1
|
Wang X, Bai Y, Shen Z, Zhang X, Cai C, Qiao C, Jiang C, Cheng L, Liu D, Yang A. Genome-wide analysis of tobacco NtTOM1/TOM3 gene family and identification of NtTOM1a/ NtTOM3a response to tobacco mosaic virus. BMC PLANT BIOLOGY 2024; 24:942. [PMID: 39385089 PMCID: PMC11465672 DOI: 10.1186/s12870-024-05632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND TOBAMOVIRUS MULTIPLICATION 1 (TOM1) and its homolog TOBAMOVIRUS MULTIPLICATION 3 (TOM3) play a prominent role in the multiplication of tobacco mosaic virus (TMV) in higher plants. Although homologs of NtTOM1/TOM3 genes have been identified in several plant species, little is known about the characteristics and functions of NtTOM1/TOM3 at the genome-wide level in tobacco (Nicotiana tabacum L.). RESULTS In this study, we performed genome-wide identification and expression pattern analysis of the tobacco NtTOM1/TOM3 gene family. Twelve NtTOM1/TOM3 genes were identified and classified into four groups based on phylogenetic analysis. Sequence and conserved domain analyses showed that all these genes contained a specific DUF1084 domain. Expression pattern analysis showed that NtTOM1a, NtTOM1b, NtTOM1d, NtTOM3a, NtTOM3b, and NtTOM3d were induced by TMV at 1-, 3-, and 9 dpi, whereas the expression of other genes was not responsive to TMV at the early infection stage. TMV virion accumulation showed no obvious difference in either nttom1a or nttom3a mutants compared with the wild type. However, the virus propagation was significantly, but not completely, inhibited in the nttom1atom3a double mutant, indicating that other gene family members may function redundantly, such as NtTOM1b and NtTOM1d. In addition, overexpression of NtTOM1a or NtTOM3a also inhibited the TMV replication to some extent. CONCLUSIONS The present study performed genome-wide analysis of the NtTOM1/TOM3 gene family in tobacco, and identified NtTOM1a and NtTOM3a as important genes involved in TMV multiplication based on functional analysis. These results provide a theoretical basis for further improving TMV resistance in tobacco.
Collapse
Affiliation(s)
- Xuebo Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Tobacco Science Research Institute of Guangdong Province, Shaoguan, 512029, Guangdong, China
| | - Yalin Bai
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhan Shen
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xinyao Zhang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, 410007, China
| | - Changchun Cai
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Chan Qiao
- Tobacco Research Institute of Mudanjiang, Harbin, 150076, China
| | - Caihong Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lirui Cheng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Dan Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
2
|
Shahriari Z, Su X, Zheng K, Zhang Z. Advances and Prospects of Virus-Resistant Breeding in Tomatoes. Int J Mol Sci 2023; 24:15448. [PMID: 37895127 PMCID: PMC10607384 DOI: 10.3390/ijms242015448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.
Collapse
Affiliation(s)
- Zolfaghar Shahriari
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz 617-71555, Iran
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| |
Collapse
|
3
|
Wang C, Ma G, Zhang S, Zhao K, Li X. Study on the binding of ningnanmycin to the helicase of Tobamovirus virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105494. [PMID: 37532353 DOI: 10.1016/j.pestbp.2023.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
The Tobamovirus helicase plays an important role in virus proliferation and host interaction. They can also be targets for antiviral drugs. Tobacco mosaic virus (TMV) is well controlled by ningnanmycin (NNM), but whether it acts on other virus helicases of Tobamovirus virus is not clear. In this study, we expressed and purified several Tobamovirus virus helicase proteins and analyzed the three-dimensional structures of several Tobamovirus virus helicases. In addition, the binding of Tobamovirus helicase to NNM was also studied. The docking study reveals the interaction between NNM and Tobamovirus virus helicase. Microscale Thermophoresis (MST) experiments have shown that NNM binds to Tobamovirus helicase with a dissociation constant of 4.64-12.63 μM. Therefore, these data are of great significance for the design and synthesis of new effective anti-plant virus drugs.
