1
|
Ramanan S, Akarca D, Henderson SK, Rouse MA, Allinson K, Patterson K, Rowe JB, Lambon Ralph MA. The graded multidimensional geometry of phenotypic variation and progression in neurodegenerative syndromes. Brain 2025; 148:448-466. [PMID: 39018014 PMCID: PMC11788217 DOI: 10.1093/brain/awae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Clinical variants of Alzheimer's disease and frontotemporal lobar degeneration display a spectrum of cognitive-behavioural changes varying between individuals and over time. Understanding the landscape of these graded individual/group level longitudinal variations is critical for precise phenotyping; however, this remains challenging to model. Addressing this challenge, we leverage the National Alzheimer's Coordinating Center database to derive a unified geometric framework of graded longitudinal phenotypic variation in Alzheimer's disease and frontotemporal lobar degeneration. We included three time point, cognitive-behavioural and clinical data from 390 typical, atypical and intermediate Alzheimer's disease and frontotemporal lobar degeneration variants (114 typical Alzheimer's disease; 107 behavioural variant frontotemporal dementia; 42 motor variants of frontotemporal lobar degeneration; and 103 primary progressive aphasia patients). On these data, we applied advanced data-science approaches to derive low-dimensional geometric spaces capturing core features underpinning clinical progression of Alzheimer's disease and frontotemporal lobar degeneration syndromes. To do so, we first used principal component analysis to derive six axes of graded longitudinal phenotypic variation capturing patient-specific movement along and across these axes. Then, we distilled these axes into a visualizable 2D manifold of longitudinal phenotypic variation using Uniform Manifold Approximation and Projection. Both geometries together enabled the assimilation and interrelation of paradigmatic and mixed cases, capturing dynamic individual trajectories and linking syndromic variability to neuropathology and key clinical end points, such as survival. Through these low-dimensional geometries, we show that (i) specific syndromes (Alzheimer's disease and primary progressive aphasia) converge over time into a de-differentiated pooled phenotype, while others (frontotemporal dementia variants) diverge to look different from this generic phenotype; (ii) phenotypic diversification is predicted by simultaneous progression along multiple axes, varying in a graded manner between individuals and syndromes; and (iii) movement along specific principal axes predicts survival at 36 months in a syndrome-specific manner and in individual pathological groupings. The resultant mapping of dynamics underlying cognitive-behavioural evolution potentially holds paradigm-changing implications to predicting phenotypic diversification and phenotype-neurobiological mapping in Alzheimer's disease and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Danyal Akarca
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Shalom K Henderson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Matthew A Rouse
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Kieren Allinson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Pathology, Cambridge University Hospitals NHS Trust, Cambridge CB2 1QP, UK
| | - Karalyn Patterson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
2
|
Reardon AD, Gillinder L, Copland DA, McMahon KL, Brownsett SLE. Uncovering language deficits in focal epilepsy: Beyond the limits of noun naming and verbal fluency. Epilepsy Behav 2025; 163:110181. [PMID: 39637731 DOI: 10.1016/j.yebeh.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND A range of language impairments have been reported in people with epilepsy both pre- and post-surgically, however language is not routinely comprehensively assessed in epilepsy clinics. When language is assessed, this is typically as part of a broader neuropsychological battery of assessment, often limited to tests of noun naming and/or verbal fluency, despite evidence to suggest these tests are not sufficiently sensitive to detect the often-subtle deficits present in chronic focal epilepsy. Many areas of language function, including the production of connected speech, have also not been adequately explored in this population, and research relating to subjective report of language and communication difficulties is limited. A more comprehensive assessment of language, which includes patient report, is required to determine the presence and extent of language impairment in people with focal epilepsy. AIM The aim of the present study was to systematically investigate the prevalence and pattern of language impairment in a group of people with chronic focal epilepsy using a comprehensive aphasia battery and a patient reported outcome measure. METHOD Language skills were assessed in 26 right-handed people with chronic focal epilepsy using the Comprehensive Aphasia test (CAT), in addition to standard clinical assessments of noun naming and verbal fluency. Participants' self-report of their language and communication skills was also collected, using the La Trobe Communication Questionnaire (LCQ). OUTCOMES AND RESULTS 85% of participants with focal epilepsy were impaired on one or more language subtests of the CAT. In contrast, only 15% of participants were impaired on tests of confrontation noun naming, and none were impaired on a test of verbal fluency. The CAT findings were supported by subjective data, with 82% of participants self-reporting a communication difficulty. CONCLUSIONS Our results show that current approaches to language assessment are inadequate for identifying language impairments in people with focal epilepsy, and likely underestimate the prevalence of language impairment in this population. In particular, verb naming and picture description subtests revealed deficits across the majority of the sample, highlighting the need for more comprehensive assessment of language to be routinely conducted in this population.
