1
|
Xia K, Liu S, Wu Z, Jiang JH. Research Status and Applications of Adeno-Associated Virus. Chembiochem 2025; 26:e202400856. [PMID: 39724465 DOI: 10.1002/cbic.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Adeno-associated virus (AAV) has emerged as a powerful and effective tool for the delivery of exogenous genes into various cells or tissues. To improve the gene delivery efficiency, as well as the safety and specificity of AAV's cell-targeting capabilities, extensive investigations have been conducted into its molecular biological characteristics, including capsid structure, cellular tropism, and the mechanisms underlying its entry, replication, DNA packaging, and capsid assembly. Significant differences exist between human and non-human primate AAVs regarding tissue targeting and transduction efficiency. These differences are primarily attributed to the amino acid sequences of AAV capsid proteins, the structural characteristics of these proteins, and the interactions of AAV with surface factors on host cells, such as cell surface receptors, signaling molecules, and associated proteins. This review primarily focuses on several key aspects of AAV, including its genome, coat proteins and their structures, genome replication, virus assembly, and the role of helper viruses. Additionally, it examines the utilization of recombinant adeno-associated viruses (rAAV), detailing their production methods, mechanisms of cell entry and trafficking, and various serotypes. The review further interprets the role of rAAV by analyzing its current applications in research and therapy.
Collapse
Affiliation(s)
- Ke Xia
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Affiliated Hospital of Hunan university, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China
| | - Shuangling Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Affiliated Hospital of Hunan university, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Affiliated Hospital of Hunan university, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Affiliated Hospital of Hunan university, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
2
|
See WR, Yousefi M, Ooi YS. A review of virus host factor discovery using CRISPR screening. mBio 2024; 15:e0320523. [PMID: 39422472 PMCID: PMC11559068 DOI: 10.1128/mbio.03205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The emergence of genome-scale forward genetic screening techniques, such as Haploid Genetic screen and clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen has opened new horizons in our understanding of virus infection biology. CRISPR screening has become a popular tool for the discovery of novel host factors for several viruses due to its specificity and efficiency in genome editing. Here, we review how CRISPR screening has revolutionized our understanding of virus-host interactions from scientific and technological viewpoints. A summary of the published screens conducted thus far to uncover virus host factors is presented, highlighting their experimental design and significant findings. We will outline relevant methods for customizing the CRISPR screening process to answer more specific hypotheses and compile a glossary of conducted CRISPR screens to show their design aspects. Furthermore, using flaviviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we hope to offer a broad-based perspective on the capabilities of CRISPR screening to serve as a reference point to guide future unbiased discovery of virus host factors.
Collapse
Affiliation(s)
- Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
3
|
Porter JM, Oswald MS, Busuttil K, Emmanuel SN, Bennett A, McKenna R, Smith JG. Mechanisms of AAV2 neutralization by human alpha-defensins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614754. [PMID: 39386661 PMCID: PMC11463608 DOI: 10.1101/2024.09.25.614754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Antiviral immunity compromises the efficacy of adeno-associated virus (AAV) vectors used for gene therapy. This is well understood for the adaptive immune response. However, innate immune effectors like alpha-defensin antimicrobial peptides also block AAV infection, although their mechanisms of action are unknown. To address this gap in knowledge, we investigated AAV2 neutralization by human neutrophil peptide 1 (HNP1), a myeloid alpha-defensin, and human defensin 5 (HD5), an enteric alpha-defensin. We found that both defensins bind to AAV2 and inhibit infection at low micromolar concentrations. While HD5 prevents AAV2 from binding to cells, HNP1 does not. However, AAV2 exposed to HD5 after binding to cells is still neutralized, indicating an additional block to infection. Accordingly, both HD5 and HNP1 inhibit externalization of the VP1 unique domain, which contains a phospholipase A 2 enzyme required for endosome escape and nuclear localization signals required for nuclear entry. Consequently, both defensins prevent AAV2 from reaching the nucleus. Disruption of intracellular trafficking of the viral genome to the nucleus is reminiscent of how alpha-defensins neutralize other non-enveloped viruses, suggesting a common mechanism of inhibition. These results will inform the development of vectors capable of overcoming these hurdles to improve the efficiency of gene therapy. Author Summary AAVs are commonly used as gene therapy vectors due to their broad tropism and lack of disease association; however, host innate immune factors, such as human alpha-defensin antimicrobial peptides, can hinder gene delivery. Although it is becoming increasingly evident that human alpha-defensins can block infection by a wide range of nonenveloped viruses, including AAVs, their mechanism of action remains poorly understood. In this study, we describe for the first time how two types of abundant human alpha-defensins neutralize a specific AAV serotype, AAV2. We found that one defensin prevents AAV2 from binding to cells, the first step in infection, while both defensins block a critical later step in AAV2 entry. Our findings support the emerging idea that defensins use a common strategy to block infection by DNA viruses that replicate in the nucleus. Through understanding how innate immune effectors interact with and impede AAV infection, vectors can be developed to bypass these interventions and allow more efficient gene delivery.