Collapse
Affiliation(s)
- Chen Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Guangming Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Kunhong Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Rivera-Márquez K, Núñez-Muñoz LA, Calderón-Pérez B, De La Torre-Almaraz R, Vargas-Hernández BY, Ruiz-Medrano R, Xoconostle-Cázares B. Bioinformatic-based approach for mutagenesis of plant immune Tm-2 2 receptor to confer resistance against tomato brown rugose fruit virus (ToBRFV). FRONTIERS IN PLANT SCIENCE 2022; 13:984846. [PMID: 36247646 PMCID: PMC9562835 DOI: 10.3389/fpls.2022.984846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) plant immune receptors mediate the recognition and activation of defense signaling pathways in response to intra- and extracellular pathogens. Several NLR such as Tm-2 and Tm-22 have been introgressed into commercial solanaceous varieties to confer protection against different tobamoviruses. Particularly, Tm-22 was used during recent decades to confer resistance against tobacco mosaic virus, tomato mottle mosaic virus and tomato mosaic virus, which recognizes the viral movement protein (MP). However, tomato brown rugose fruit virus(ToBRFV), a novel tobamovirus, can avoid the protection conferred by Tm-22 due to the presence of key substitutions in the MP. The aim of this work was to identify the key amino acid residues involved in the interaction between Tm-22 and ToBRFV MP through bioinformatic analyses, and to identify potential Tm-22 mutations that could generate greater binding affinity. In silico 3D structure prediction, molecular docking, and computational affinity methods were performed. We predicted that R350, H384 and K385 Tm-22 residues are relevant for the interaction with MP, and two mutations (H384W and K385L) were identified as putative sites to increase the affinity of Tm-22 to the MP with the potential elicitation of resistance against ToBRFV.
Collapse
Affiliation(s)
- Karla Rivera-Márquez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Rodolfo De La Torre-Almaraz
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico, Mexico
| | | | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
5
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
6
|
Palukaitis P, Yoon JY. R gene mediated defense against viruses. Curr Opin Virol 2020; 45:1-7. [PMID: 32402925 DOI: 10.1016/j.coviro.2020.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
The relationship of Resistance (R) gene-mediated defense to other forms of resistance in plants is considered, and the natures of the products of dominant and recessive R genes are reviewed. Various factors involved in expressing R gene-mediated resistance are described. These include phytohormones and plant effector molecules: the former regulating different pathways for disease resistance and the latter having direct effects on viral genomes or encoded proteins. Finally, the status of our knowledge concerning the cell-death hypersensitive response and its relationship to the actual resistance response involved in inhibiting virus infection is examined.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Nowon-gu, Seoul 01797, Republic of Korea.
| | - Ju-Yeon Yoon
- Virology Unit, Horticultural and Herbal Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea.
| |
Collapse
|
7
|
Choi GW, Oh JP, Cho IS, Ju HK, Hu WX, Kim B, Seo EY, Park JS, Domier LL, Hammond J, Song K, Lim HS. Full-Length Infectious Clones of Two New Isolates of Tomato Mosaic Virus Induce Distinct Symptoms Associated with Two Differential Amino Acid Residues in 128-kDa Protein. THE PLANT PATHOLOGY JOURNAL 2019; 35:538-542. [PMID: 31632228 PMCID: PMC6788407 DOI: 10.5423/ppj.nt.12.2018.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/02/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
In 2017, two new tomato mosaic virus (ToMV) isolates were collected from greenhouses in Buyeo, Chungcheongnam-do, South Korea. Full-length cDNAs of the new ToMV isolates were cloned into dual cauliflower mosaic virus 35S and T7 promoter-driven vectors, sequenced and their pathogenicities investigated. The nucleotide sequences of isolates GW1 (MH507165) and GW2 (MH507166) were 99% identical, resulting in only two amino acid differences in nonconserved region II and the helicase domain, Ile668Thr and Val834Ile. The two isolates were most closely related to a ToMV isolate from Taiwan (KJ207374). Isolate GW1 (Ile668, Val834) induced a systemic hypersensitive response in Nicotiana benthamiana compared with the isolate GW2, which a single residue substitution showed was due to Val834.