Collapse
Affiliation(s)
- A D Reardon
- Queensland Aphasia Research Centre, University of Queensland, Queensland Australia; School of Health and Rehabilitation Sciences, University of Queensland, Queensland, Australia; Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Victoria, Australia; Royal Brisbane and Women's Hospital, Queensland, Australia.
| | - L Gillinder
- Department of Neurology, Princess Alexandra Hospital, Queensland, Australia; School of Medicine, University of Queensland, Queensland, Australia
| | - D A Copland
- Queensland Aphasia Research Centre, University of Queensland, Queensland Australia; School of Health and Rehabilitation Sciences, University of Queensland, Queensland, Australia; Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Victoria, Australia
| | - K L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Queensland, Australia
| | - S L E Brownsett
- Queensland Aphasia Research Centre, University of Queensland, Queensland Australia; School of Health and Rehabilitation Sciences, University of Queensland, Queensland, Australia; Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Victoria, Australia
| |
Collapse
|
3
|
Henderson SK, Ramanan S, Rouse MA, Cope TE, Halai AD, Patterson KE, Rowe JB, Lambon Ralph MA. Impaired semantic control in the logopenic variant of primary progressive aphasia. Brain Commun 2024; 7:fcae463. [PMID: 39801715 PMCID: PMC11724431 DOI: 10.1093/braincomms/fcae463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
We investigated semantic cognition in the logopenic variant of primary progressive aphasia, including (i) the status of verbal and non-verbal semantic performance; and (ii) whether the semantic deficit reflects impaired semantic control. Our a priori hypothesis that individuals with logopenic variant of primary progressive aphasia would exhibit semantic control impairments was motivated by the anatomical overlap between the temporoparietal atrophy typically associated with logopenic variant of primary progressive aphasia and lesions associated with post-stroke semantic aphasia and Wernicke's aphasia, which cause heteromodal semantic control impairments. We addressed the presence, type (semantic representation and semantic control; verbal and non-verbal), and progression of semantic deficits in logopenic variant of primary progressive aphasia. Since most people with logopenic variant of primary progressive aphasia have Alzheimer's disease pathology and are part of a broader multi-dimensional phenotype space encompassing Alzheimer's disease sub-types, we compared semantic performance in logopenic variant of primary progressive aphasia and typical amnestic Alzheimer's disease. Given the differences in lesion and atrophy patterns in semantic aphasia and Wernicke's aphasia versus semantic-dementia/semantic-variant primary progressive aphasia patients, our second aim was to examine atrophy patterns in people with logopenic variant of primary progressive aphasia and typical Alzheimer's disease compared to age-matched controls. Twenty-seven patients participated in the study. People were grouped into those meeting consensus criteria for logopenic variant of primary progressive aphasia (N = 10) and others who may have previously satisfied definitions of logopenic variant of primary progressive aphasia but had progressed with multi-domain cognitive impairments (herein referred to as 'logopenic variant of primary progressive aphasia+'; N = 8). People with typical amnestic Alzheimer's disease (N = 9) were relatively preserved across verbal and non-verbal semantic assessments. Logopenic variant of primary progressive aphasia patients were impaired on both verbal and non-verbal semantic tasks and their impairments showed the hallmark characteristics of a semantic control deficit. Logopenic variant of primary progressive aphasia and logopenic variant of primary progressive aphasia + patients showed effects of varying semantic control demands, positive cueing effects, and correlated performance between semantic and executive tasks. Whole-brain voxel-based morphometry, comparing each of the patient groups to age-matched controls, revealed significantly reduced grey and white matter in the bilateral hippocampi and lateral temporal regions in typical Alzheimer's disease patients. The logopenic variant of primary progressive aphasia group exhibited an asymmetric pattern of reduced grey and white matter intensity in the language-dominant left hemisphere, including a significant portion of the lateral and medial temporal lobe. Logopenic variant of primary progressive aphasia + patients demonstrated reduced grey and white matter in the left temporal lobe extending sub-cortically, anteriorly and posteriorly, as well as right temporal involvement. Our findings could aid diagnostic sub-typing of primary progressive aphasia by adopting semantic control features and offer improved clinical characterization of logopenic variant of primary progressive aphasia in the trajectory of semantic decline.
