1
|
Koehler M, Delguste M, Sieben C, Gillet L, Alsteens D. Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annu Rev Virol 2020; 7:143-165. [PMID: 32396772 DOI: 10.1146/annurev-virology-122019-070025] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Christian Sieben
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health center (FARAH), University of Liège, 4000 Liège, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
2
|
Evans CT, Payton O, Picco L, Allen MJ. Algal Viruses: The (Atomic) Shape of Things to Come. Viruses 2018; 10:E490. [PMID: 30213102 PMCID: PMC6165301 DOI: 10.3390/v10090490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 01/15/2023] Open
Abstract
Visualization of algal viruses has been paramount to their study and understanding. The direct observation of the morphological dynamics of infection is a highly desired capability and the focus of instrument development across a variety of microscopy technologies. However, the high temporal (ms) and spatial resolution (nm) required, combined with the need to operate in physiologically relevant conditions presents a significant challenge. Here we present a short history of virus structure study and its relation to algal viruses and highlight current work, concentrating on electron microscopy and atomic force microscopy, towards the direct observation of individual algae⁻virus interactions. Finally, we make predictions towards future algal virus study direction with particular focus on the exciting opportunities offered by modern high-speed atomic force microscopy methods and instrumentation.
Collapse
Affiliation(s)
- Christopher T Evans
- Plymouth Marine Laboratory, Plymouth PL1 3DH, UK.
- Interface Analysis Centre, Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK.
| | - Oliver Payton
- Interface Analysis Centre, Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK.
| | - Loren Picco
- Interface Analysis Centre, Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK.
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Michael J Allen
- Plymouth Marine Laboratory, Plymouth PL1 3DH, UK.
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
3
|
Electron cryomicroscopy as a powerful tool in biomedical research. J Mol Med (Berl) 2018; 96:483-493. [PMID: 29730699 PMCID: PMC5988769 DOI: 10.1007/s00109-018-1640-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023]
Abstract
A human cell is a precisely regulated system that relies on the complex interaction of molecules. Structural insights into the cellular machinery at the atomic level allow us to understand the underlying regulatory mechanism and provide us with a roadmap for the development of novel drugs to fight diseases. Facilitated by recent technological breakthroughs, the Nobel prize-winning technique electron cryomicroscopy (cryo-EM) has become a versatile and extremely powerful tool to solve routinely near-atomic resolution three-dimensional protein structures. Consequently, it has become the focus of attention for structure-based drug design. In this review, we describe the basics of cryo-EM and highlight its growing role in biomedical research. Furthermore, we discuss latest developments as well as future perspectives.
Collapse
|
4
|
Florian PE, Rouillé Y, Ruta S, Nichita N, Roseanu A. Recent advances in human viruses imaging studies. J Basic Microbiol 2016; 56:591-607. [PMID: 27059598 DOI: 10.1002/jobm.201500575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
Microscopy techniques are often exploited by virologists to investigate molecular details of critical steps in viruses' life cycles such as host cell recognition and entry, genome replication, intracellular trafficking, and release of mature virions. Fluorescence microscopy is the most attractive tool employed to detect intracellular localizations of various stages of the viral infection and monitor the pathogen-host interactions associated with them. Super-resolution microscopy techniques have overcome the technical limitations of conventional microscopy and offered new exciting insights into the formation and trafficking of human viruses. In addition, the development of state-of-the art electron microscopy techniques has become particularly important in studying virus morphogenesis by revealing ground-braking ultrastructural details of this process. This review provides recent advances in human viruses imaging in both, in vitro cell culture systems and in vivo, in the animal models recently developed. The newly available imaging technologies bring a major contribution to our understanding of virus pathogenesis and will become an important tool in early diagnosis of viral infection and the development of novel therapeutics to combat the disease.