Collapse
Affiliation(s)
- Go-Woon Choi
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - June-Pyo Oh
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - In-Sook Cho
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, RDA, Wanju 55365,
Korea
| | - Hye-Kyoung Ju
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Wen-Xing Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Boram Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Eun-Young Seo
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Jong-Seok Park
- Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
| | - John Hammond
- United States Department of Agriculture-Agricultural Research Service, Floral and Nursery Plants Research Unit, Beltsville, MD 20705,
USA
| | - Kihak Song
- Department of Urology, Chungnam National University School of Medicine, Daejeon 34134,
Korea
| | - Hyoun-Sub Lim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
8
|
A Cell-Free Replication System for Positive-Strand RNA Viruses for Identification and Characterization of Plant Resistance Gene Products. Methods Mol Biol 2019. [PMID: 31228111 DOI: 10.1007/978-1-4939-9635-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Plant cells have lytic vacuoles, which contain ribonucleases and proteinases. The vacuoles are fragile and easily collapsed upon homogenization of plant tissues or cells. Thus, with a few exceptions, plant cell extracts are contaminated by vacuole-derived lytic enzymes and unsuitable for biochemical analyses. Here, we describe a method for removing the vacuoles from intact tobacco BY-2 protoplasts and for cell-free translation and replication of genomic RNA of positive-strand RNA viruses using the extract of evacuolated protoplasts. We also describe a method for the identification and functional characterization of a plant resistance gene product using this system.
Collapse
|
9
|
Yoshida T, Shiraishi T, Hagiwara-Komoda Y, Komatsu K, Maejima K, Okano Y, Fujimoto Y, Yusa A, Yamaji Y, Namba S. The Plant Noncanonical Antiviral Resistance Protein JAX1 Inhibits Potexviral Replication by Targeting the Viral RNA-Dependent RNA Polymerase. J Virol 2019; 93:e01506-18. [PMID: 30429349 PMCID: PMC6340027 DOI: 10.1128/jvi.01506-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
Understanding the innate immune mechanisms of plants is necessary for the breeding of disease-resistant lines. Previously, we identified the antiviral resistance gene JAX1 from Arabidopsis thaliana, which inhibits infection by potexviruses. JAX1 encodes a unique jacalin-type lectin protein. In this study, we analyzed the molecular mechanisms of JAX1-mediated resistance. JAX1 restricted the multiplication of a potexviral replicon lacking movement-associated proteins, suggesting inhibition of viral replication. Therefore, we developed an in vitro potato virus X (PVX) translation/replication system using vacuole- and nucleus-free lysates from tobacco protoplasts, and we revealed that JAX1 inhibits viral RNA synthesis but not the translation of the viral RNA-dependent RNA polymerase (RdRp). JAX1 did not affect the replication of a resistance-breaking mutant of PVX. Blue native polyacrylamide gel electrophoresis of fractions separated by sucrose gradient sedimentation showed that PVX RdRp constituted the high-molecular-weight complex that seems to be crucial for viral replication. JAX1 was detected in this complex of the wild-type PVX replicon but not in that of the resistance-breaking mutant. In addition, JAX1 interacted with the RdRp of the wild-type virus but not with that of a virus with a point mutation at the resistance-breaking residue. These results suggest that JAX1 targets RdRp to inhibit potexviral replication.IMPORTANCE Resistance genes play a crucial role in plant antiviral innate immunity. The roles of conventional nucleotide-binding leucine-rich repeat (NLR) proteins and the associated defense pathways have long been studied. In contrast, recently discovered resistance genes that do not encode NLR proteins (non-NLR resistance genes) have not been investigated extensively. Here we report that the non-NLR resistance factor JAX1, a unique jacalin-type lectin protein, inhibits de novo potexviral RNA synthesis by targeting the huge complex of viral replicase. This is unlike other known antiviral resistance mechanisms. Molecular elucidation of the target in lectin-type protein-mediated antiviral immunity will enhance our understanding of the non-NLR-mediated plant resistance system.