Collapse
Affiliation(s)
- Shalom K Henderson
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Siddharth Ramanan
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Matthew A Rouse
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Thomas E Cope
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Ajay D Halai
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Karalyn E Patterson
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - James B Rowe
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Matthew A Lambon Ralph
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
4
|
Song J, Yang H, Yan H, Lu Q, Guo L, Zheng H, Zhang T, Lin B, Zhao Z, He C, Shen Y. Structural disruption in subjective cognitive decline and mild cognitive impairment. Brain Imaging Behav 2024; 18:1536-1548. [PMID: 39370448 DOI: 10.1007/s11682-024-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Subjective cognitive decline (SCD) marks the initial stage in Alzheimer's disease continuum. Nonetheless, current research findings regarding brain structural changes in the SCD are inconsistent. In this study, 37 SCD patients, 28 mild cognitive impairment (MCI) patients, and 42 healthy controls (HC) were recruited to investigate structural alterations. Morphological and microstructural differences among the three groups were analyzed based on T1- and diffusion-weighted images, correlating them with neuropsychological assessments. Additionally, classification analysis was performed by using support vector machines (SVM) categorize participants into three groups based on MRI features. Both SCD and MCI showed decreased volume in left inferior parietal lobe (IPL) compared to HC, while SCD showed altered morphologies in the right inferior temporal gyrus (ITG), right insula and right amygdala, and microstructures in fiber tracts of the right ITG, lateral occipital cortex (LOC) and insula relative to MCI. Moreover, the volume in the left IPL, right LOC, right amygdala and diffusivity value in fiber tracts of right LOC were significantly correlated with cognitive functions across all subjects. The classification models achieved an accuracy of > 0.7 (AUC = 0.8) in distinguishing the three groups. Our findings suggest that SCD and MCI share similar atrophy in the IPL but show more differences in morphological and microstructural features of cortical-subcortical areas.
Collapse
Affiliation(s)
- Jie Song
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Han Yang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Hailang Yan
- Department of Radiology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Lei Guo
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tianjiao Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
- Department of Rehabilitation Science, Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Bin Lin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhiyong Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China.
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China.
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China.