Collapse
|
4
|
Imai M, Colas K, Suga H. Protein Grafting Techniques: From Peptide Epitopes to Lasso-Grafted Neobiologics. Chempluschem 2024; 89:e202400152. [PMID: 38693599 DOI: 10.1002/cplu.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Protein engineering techniques have vastly expanded their domain of impact, notably following the success of antibodies. Likewise, smaller peptide therapeutics have carved an increasingly significant niche for themselves in the pharmaceutical landscape. The concept of grafting such peptides onto larger protein scaffolds, thus harvesting the advantages of both, has given rise to a variety of protein engineering strategies that are reviewed herein. We also describe our own "Lasso-Grafting" approach, which combines traditional grafting concepts with mRNA display to streamline the production of multiple grafted drug candidates for virtually any target.
Collapse
Affiliation(s)
- Mikio Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kilian Colas
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Zhou X, Liu J, Xiao S, Liang X, Li Y, Mo F, Xin X, Yang Y, Gao C. Adeno-Associated Virus Engineering and Load Strategy for Tropism Modification, Immune Evasion and Enhanced Transgene Expression. Int J Nanomedicine 2024; 19:7691-7708. [PMID: 39099791 PMCID: PMC11296317 DOI: 10.2147/ijn.s459905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Gene therapy aims to add, replace or turn off genes to help treat disease. To date, the US Food and Drug Administration (FDA) has approved 14 gene therapy products. With the increasing interest in gene therapy, feasible gene delivery vectors are necessary for inserting new genes into cells. There are different kinds of gene delivery vectors including viral vectors like lentivirus, adenovirus, retrovirus, adeno-associated virus et al, and non-viral vectors like naked DNA, lipid vectors, polymer nanoparticles, exosomes et al, with viruses being the most commonly used. Among them, the most concerned vector is adeno-associated virus (AAV) because of its safety, natural ability to efficiently deliver gene into cells and sustained transgene expression in multiple tissues. In addition, the AAV genome can be engineered to generate recombinant AAV (rAAV) containing transgene sequences of interest and has been proven to be a safe gene vector. Recently, rAAV vectors have been approved for the treatment of various rare diseases. Despite these approvals, some major limitations of rAAV remain, namely nonspecific tissue targeting and host immune response. Additional problems include neutralizing antibodies that block transgene delivery, a finite transgene packaging capacity, high viral titer used for per dose and high cost. To deal with these challenges, several techniques have been developed. Based on differences in engineering methods, this review proposes three strategies: gene engineering-based capsid modification (capsid modification), capsid surface tethering through chemical conjugation (surface tethering), and other formulations loaded with AAV (virus load). In addition, the major advantages and limitations encountered in rAAV engineering strategies are summarized.