Collapse
Affiliation(s)
- Paula Ecaterina Florian
- Department of , Ligand-Receptor Interactions, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Yves Rouillé
- Center for Infection and Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Simona Ruta
- Department of Emergent Diseases, Stefan S. Nicolau Institute of Virology, Bucharest, 030304, Romania
| | - Norica Nichita
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anca Roseanu
- Department of , Ligand-Receptor Interactions, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
5
|
San Martín C. Transmission electron microscopy and the molecular structure of icosahedral viruses. Arch Biochem Biophys 2015; 581:59-67. [PMID: 26072114 DOI: 10.1016/j.abb.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
Abstract
The field of structural virology developed in parallel with methodological advances in X-ray crystallography and cryo-electron microscopy. At the end of the 1970s, crystallography yielded the first high resolution structure of an icosahedral virus, the T=3 tomato bushy stunt virus at 2.9Å. It took longer to reach near-atomic resolution in three-dimensional virus maps derived from electron microscopy data, but this was finally achieved, with the solution of complex icosahedral capsids such as the T=25 human adenovirus at ∼3.5Å. Both techniques now work hand-in-hand to determine those aspects of virus assembly and biology that remain unclear. This review examines the trajectory followed by EM imaging techniques in showing the molecular structure of icosahedral viruses, from the first two-dimensional negative staining images of capsids to the latest sophisticated techniques that provide high resolution three-dimensional data, or snapshots of the conformational changes necessary to complete the infectious cycle.
Collapse
Affiliation(s)
- Carmen San Martín
- Department of Macromolecular Structure and NanoBioMedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
6
|
Risco C, de Castro IF, Sanz-Sánchez L, Narayan K, Grandinetti G, Subramaniam S. Three-Dimensional Imaging of Viral Infections. Annu Rev Virol 2014; 1:453-73. [PMID: 26958730 DOI: 10.1146/annurev-virology-031413-085351] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three-dimensional (3D) imaging technologies are beginning to have significant impact in the field of virology, as they are helping us understand how viruses take control of cells. In this article we review several methodologies for 3D imaging of cells and show how these technologies are contributing to the study of viral infections and the characterization of specialized structures formed in virus-infected cells. We include 3D reconstruction by transmission electron microscopy (TEM) using serial sections, electron tomography, and focused ion beam scanning electron microscopy (FIB-SEM). We summarize from these methods selected contributions to our understanding of viral entry, replication, morphogenesis, egress and propagation, and changes in the spatial architecture of virus-infected cells. In combination with live-cell imaging, correlative microscopy, and new techniques for molecular mapping in situ, the availability of these methods for 3D imaging is expected to provide deeper insights into understanding the structural and dynamic aspects of viral infection.
Collapse
Affiliation(s)
- Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain;
| | | | - Laura Sanz-Sánchez
- Cell Structure Laboratory, National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain;
| | - Kedar Narayan
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| | - Giovanna Grandinetti
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| | - Sriram Subramaniam
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| |
Collapse
|
7
|
New insights into rotavirus entry machinery: stabilization of rotavirus spike conformation is independent of trypsin cleavage. PLoS Pathog 2014; 10:e1004157. [PMID: 24873828 PMCID: PMC4038622 DOI: 10.1371/journal.ppat.1004157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/16/2014] [Indexed: 12/31/2022] Open
Abstract
The infectivity of rotavirus, the main causative agent of childhood diarrhea, is dependent on activation of the extracellular viral particles by trypsin-like proteases in the host intestinal lumen. This step entails proteolytic cleavage of the VP4 spike protein into its mature products, VP8* and VP5*. Previous cryo-electron microscopy (cryo-EM) analysis of trypsin-activated particles showed well-resolved spikes, although no density was identified for the spikes in uncleaved particles; these data suggested that trypsin activation triggers important conformational changes that give rise to the rigid, entry-competent spike. The nature of these structural changes is not well understood, due to lack of data relative to the uncleaved spike structure. Here we used cryo-EM and cryo-electron tomography (cryo-ET) to characterize the structure of the uncleaved virion in two model rotavirus strains. Cryo-EM three-dimensional reconstruction of uncleaved virions showed spikes with a structure compatible with the atomic model of the cleaved spike, and indistinguishable from that of digested particles. Cryo-ET and subvolume average, combined with classification methods, resolved the presence of non-icosahedral structures, providing a model for the complete structure of the uncleaved spike. Despite the similar rigid structure observed for uncleaved and cleaved particles, trypsin activation is necessary for successful infection. These observations suggest that the spike precursor protein must be proteolytically processed, not to achieve a rigid conformation, but to allow the conformational changes that drive virus entry. Rotavirus is responsible for more than 400,000 annual infant deaths worldwide. Its viral particle bears 60 protuberant spikes that constitute the machinery responsible for virus binding to and entry into the host cell. For efficient infection, the protein molecules that build the spike must be cleaved. Despite the importance of this activation step, the nature of the changes induced in the spike structure is unknown. According to the current hypothesis, the uncleaved spike is very flexible, and activation stabilizes the spike in an entry-competent conformation. Here we used distinct electron microscopy techniques to determine the structure of the uncleaved particle in two model rotavirus strains. Our results provide a complete structure of the uncleaved spike and demonstrate that cleaved and uncleaved spikes have similar conformations, indicating that proteolytic processing is not involved in stabilization of the spike. We suggest that spike processing is important for infection since it is necessary to allow the spike domain movements involved in rotavirus entry.