| |
Collapse
|
5
|
Rouse MA, Halai AD, Ramanan S, Rogers TT, Garrard P, Patterson K, Rowe JB, Lambon Ralph MA. Social-semantic knowledge in frontotemporal dementia and after anterior temporal lobe resection. Brain Commun 2024; 6:fcae378. [PMID: 39513090 PMCID: PMC11542483 DOI: 10.1093/braincomms/fcae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Degraded semantic memory is a prominent feature of frontotemporal dementia (FTD). It is classically associated with semantic dementia and anterior temporal lobe (ATL) atrophy, but semantic knowledge can also be compromised in behavioural variant FTD. Motivated by understanding behavioural change in FTD, recent research has focused selectively on social-semantic knowledge, with proposals that the right ATL is specialized for social concepts. Previous studies have assessed very different types of social concepts and have not compared performance with that of matched non-social concepts. Consequently, it remains unclear to what extent various social concepts are (i) concurrently impaired in FTD, (ii) distinct from general semantic memory and (iii) differentially supported by the left and right ATL. This study assessed multiple aspects of social-semantic knowledge and general conceptual knowledge across cohorts with ATL damage arising from either neurodegeneration or resection. We assembled a test battery measuring knowledge of multiple types of social concept. Performance was compared with non-social general conceptual knowledge, measured using the Cambridge Semantic Memory Test Battery and other matched non-social-semantic tests. Our trans-diagnostic approach included behavioural variant FTD, semantic dementia and 'mixed' intermediate cases to capture the FTD clinical spectrum, as well as age-matched healthy controls. People with unilateral left or right ATL resection for temporal lobe epilepsy were also recruited to assess how selective damage to the left or right ATL impacts social- and non-social-semantic knowledge. Social- and non-social-semantic deficits were severe and highly correlated in FTD. Much milder impairments were found after unilateral ATL resection, with no left versus right differences in social-semantic knowledge or general semantic processing and with only naming showing a greater deficit following left versus right damage. A principal component analysis of all behavioural measures in the FTD cohort extracted three components, interpreted as capturing (i) FTD severity, (ii) semantic memory and (iii) executive function. Social and non-social measures both loaded heavily on the same semantic memory component, and scores on this factor were uniquely associated with bilateral ATL grey matter volume but not with the degree of ATL asymmetry. Together, these findings demonstrate that both social- and non-social-semantic knowledge degrade in FTD (semantic dementia and behavioural variant FTD) following bilateral ATL atrophy. We propose that social-semantic knowledge is part of a broader conceptual system underpinned by a bilaterally implemented, functionally unitary semantic hub in the ATLs. Our results also highlight the value of a trans-diagnostic approach for investigating the neuroanatomical underpinnings of cognitive deficits in FTD.
Collapse
Affiliation(s)
- Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Siddharth Ramanan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Timothy T Rogers
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter Garrard
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK
| | - Karalyn Patterson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0SZ, UK
| | | |
Collapse
|
6
|
Rouse MA, Ramanan S, Halai AD, Volfart A, Garrard P, Patterson K, Rowe JB, Lambon Ralph MA. The impact of bilateral versus unilateral anterior temporal lobe damage on face recognition, person knowledge and semantic memory. Cereb Cortex 2024; 34:bhae336. [PMID: 39123309 PMCID: PMC11315654 DOI: 10.1093/cercor/bhae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The functional importance of the anterior temporal lobes (ATLs) has come to prominence in two active, albeit unconnected literatures-(i) face recognition and (ii) semantic memory. To generate a unified account of the ATLs, we tested the predictions from each literature and examined the effects of bilateral versus unilateral ATL damage on face recognition, person knowledge, and semantic memory. Sixteen people with bilateral ATL atrophy from semantic dementia (SD), 17 people with unilateral ATL resection for temporal lobe epilepsy (TLE; left = 10, right = 7), and 14 controls completed tasks assessing perceptual face matching, person knowledge and general semantic memory. People with SD were impaired across all semantic tasks, including person knowledge. Despite commensurate total ATL damage, unilateral resection generated mild impairments, with minimal differences between left- and right-ATL resection. Face matching performance was largely preserved but slightly reduced in SD and right TLE. All groups displayed the familiarity effect in face matching; however, it was reduced in SD and right TLE and was aligned with the level of item-specific semantic knowledge in all participants. We propose a neurocognitive framework whereby the ATLs underpin a resilient bilateral representation system that supports semantic memory, person knowledge and face recognition.