Collapse
Affiliation(s)
- Xun Zhou
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Shuang Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaoqing Liang
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Fengzhen Mo
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xin Xin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Chunsheng Gao
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Bieri J, Suter C, Caliaro O, Bartetzko S, Bircher C, Ros C. Globoside Is an Essential Intracellular Factor Required for Parvovirus B19 Endosomal Escape. Cells 2024; 13:1254. [PMID: 39120285 PMCID: PMC11311400 DOI: 10.3390/cells13151254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Human parvovirus B19 (B19V), like most parvoviruses, possesses phospholipase A2 (PLA2) activity, which is thought to mediate endosomal escape by membrane disruption. Here, we challenge this model and find evidence for a mechanism of B19V entry mediated by the glycosphingolipid globoside without endosome disruption and retrograde transport to the Golgi. We show that B19V PLA2 activity requires specific calcium levels and pH conditions that are not optimal in endosomes. Accordingly, endosomal membrane integrity was maintained during B19V entry. Furthermore, endosomes remained intact when loaded with MS2 bacteriophage particles pseudotyped with multiple B19V PLA2 subunits, providing superior enzymatic potential compared to native B19V. In globoside knockout cells, incoming viruses are arrested in the endosomal compartment and the infection is blocked. Infection can be rescued by promoting endosomal leakage with polyethyleneimine (PEI), demonstrating the essential role of globoside in facilitating endosomal escape. Incoming virus colocalizes with Golgi markers and interfering with Golgi function blocks infection, suggesting that globoside-mediated entry involves the Golgi compartment, which provides conditions favorable for the lipolytic PLA2. Our study challenges the current model of B19V entry and identifies globoside as an essential intracellular receptor required for endosomal escape.
Collapse
Affiliation(s)
- Jan Bieri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Corinne Suter
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Oliver Caliaro
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Seraina Bartetzko
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Cornelia Bircher
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Carlos Ros
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Luo S, Liang J, Yang G, Lu J, Chen J. The laminin receptor is a receptor for Micropterus salmoides rhabdovirus. J Virol 2024; 98:e0069724. [PMID: 38916400 PMCID: PMC11265286 DOI: 10.1128/jvi.00697-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024] Open
Abstract
Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Sheng Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Jiahui Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Jianfei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Schwotzer N, El Sissy C, Desguerre I, Frémeaux-Bacchi V, Servais L, Fakhouri F. Thrombotic Microangiopathy as an Emerging Complication of Viral Vector-Based Gene Therapy. Kidney Int Rep 2024; 9:1995-2005. [PMID: 39081755 PMCID: PMC11284364 DOI: 10.1016/j.ekir.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024] Open
Abstract
Gene therapy has brought tremendous hope for patients with severe life-threatening monogenic diseases. Although studies have shown the efficacy of gene therapy, serious adverse events have also emerged, including thrombotic microangiopathy (TMA) following viral vector-based gene therapy. In this review, we briefly summarize the concept of gene therapy, and the immune response triggered by viral vectors. We also discuss the incidence, presentation, and potential underlying mechanisms, including complement activation, of gene therapy-associated TMA. Further studies are needed to better define the pathogenesis of this severe complication of gene therapy, and the optimal measures to prevent it.
Collapse
Affiliation(s)
- Nora Schwotzer
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carine El Sissy
- Department of Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- Paris University, Paris, France
| | - Isabelle Desguerre
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, Paris, France
| | - Véronique Frémeaux-Bacchi
- Department of Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- Paris University, Paris, France
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center and NIHR Oxford Biomedical Research Center, University of Oxford, Oxford, UK
- Neuromuscular Center, Department of Pediatrics, University of Liege and University Hospital of Liege, Belgium
| | - Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Yuan R, Wang B, Wang Y, Liu P. Gene Therapy for Neurofibromatosis Type 2-Related Schwannomatosis: Recent Progress, Challenges, and Future Directions. Oncol Ther 2024; 12:257-276. [PMID: 38760612 PMCID: PMC11187037 DOI: 10.1007/s40487-024-00279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2)-related schwannomatosis is a rare autosomal dominant monogenic disorder caused by mutations in the NF2 gene. The hallmarks of NF2-related schwannomatosis are bilateral vestibular schwannomas (VS). The current treatment options for NF2-related schwannomatosis, such as observation with serial imaging, surgery, radiotherapy, and pharmacotherapies, have shown limited effectiveness and serious complications. Therefore, there is a critical demand for novel effective treatments. Gene therapy, which has made significant advancements in treating genetic diseases, holds promise for the treatment of this disease. This review covers the genetic pathogenesis of NF2-related schwannomatosis, the latest progress in gene therapy strategies, current challenges, and future directions of gene therapy for NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Ruofei Yuan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ying Wang
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Ueno Y, Kariya S, Ono Y, Maruyama T, Nakatani M, Komemushi A, Tanigawa N. In Vivo Sonoporation Effect Under the Presence of a Large Amount of Micro-Nano Bubbles in Swine Liver. Ultrasound Q 2024; 40:144-148. [PMID: 37918108 DOI: 10.1097/ruq.0000000000000659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Sonoporation as a method of intracellular drug and gene delivery has not yet progressed to being used in vivo. The aim of this study was to prove the feasibility of sonoporation at a level practical for use in vivo by using a large amount of carbon dioxide micro-nano bubbles. METHODS The carbon dioxide micro-nano bubbles and 100 mg of cisplatin were intra-arterially injected to the swine livers, and ultrasound irradiation was performed from the surface of the liver under laparotomy during the intra-arterial injection. After the intra-arterial injection, ultrasound-irradiated and nonirradiated liver tissues were immediately excised. Tissue platinum concentration was measured using inductively coupled plasma mass spectrometry. Liver tissue platinum concentrations were compared between the irradiated tissue and nonirradiated tissue using the Wilcoxon signed rank test. RESULTS The mean (SD) liver tissue platinum concentration was 6.260*103 (2.070) ng/g in the irradiated liver tissue and 3.280*103 (0.430) ng/g in the nonirradiated liver tissue, showing significantly higher concentrations in the irradiated tissue ( P = 0.004). CONCLUSIONS In conclusion, increasing the tissue concentration of administered cisplatin in the livers of living swine through the effect of sonoporation was possible in the presence of a large amount of micro-nano bubbles.
Collapse
Affiliation(s)
- Yutaka Ueno
- Department of Radiology, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Loeb EJ, Havlik PL, Elmore ZC, Rosales A, Fergione SM, Gonzalez TJ, Smith TJ, Benkert AR, Fiflis DN, Asokan A. Capsid-mediated control of adeno-associated viral transcription determines host range. Cell Rep 2024; 43:113902. [PMID: 38431840 PMCID: PMC11150003 DOI: 10.1016/j.celrep.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Adeno-associated virus (AAV) is a member of the genus Dependoparvovirus, which infects a wide range of vertebrate species. Here, we observe that, unlike most primate AAV isolates, avian AAV is transcriptionally silenced in human cells. By swapping the VP1 N terminus from primate AAVs (e.g., AAV8) onto non-mammalian isolates (e.g., avian AAV), we identify a minimal component of the AAV capsid that controls viral transcription and unlocks robust transduction in both human cells and mouse tissue. This effect is accompanied by increased AAV genome chromatin accessibility and altered histone methylation. Proximity ligation analysis reveals that host factors are selectively recruited by the VP1 N terminus of AAV8 but not avian AAV. Notably, these include AAV essential factors implicated in the nuclear factor κB pathway, chromatin condensation, and histone methylation. We postulate that the AAV capsid has evolved mechanisms to recruit host factors to its genome, allowing transcriptional activation in a species-specific manner.
Collapse
Affiliation(s)
- Ezra J Loeb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Patrick L Havlik
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary C Elmore
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alan Rosales
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia M Fergione
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Timothy J Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Abigail R Benkert
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David N Fiflis
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Liu S, Chowdhury EA, Xu V, Jerez A, Mahmood L, Ly BQ, Le HK, Nguyen A, Rajwade A, Meno-Tetang G, Shah DK. Whole-Body Disposition and Physiologically Based Pharmacokinetic Modeling of Adeno-Associated Viruses and the Transgene Product. J Pharm Sci 2024; 113:141-157. [PMID: 37805073 DOI: 10.1016/j.xphs.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