Collapse
|
8
|
Abstract
Electron cryo tomography (cryoET) is an ideal technique to study virus-host interactions at molecular resolution. Imaging of biological specimens in a frozen-hydrated state assures a close to native environment. Various virus-host cell interactions have been analysed in this way, with the herpesvirus 'life' cycle being the most comprehensively studied. The data obtained were further integrated with fluorescence and soft X-ray cryo microscopy data applied on experimental systems covering a wide range of biological complexity. This hybrid approach combines dynamic with static imaging and spans a resolution range from micrometres to angstroms. Along selected aspects of the herpesvirus replication cycle, we describe dedicated combinations of approaches and how subsequent data integration enables insights towards a functional understanding of the underlying processes.
Collapse
|
9
|
Chong MK, Chua AJS, Tan TTT, Tan SH, Ng ML. Microscopy techniques in flavivirus research. Micron 2013; 59:33-43. [PMID: 24530363 DOI: 10.1016/j.micron.2013.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses.
Collapse
Affiliation(s)
- Mun Keat Chong
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore
| | - Anthony Jin Shun Chua
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore
| | - Terence Tze Tong Tan
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore
| | - Suat Hoon Tan
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 12 Medical Drive, MD5, Singapore 117597, Singapore
| | - Mah Lee Ng
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore; Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 12 Medical Drive, MD5, Singapore 117597, Singapore.
| |
Collapse
|
10
|
Abstract
Viruses carry out many of their activities inside cells, where they synthesise proteins that are not incorporated into viral particles. Some of these proteins trigger signals to kidnap cell organelles and factors which will form a new macro-structure, the virus factory, that acts as a physical scaffold for viral replication and assembly. We are only beginning to envisage the extraordinary complexity of these interactions, whose characterisation is a clear experimental challenge for which we now have powerful tools. Conventional study of infection kinetics using virology, biochemistry and cell biology methods can be followed by genome-scale screening and global proteomics. These are important new technologies with which we can identify the cell factors used by viruses at different stages in their life cycle. Light microscopy, electron microscopy and electron tomography, together with labelling methods for molecular mapping in situ, show immature viral intermediates, mature virions and recruited cell elements in their natural environment. This chapter describes how these methods are being used to understand the cell biology of viral morphogenesis and suggests what they might achieve in the near future.
Collapse
Affiliation(s)
- Mauricio G. Mateu
- "Severo Ochoa" (CSIC_UAM), And Dept. of Molecular Biology, Centro de Biología Molecular, Cantoblanco, Madrid, 28049 Madrid Spain
| | | |
Collapse
|
11
|
Conventional electron microscopy, cryo-electron microscopy and cryo-electron tomography of viruses. Subcell Biochem 2013; 68:79-115. [PMID: 23737049 DOI: 10.1007/978-94-007-6552-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryo-electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides 3D maps of these macromolecular complexes from projection images, at subnanometer to near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce or transient in their native environments. As a tool, cryo-EM complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryo-electron tomography goes further, and allows the study of viruses not only in their physiological state, but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels.
Collapse
|
12
|
de Castro IF, Volonté L, Risco C. Virus factories: biogenesis and structural design. Cell Microbiol 2012; 15:24-34. [PMID: 22978691 PMCID: PMC7162364 DOI: 10.1111/cmi.12029] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 12/18/2022]
Abstract
Replication and assembly of many viruses occur in specific intracellular compartments known as ‘virus factories’. Our knowledge of the biogenesis and architecture of these unique structures has increased considerably in the last 10 years, due to technical advances in cellular, molecular and structural biology. We now know that viruses build replication organelles, which recruit cell and viral components in a macrostructure in which viruses assemble and mature. Cell membranes and cytoskeleton participate in the biogenesis of these scaffolds and mitochondria are present in many factories, where they might supply energy and other essential factors. New inter‐organelle contacts have been visualized within virus factories, whose structure is very dynamic, as it changes over time. There is increasing interest in identifying the factors involved in their biogenesis and functional architecture, and new microscopy techniques are helping us to understand how these complex entities are built and work. In this review, we summarize recent findings on the cell biology, biogenesis and structure of virus factories.