Collapse
Affiliation(s)
- Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Siddharth Ramanan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Angélique Volfart
- Université de Lorraine, CNRS, 2 avenue de la Forêt de Haye, Nancy F-54000, France
- Psychological Sciences Research Institute, University of Louvain, Place du Cardinal Mercier, 10, Louvain-la-Neuve B-1348, Belgium
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Victoria Park Road, Brisbane 4059, Australia
| | - Peter Garrard
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Karalyn Patterson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge CB2 0SZ, United Kingdom
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge CB2 0SZ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0SZ, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| |
Collapse
|
7
|
Hope TMH, Halai A, Crinion J, Castelli P, Price CJ, Bowman H. Principal component analysis-based latent-space dimensionality under-estimation, with uncorrelated latent variables. Brain 2024; 147:e14-e16. [PMID: 37831657 PMCID: PMC10834232 DOI: 10.1093/brain/awad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Affiliation(s)
- Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, Institute of Neurology, University College London, London, WC1N 3AR, UK
- Department of Psychological and Social Sciences, John Cabot University, 00165 Rome, Italy
| | - Ajay Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Jenny Crinion
- Institute of Cognitive Science, Department of Experimental Psychology, University College London, London, WC1N 3AR, UK
| | - Paola Castelli
- Department of Psychological and Social Sciences, John Cabot University, 00165 Rome, Italy
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Howard Bowman
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Castro N, Hula WD, Ashaie SA. Defining aphasia: Content analysis of six aphasia diagnostic batteries. Cortex 2023; 166:19-32. [PMID: 37295235 PMCID: PMC10560591 DOI: 10.1016/j.cortex.2023.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023]
Abstract
Clear operational definitions of constructs are necessary to ensure that research findings are meaningful and interpretable. In the field of aphasiology, aphasia is often defined to the effect of "aphasia is an acquired language disorder often due to brain injury that affects expressive and receptive language." To contribute to our understanding of the construct of aphasia, we conducted a content analysis of six diagnostic aphasia tests: the Minnesota Test for the Differential Diagnosis of Aphasia, the Porch Index of Communicative Ability, the Boston Diagnostic Aphasia Examination, the Western Aphasia Battery, the Comprehensive Aphasia Test, and the Quick Aphasia Battery. These chosen tests have historical prominence, with several in regular clinical and research use today. We hypothesized that the content of the aphasia tests should be very similar since they all purport to identify and characterize (if present) aphasia, with recognition that there may be some subtle differences in test content stemming in large part to epistemological differences in the test makers' views of aphasia. Instead, we found predominantly weak Jaccard indices, a similarity correlation coefficient, between test targets. Only five test targets were found in all six aphasia tests: auditory comprehension of words and sentences, repetition of words, confrontation naming of nouns, and reading comprehension of words. The qualitative and quantitative results suggest that the content across aphasia tests may be more disparate than expected. We conclude by discussing the implication of our results for the field, including the importance of updating, if necessary, the operational definition of aphasia through conversation with a broad audience of interested and affected people.
Collapse
Affiliation(s)
- Nichol Castro
- Department of Communicative Disorders and Sciences, University at Buffalo, United States.
| | - William D Hula
- Geriatric Research, Education, and Clinical Center and Audiology and Speech Pathology, VA Health Care System, United States; Department of Communication Sciences and Disorders, University of Pittsburgh, United States
| | - Sameer A Ashaie
- Think and Speech, Shirley Ryan AbilityLab, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, United States
| |
Collapse
|
9
|
Lambon Ralph MA, Stefaniak JD, Halai AD, Geranmayeh F. Reply: Are recovery of fluency and recovery of phonology antagonistic? Brain 2023; 146:e52-e54. [PMID: 36730037 DOI: 10.1093/brain/awad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Affiliation(s)
| | - James D Stefaniak
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Fatemeh Geranmayeh
- Clinical Language and Cognition Group, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| |
Collapse
|
10
|
Zhao Y, Cox CR, Lambon Ralph MA, Halai AD. Using in vivo functional and structural connectivity to predict chronic stroke aphasia deficits. Brain 2023; 146:1950-1962. [PMID: 36346107 PMCID: PMC10151190 DOI: 10.1093/brain/awac388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Focal brain damage caused by stroke can result in aphasia and advances in cognitive neuroscience suggest that impairment may be associated with network-level disorder rather than just circumscribed cortical damage. Several studies have shown meaningful relationships between brain-behaviour using lesions; however, only a handful of studies have incorporated in vivo structural and functional connectivity. Patients with chronic post-stroke aphasia were assessed with structural (n = 68) and functional (n = 39) MRI to assess whether predicting performance can be improved with multiple modalities and if additional variance can be explained compared to lesion models alone. These neural measurements were used to construct models to predict four key language-cognitive factors: (i) phonology; (ii) semantics; (iii) executive function; and (iv) fluency. Our results showed that each factor (except executive ability) could be significantly related to each neural measurement alone; however, structural and functional connectivity models did not explain additional variance above the lesion models. We did find evidence that the structural and functional predictors may be linked to the core lesion sites. First, the predictive functional connectivity features were found to be located within functional resting-state networks identified in healthy controls, suggesting that the result might reflect functionally specific reorganization (damage to a node within a network can result in disruption to the entire network). Second, predictive structural connectivity features were located within core lesion sites, suggesting that multimodal information may be redundant in prediction modelling. In addition, we observed that the optimum sparsity within the regularized regression models differed for each behavioural component and across different imaging features, suggesting that future studies should consider optimizing hyperparameters related to sparsity per target. Together, the results indicate that the observed network-level disruption was predicted by the lesion alone and does not significantly improve model performance in predicting the profile of language impairment.