To facilitate model-informed drug development (MIDD) of adeno-associated virus (AAV) therapy, here we have developed a physiologically based pharmacokinetic (PBPK) model for AAVs following preclinical investigation in mice. After 2E11 Vg/mouse dose of AAV8 and AAV9 encoding a monoclonal antibody (mAb) gene, whole-body disposition of both the vector and the transgene mAb was evaluated over 3 weeks. At steady-state, the following tissue-to-blood (T/B) concentration ratios were found for AAV8/9: ∼50 for liver; ∼10 for heart and muscle; ∼2 for brain, lung, kidney, adipose, and spleen; ≤1 for bone, skin, and pancreas. T/B values for mAb were compared with the antibody biodistribution coefficients, and five different clusters of organs were identified based on their transgene expression profile. All the biodistribution data were used to develop a novel AAV PBPK model that incorporates: (i) whole-body distribution of the vector; (ii) binding, internalization, and intracellular processing of the vector; (iii) transgene expression and secretion; and (iv) whole-body disposition of the secreted transgene product. The model was able to capture systemic and tissue PK of the vector and the transgene-produced mAb reasonably well. Pathway analysis of the PBPK model suggested that liver, muscle, and heart are the main contributors for the secreted transgene mAb. Unprecedented PK data and the novel PBPK model developed here provide the foundation for quantitative systems pharmacology (QSP) investigations of AAV-mediated gene therapies. The PBPK model can also serve as a quantitative tool for preclinical study design and preclinical-to-clinical translation of AAV-based gene therapies.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Vivian Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Anthony Jerez
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Leeha Mahmood
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Bao Quoc Ly
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Huyen Khanh Le
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Anne Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Aneesh Rajwade
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Guy Meno-Tetang
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
13
|
Hao S, Zhang X, Ning K, Feng Z, Park SY, Aksu Kuz C, McFarlin S, Richart D, Cheng F, Zhang EY, Zhang-Chen A, Yan Z, Qiu J. Identification of host essential factors for recombinant AAV transduction of the polarized human airway epithelium. J Virol 2023; 97:e0133023. [PMID: 37966249 PMCID: PMC10734497 DOI: 10.1128/jvi.01330-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The essential steps of successful gene delivery by recombinant adeno-associated viruses (rAAVs) include vector internalization, intracellular trafficking, nuclear import, uncoating, double-stranded (ds)DNA conversion, and transgene expression. rAAV2.5T has a chimeric capsid of AAV2 VP1u and AAV5 VP2 and VP3 with the mutation A581T. Our investigation revealed that KIAA0319L, the multiple AAV serotype receptor, is not essential for vector internalization but remains critical for efficient vector transduction to human airway epithelia. Additionally, we identified that a novel gene WDR63, whose cellular function is not well understood, plays an important role in vector transduction of human airway epithelia but not vector internalization and nuclear entry. Our study also discovered the substantial transduction potential of rAAV2.5T in basal stem cells of human airway epithelia, underscoring its utility in gene editing of human airways. Thus, the knowledge derived from this study holds promise for the advancement of gene therapy in the treatment of pulmonary genetic diseases.
Collapse
Affiliation(s)
- Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiujuan Zhang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Soo Yeun Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shane McFarlin
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Donovan Richart
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
14
|
Rostami MR, Leopold PL, Vasquez JM, de Mulder Rougvie M, Al Shakaki A, Hssain AA, Robay A, Hackett NR, Mezey JG, Crystal RG. Predicted deleterious variants in the human genome relevant to gene therapy with adeno-associated virus vectors. Mol Ther Methods Clin Dev 2023; 31:101136. [PMID: 38089635 PMCID: PMC10711236 DOI: 10.1016/j.omtm.2023.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/11/2023] [Indexed: 01/02/2025]
Abstract
Based on the observation that humans have variable responses of gene expression with the same dose of an adeno-associated vector, we hypothesized that there are deleterious variants in genes coding for processes required for adeno-associated virus (AAV)-mediated gene transfer/expression that may hamper or enhance the effectiveness of AAV-mediated gene therapy. To assess this hypothesis, we evaluated 69,442 whole genome sequences from three populations (European, African/African American, and Qatari) for predicted deleterious variants in 62 genes known to play a role in AAV-mediated gene transfer/expression. The analysis identified 5,564 potentially deleterious mutations of which 27 were classified as common based on an allele frequency ≥1% in at least one population studied. Many of these deleterious variants are predicated to prevent while others enhance effective AAV gene transfer/expression, and several are linked to known hereditary disorders. The data support the hypothesis that, like other drugs, human genetic variability contributes to the person-to-person effectiveness of AAV gene therapy and the screening for genetic variability should be considered as part of future clinical trials.
