Chung SJ, Weil RS, Hu MT, Mackay CE, Griffanti L, Pins D, Dujardin K, Jardri R, Taylor JP, Firbank M, McAlonan G, Mak HKF, Ho SL, Mehta MA. Mapping brain structural differences and neuroreceptor correlates in Parkinson's disease visual hallucinations. Nat Commun 2022; 13:519. [PMID: 35082285 PMCID: PMC8791961 DOI: 10.1038/s41467-022-28087-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's psychosis (PDP) describes a spectrum of symptoms that may arise in Parkinson's disease (PD) including visual hallucinations (VH). Imaging studies investigating the neural correlates of PDP have been inconsistent in their findings, due to differences in study design and limitations of scale. Here we use empirical Bayes harmonisation to pool together structural imaging data from multiple research groups into a large-scale mega-analysis, allowing us to identify cortical regions and networks involved in VH and their relation to receptor binding. Differences of morphometrics analysed show a wider cortical involvement underlying VH than previously recognised, including primary visual cortex and surrounding regions, and the hippocampus, independent of its role in cognitive decline. Structural covariance analyses point to the involvement of the attentional control networks in PD-VH, while associations with receptor density maps suggest neurotransmitter loss may be linked to the cortical changes.
Collapse
Affiliation(s)
- Miriam Vignando
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF, UK.
| | - Dominic Ffytche
- Department of Old Age Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Phil Hyu Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | | | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1M 3BG, UK
- Wellcome Centre for Neuroimaging, University College London, London, UK
| | - Michele T Hu
- Oxford Parkinson's Disease Centre, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Clare E Mackay
- Oxford Parkinson's Disease Centre, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ludovica Griffanti
- Oxford Parkinson's Disease Centre, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Delphine Pins
- Univ. Lille, Inserm, CHU Lille, U1172 - Centre Lille Neuroscience & Cognition, 59000, Lille, France
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - Centre Lille Neuroscience & Cognition, 59000, Lille, France
| | - Renaud Jardri
- Univ. Lille, Inserm, CHU Lille, U1172 - Centre Lille Neuroscience & Cognition, 59000, Lille, France
| | - John-Paul Taylor
- Newcastle University, Translational and Clinical Research Institute, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle Upon Tyne, NE4 5PL, UK
| | - Michael Firbank
- Newcastle University, Translational and Clinical Research Institute, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle Upon Tyne, NE4 5PL, UK
| | - Grainne McAlonan
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Henry K F Mak
- Division of Neurology, Dept of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Shu Leong Ho
- Division of Neurology, Dept of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Mitul A Mehta
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|