Collapse
Affiliation(s)
- Ying Zhao
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Christopher R Cox
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | | | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Ramanan S, El-Omar H, Roquet D, Ahmed RM, Hodges JR, Piguet O, Lambon Ralph MA, Irish M. Mapping behavioural, cognitive and affective transdiagnostic dimensions in frontotemporal dementia. Brain Commun 2023; 5:fcac344. [PMID: 36687395 PMCID: PMC9847565 DOI: 10.1093/braincomms/fcac344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Two common clinical variants of frontotemporal dementia are the behavioural variant frontotemporal dementia, presenting with behavioural and personality changes attributable to prefrontal atrophy, and semantic dementia, displaying early semantic dysfunction primarily due to anterior temporal degeneration. Despite representing independent diagnostic entities, mounting evidence indicates overlapping cognitive-behavioural profiles in these syndromes, particularly with disease progression. Why such overlap occurs remains unclear. Understanding the nature of this overlap, however, is essential to improve early diagnosis, characterization and management of those affected. Here, we explored common cognitive-behavioural and neural mechanisms contributing to heterogeneous frontotemporal dementia presentations, irrespective of clinical diagnosis. This transdiagnostic approach allowed us to ascertain whether symptoms not currently considered core to these two syndromes are present in a significant proportion of cases and to explore the neural basis of clinical heterogeneity. Sixty-two frontotemporal dementia patients (31 behavioural variant frontotemporal dementia and 31 semantic dementia) underwent comprehensive neuropsychological, behavioural and structural neuroimaging assessments. Orthogonally rotated principal component analysis of neuropsychological and behavioural data uncovered eight statistically independent factors explaining the majority of cognitive-behavioural performance variation in behavioural variant frontotemporal dementia and semantic dementia. These factors included Behavioural changes, Semantic dysfunction, General Cognition, Executive function, Initiation, Disinhibition, Visuospatial function and Affective changes. Marked individual-level overlap between behavioural variant frontotemporal dementia and semantic dementia was evident on the Behavioural changes, General Cognition, Initiation, Disinhibition and Affective changes factors. Compared to behavioural variant frontotemporal dementia, semantic dementia patients displayed disproportionate impairment on the Semantic dysfunction factor, whereas greater impairment on Executive and Visuospatial function factors was noted in behavioural variant frontotemporal dementia. Both patient groups showed comparable magnitude of atrophy to frontal regions, whereas severe temporal lobe atrophy was characteristic of semantic dementia. Whole-brain voxel-based morphometry correlations with emergent factors revealed associations between fronto-insular and striatal grey matter changes with Behavioural, Executive and Initiation factor performance, bilateral temporal atrophy with Semantic dysfunction factor scores, parietal-subcortical regions with General Cognitive performance and ventral temporal atrophy associated with Visuospatial factor scores. Together, these findings indicate that cognitive-behavioural overlap (i) occurs systematically in frontotemporal dementia; (ii) varies in a graded manner between individuals and (iii) is associated with degeneration of different neural systems. Our findings suggest that phenotypic heterogeneity in frontotemporal dementia syndromes can be captured along continuous, multidimensional spectra of cognitive-behavioural changes. This has implications for the diagnosis of both syndromes amidst overlapping features as well as the design of symptomatic treatments applicable to multiple syndromes.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Hashim El-Omar
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Daniel Roquet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John R Hodges
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|