Collapse
Affiliation(s)
- Tetsuya Yoshida
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Shiraishi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Hagiwara-Komoda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Komatsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukari Okano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Fujimoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira Yusa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
[Studies of a plant antiviral defense system that inhibits viral RNA replication]. Uirusu 2019; 69:83-90. [PMID: 32938897 DOI: 10.2222/jsv.69.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
12
|
Li X, Chen K, Gao D, Wang D, Huang M, Zhu H, Kang J. Binding studies between cytosinpeptidemycin and the superfamily 1 helicase protein of tobacco mosaic virus. RSC Adv 2018; 8:18952-18958. [PMID: 35539684 PMCID: PMC9080650 DOI: 10.1039/c8ra01466c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Tobacco mosaic virus (TMV) helicases play important roles in viral multiplication and interactions with host organisms. They can also be targeted by antiviral agents. Cytosinpeptidemycin has a good control effect against TMV. However, the mechanism of action is unclear. In this study, we expressed and purified TMV superfamily 1 helicase (TMV-Hel) and analyzed its three-dimensional structure. Furthermore, the binding interactions of TMV-Hel and cytosinpeptidemycin were studied. Microscale thermophoresis and isothermal titration calorimetry experiments showed that cytosinpeptidemycin bound to TMV-Hel with a dissociation constant of 0.24–0.44 μM. Docking studies provided further insights into the interaction of cytosinpeptidemycin with the His375 of TMV-Hel. Mutational and Microscale thermophoresis analyses showed that cytosinpeptidemycin bound to a TMV-Hel mutant (H375A) with a dissociation constant of 14.5 μM. Thus, His375 may be the important binding site for cytosinpeptidemycin. The data are important for designing and synthesizing new effective antiphytoviral agents. Tobacco mosaic virus (TMV) helicases play important roles in viral multiplication and interactions with host organisms.![]()
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Kai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Di Gao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Dongmei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Hengmin Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| | - Jinxin Kang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
| |
Collapse
|
13
|
Sihelská N, Vozárová Z, Predajňa L, Šoltys K, Hudcovicová M, Mihálik D, Kraic J, Mrkvová M, Kúdela O, Glasa M. Experimental Infection of Different Tomato Genotypes with Tomato mosaic virus Led to a Low Viral Population Heterogeneity in the Capsid Protein Encoding Region. THE PLANT PATHOLOGY JOURNAL 2017; 33:508-513. [PMID: 29018314 PMCID: PMC5624493 DOI: 10.5423/ppj.nt.04.2017.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
The complete genome sequence of a Slovak SL-1 isolate of Tomato mosaic virus (ToMV) was determined from the next generation sequencing (NGS) data, further confirming a limited sequence divergence in this tobamovirus species. Tomato genotypes Monalbo, Mobaci and Moperou, respectively carrying the susceptible tm-2 allele or the Tm-1 and Tm-2 resistant alleles, were tested for their susceptibility to ToMV SL-1. Although the three tomato genotypes accumulated ToMV SL-1 to similar amounts as judged by semi-quantitative DAS-ELISA, they showed variations in the rate of infection and symptomatology. Possible differences in the intra-isolate variability and polymorphism between viral populations propagating in these tomato genotypes were evaluated by analysis of the capsid protein (CP) encoding region. Irrespective of genotype infected, the intra-isolate haplotype structure showed the presence of the same highly dominant CP sequence and the low level of population diversity (0.08-0.19%). Our results suggest that ToMV CP encoding sequence is relatively stable in the viral population during its replication in vivo and provides further demonstration that RNA viruses may show high sequence stability, probably as a result of purifying selection.
Collapse
Affiliation(s)
- Nina Sihelská
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava,
Slovak Republic
| | - Zuzana Vozárová
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava,
Slovak Republic
| | - Lukáš Predajňa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava,
Slovak Republic
| | - Katarína Šoltys
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, 841 04, Bratislava,
Slovak Republic
| | - Martina Hudcovicová
- National Agriculture and Food Centre-Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany,
Slovak Republic
| | - Daniel Mihálik
- National Agriculture and Food Centre-Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany,
Slovak Republic
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01 Trnava,
Slovak Republic
| | - Ján Kraic
- National Agriculture and Food Centre-Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany,
Slovak Republic
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01 Trnava,
Slovak Republic
| | - Michaela Mrkvová
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01 Trnava,
Slovak Republic
| | | | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava,
Slovak Republic
| |
Collapse
|
14
|
Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EPB. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants. Front Microbiol 2017; 7:2139. [PMID: 28105028 PMCID: PMC5214455 DOI: 10.3389/fmicb.2016.02139] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.
Collapse
Affiliation(s)
- Bianca C. Gouveia
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Iara P. Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - João Paulo B. Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Anésia A. Santos
- Department of General Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Elizabeth P. B. Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|
15
|
Yang Z, Liu L, Fang H, Li P, Xu S, Cao W, Xu C, Huang J, Zhou Y. Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event. Sci Rep 2016; 6:33691. [PMID: 27647002 PMCID: PMC5028733 DOI: 10.1038/srep33691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/31/2016] [Indexed: 01/07/2023] Open
Abstract
The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene.
Collapse
Affiliation(s)
- Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Li Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Shuhui Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Wei Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|