Collapse
Affiliation(s)
| | - Philip L. Leopold
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenifer M. Vasquez
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Alya Al Shakaki
- Department of Genetic Medicine, Weill Cornell Medicine - Qatar, Doha, Qatar
| | | | - Amal Robay
- Department of Genetic Medicine, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Hao S, Zhang X, Ning K, Feng Z, Park SY, Kuz CA, McFarlin S, Richart D, Cheng F, Zhang EY, Zhang-Chen A, Yan Z, Qiu J. Identification of Host Restriction Factors Critical for Recombinant AAV Transduction of Polarized Human Airway Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559795. [PMID: 37808760 PMCID: PMC10557672 DOI: 10.1101/2023.09.27.559795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Recombinant (r)AAV2.5T was selected from the directed evolution of an AAV capsid library in human airway epithelium (HAE). The capsid gene of rAAV2.5T is a chimera of the N-terminal unique coding sequence of AAV2 VP1 unique (VP1u) and the VP2- and VP3-coding sequence of AAV5 with a single amino acid mutation of A581T. We conducted two rounds of genome wide CRISPR gRNA library screening for host factors limiting rAAV2.5T transduction in HeLa S3 cells. The screen identified several genes that are critical for rAAV2.5T transduction in HeLa S3 cells, including previously reported genes KIAA0319L , TM9SF2 , VPS51 , and VPS54 , as well as a novel gene WDR63 . We verified the role of KIAA0319L and WDR63 in rAAV2.5T transduction of polarized HAE by utilizing CRISPR gene knockouts. Although KIAA0319L, a proteinaceous receptor for multiple AAV serotypes, played an essential role in rAAV2.5T transduction of polarized HAE either from apical or basolateral side, our findings demonstrated that the internalization of rAAV2.5T was independent of KIAA0319L. Importantly, we confirmed WDR63 is an important player in rAAV2.5T transduction of HAE, while not being involved in vector internalization and nuclear entry. Furthermore, we identified that the basal stem cells of HAE can be significantly transduced by rAAV2.5T. Significance The essential steps of a successful gene delivery by rAAV include vector internalization, intracellular trafficking, nuclear import, uncoating, double-stranded (ds)DNA conversion, and transgene expression. rAAV2.5T has a chimeric capsid of AAV2 VP1u and AAV5 VP2 and VP3 with the mutation A581T. Our investigation revealed that KIAA0319L, the multiple AAV serotype receptor, is not essential for vector internalization but remains critical for efficient vector transduction to human airway epithelia. Additionally, we identified that a novel gene WDR63 , whose cellular function is not well understood, plays an important role in vector transduction of human airway epithelia but not vector internalization and nuclear entry. Our study also discovered the substantial transduction potential of rAAV2.5T in basal stem cells of human airway epithelia, underscoring its utility in gene editing of human airways. Thus, the knowledge derived from this study holds promise for the advancement of gene therapy in the treatment of pulmonary genetic diseases.
Collapse
|
16
|
Melin E, Andersson M, Gøtzsche CR, Wickham J, Huang Y, Szczygiel JA, Boender A, Christiansen SH, Pinborg L, Woldbye DPD, Kokaia M. Combinatorial gene therapy for epilepsy: Gene sequence positioning and AAV serotype influence expression and inhibitory effect on seizures. Gene Ther 2023; 30:649-658. [PMID: 37029201 PMCID: PMC10457185 DOI: 10.1038/s41434-023-00399-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Gene therapy with AAV vectors carrying genes for neuropeptide Y and its receptor Y2 has been shown to inhibit seizures in multiple animal models of epilepsy. It is however unknown how the AAV serotype or the sequence order of these two transgenes in the expression cassette affects the actual parenchymal gene expression levels and the seizure-suppressant efficacy. To address these questions, we compared three viral vector serotypes (AAV1, AAV2 and AAV8) and two transgene sequence orders (NPY-IRES-Y2 and Y2-IRES-NPY) in a rat model of acutely induced seizures. Wistar male rats were injected bilaterally with viral vectors and 3 weeks later acute seizures were induced by a subcutaneous injection of kainate. The latency until 1st motor seizure, time spent in motor seizure and latency to status epilepticus were measured to evaluate the seizure-suppressing efficacy of these vectors compared to an empty cassette control vector. Based on the results, the effect of the AAV1-NPY-IRES-Y2 vector was further investigated by in vitro electrophysiology, and its ability to achieve transgene overexpression in resected human hippocampal tissue was evaluated. The AAV1-NPY-IRES-Y2 proved to be better to any other serotype or gene sequence considering both transgene expression and ability to suppress induced seizures in rats. The vector also demonstrated transgene-induced decrease of glutamate release from excitatory neuron terminals and significantly increased both NPY and Y2 expression in resected human hippocampal tissue from patients with drug-resistant temporal lobe epilepsy. These results validate the feasibility of NPY/Y2 receptor gene therapy as a therapeutic opportunity in focal epilepsies.