Collapse
Affiliation(s)
- Isabel Fernández de Castro
- Cell Structure Lab, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
13
|
Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H, Laliberté JF. Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J Virol 2012; 86:9255-65. [PMID: 22718813 PMCID: PMC3416146 DOI: 10.1128/jvi.01146-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
The impact of turnip mosaic virus (TuMV) infection on the endomembranes of the host early secretory pathway was investigated using an infectious clone that has been engineered for tagging viral membrane structures with a fluorescent protein fused to the viral protein 6K(2). TuMV infection led to the amalgamation of the endoplasmic reticulum (ER), Golgi apparatus, COPII coatamers, and chloroplasts into a perinuclear globular structure that also contained viral proteins. One consequence of TuMV infection was that protein secretion was blocked at the ER-Golgi interface. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the perinuclear structure cannot be restocked in viral components but was dynamically connected to the bulk of the Golgi apparatus and the ER. Experiments with 6K(2) fused to photoactivable green fluorescent protein (GFP) showed that production of motile peripheral 6K(2) vesicles was functionally linked to the perinuclear structure. Disruption of the early secretory pathway did not prevent the formation of the perinuclear globular structure, enhanced the clustering of peripheral 6K(2) vesicles with COPII coatamers, and led to inhibition of cell-to-cell virus movement. This suggests that a functional secretory pathway is not required for the formation of the TuMV perinuclear globular structure and peripheral vesicles but is needed for successful viral intercellular propagation.
Collapse
Affiliation(s)
- Romain Grangeon
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Maxime Agbeci
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Jun Chen
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Gilles Grondin
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Jean-François Laliberté
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
14
|
Wigginton KR, Kohn T. Virus disinfection mechanisms: the role of virus composition, structure, and function. Curr Opin Virol 2012; 2:84-9. [PMID: 22440970 PMCID: PMC7102855 DOI: 10.1016/j.coviro.2011.11.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 02/02/2023]
Abstract
Drinking waters are treated for enteric virus via a number of disinfection techniques including chemical oxidants, irradiation, and heat, however the inactivation mechanisms during disinfection remain elusive. Owing to the fact that a number of significant waterborne virus strains are not readily culturable in vitro at this time (e.g. norovirus, hepatitis A), the susceptibility of these viruses to disinfection is largely unknown. An in-depth understanding of the mechanisms involved in virus inactivation would aid in predicting the susceptibility of non-culturable virus strains to disinfection and would foster the development of improved disinfection methods. Recent technological advances in virology research have provided a wealth of information on enteric virus compositions, structures, and biological functions. This knowledge will allow for physical/chemical descriptions of virus inactivation and thus further our understanding of virus disinfection to the most basic mechanistic level.
Collapse
Affiliation(s)
- Krista Rule Wigginton
- University of Maryland, Department of Civil and Environmental Engineering, College Park, MD 20742, United States.
| | | |
Collapse
|
15
|
Volkmann N. Putting structure into context: fitting of atomic models into electron microscopic and electron tomographic reconstructions. Curr Opin Cell Biol 2011; 24:141-7. [PMID: 22152946 DOI: 10.1016/j.ceb.2011.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/02/2011] [Indexed: 11/29/2022]
Abstract
A complete understanding of complex dynamic cellular processes such as cell migration or cell adhesion requires the integration of atomic level structural information into the larger cellular context. While direct atomic-level information at the cellular level remains inaccessible, electron microscopy, electron tomography and their associated computational image processing approaches have now matured to a point where sub-cellular structures can be imaged in three dimensions at the nanometer scale. Atomic-resolution information obtained by other means can be combined with this data to obtain three-dimensional models of large macromolecular assemblies in their cellular context. This article summarizes some recent advances in this field.
Collapse
Affiliation(s)
- Niels Volkmann
- Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|