Collapse
Affiliation(s)
- Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden.
| | - My Andersson
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Casper R Gøtzsche
- CombiGene AB, Medicon Village, 2 Scheelevägen, 223 81, Lund, Sweden
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Jenny Wickham
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Yuzhe Huang
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Julia Alicja Szczygiel
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Arnie Boender
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Søren H Christiansen
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Lars Pinborg
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100, Copenhagen, Denmark
| | - David P D Woldbye
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| |
Collapse
|
17
|
Mulcrone PL, Lam AK, Frabutt D, Zhang J, Chrzanowski M, Herzog RW, Xiao W. Chemical modification of AAV9 capsid with N-ethyl maleimide alters vector tissue tropism. Sci Rep 2023; 13:8436. [PMID: 37231038 PMCID: PMC10212940 DOI: 10.1038/s41598-023-35547-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Although more adeno-associated virus AAV-based drugs enter the clinic, vector tissue tropism remains an unresolved challenge that limits its full potential despite that the tissue tropism of naturally occurring AAV serotypes can be altered by genetic engineering capsid vie DNA shuffling, or molecular evolution. To further expand the tropism and thus potential applications of AAV vectors, we utilized an alternative approach that employs chemical modifications to covalently link small molecules to reactive exposed Lysine residues of AAV capsids. We demonstrated that AAV9 capsid modified with N-ethyl Maleimide (NEM) increased its tropism more towards murine bone marrow (osteoblast lineage) while decreased transduction of liver tissue compared to the unmodified capsid. In the bone marrow, AAV9-NEM transduced Cd31, Cd34, and Cd90 expressing cells at a higher percentage than unmodified AAV9. Moreover, AAV9-NEM localized strongly in vivo to cells lining the calcified trabecular bone and transduced primary murine osteoblasts in culture, while WT AAV9 transduced undifferentiated bone marrow stromal cells as well as osteoblasts. Our approach could provide a promising platform for expanding clinical AAV development to treat bone pathologies such as cancer and osteoporosis. Thus, chemical engineering the AAV capsid holds great potential for development of future generations of AAV vectors.
Collapse
Affiliation(s)
- Patrick L Mulcrone
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anh K Lam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dylan Frabutt
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Junping Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Chrzanowski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
18
|
Porter JM, Oswald MS, Sharma A, Emmanuel S, Kansol A, Bennett A, McKenna R, Smith JG. A Single Surface-Exposed Amino Acid Determines Differential Neutralization of AAV1 and AAV6 by Human Alpha-Defensins. J Virol 2023; 97:e0006023. [PMID: 36916912 PMCID: PMC10062168 DOI: 10.1128/jvi.00060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors due to their low pathogenicity and tissue tropism properties. However, the efficacy of these vectors is impeded by interactions with the host immune system. One potential immune barrier to vector transduction is innate immune host defense peptides, such as alpha-defensins, which are potent antiviral agents against other nonenveloped viruses. To investigate the interaction between AAVs and alpha-defensins, we utilized two closely related AAV serotypes, AAV1 and AAV6. Although their capsids differ by only six residues, these two serotypes exhibit markedly different tissue tropisms and transduction efficiencies. Using two abundant human alpha-defensins, enteric human defensin 5 (HD5) and myeloid human neutrophil peptide 1 (HNP1), we found both serotype-specific and defensin-specific effects on AAV infection. AAV6 infection was uniformly neutralized by both defensins at low micromolar concentrations; however, inhibition of AAV1 infection was profoundly influenced by the timing of defensin exposure to the virus relative to viral attachment to the cell. Remarkably, these differences in the defensin-dependent infection phenotype between the viruses are completely dictated by the identity of a single, surface-exposed amino acid (position 531) that varies between the two serotypes. These findings reveal a determinant for defensin activity against a virus with unprecedented precision. Furthermore, they provide a rationale for the investigation of other AAV serotypes not only to understand the mechanism of neutralization of defensins against AAVs but also to design more efficient vectors. IMPORTANCE The ability of adeno-associated viruses (AAVs) to infect and deliver genetic material to a range of cell types makes them favorable gene therapy vectors. However, AAV vectors encounter a wide variety of host immune factors throughout the body, which can impede efficient gene delivery. One such group of factors is the alpha-defensins, which are a key component of the innate immune system that can directly block viral infection. By studying the impact that alpha-defensins have on AAV infection, we found that two similar AAV serotypes (AAV1 and AAV6) have different sensitivities to inhibition. We also identified a single amino acid (position 531) that differs between the two AAV serotypes and is responsible for mediating their defensin sensitivity. By investigating the effects that host immune factors have on AAV infection, more efficient vectors may be developed to evade intervention by the immune system prior to gene delivery.
Collapse
Affiliation(s)
- Jessica M. Porter
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mackenzi S. Oswald
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shanan Emmanuel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Austin Kansol
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
19
|
Large EE, Chapman MS. Adeno-associated virus receptor complexes and implications for adeno-associated virus immune neutralization. Front Microbiol 2023; 14:1116896. [PMID: 36846761 PMCID: PMC9950413 DOI: 10.3389/fmicb.2023.1116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Adeno-associated viruses (AAV) are among the foremost vectors for in vivo gene therapy. A number of monoclonal antibodies against several serotypes of AAV have previously been prepared. Many are neutralizing, and the predominant mechanisms have been reported as the inhibition of binding to extracellular glycan receptors or interference with some post-entry step. The identification of a protein receptor and recent structural characterization of its interactions with AAV compel reconsideration of this tenet. AAVs can be divided into two families based on which domain of the receptor is strongly bound. Neighboring domains, unseen in the high-resolution electron microscopy structures have now been located by electron tomography, pointing away from the virus. The epitopes of neutralizing antibodies, previously characterized, are now compared to the distinct protein receptor footprints of the two families of AAV. Comparative structural analysis suggests that antibody interference with protein receptor binding might be the more prevalent mechanism than interference with glycan attachment. Limited competitive binding assays give some support to the hypothesis that inhibition of binding to the protein receptor has been an overlooked mechanism of neutralization. More extensive testing is warranted.
Collapse
Affiliation(s)
| | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
20
|
Syndecan-4 Mediates the Cellular Entry of Adeno-Associated Virus 9. Int J Mol Sci 2023; 24:ijms24043141. [PMID: 36834552 PMCID: PMC9963952 DOI: 10.3390/ijms24043141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Due to their low pathogenicity, immunogenicity, and long-term gene expression, adeno-associated virus (AAV) vectors emerged as safe and efficient gene delivery tools, over-coming setbacks experienced with other viral gene delivery systems in early gene therapy trials. Among AAVs, AAV9 can translocate through the blood-brain barrier (BBB), making it a promising gene delivery tool for transducing the central nervous system (CNS) via systemic administration. Recent reports on the shortcomings of AAV9-mediated gene delivery into the CNS require reviewing the molecular base of AAV9 cellular biology. A more detailed understanding of AAV9's cellular entry would eradicate current hurdles and enable more efficient AAV9-based gene therapy approaches. Syndecans, the transmembrane family of heparan-sulfate proteoglycans, facilitate the cellular uptake of various viruses and drug delivery systems. Utilizing human cell lines and syndecan-specific cellular assays, we assessed the involvement of syndecans in AAV9's cellular entry. The ubiquitously expressed isoform, syndecan-4 proved its superiority in facilitating AAV9 internalization among syndecans. Introducing syndecan-4 into poorly transducible cell lines enabled robust AAV9-dependent gene transduction, while its knockdown reduced AAV9's cellular entry. Attachment of AAV9 to syndecan-4 is mediated not just by the polyanionic heparan-sulfate chains but also by the cell-binding domain of the extracellular syndecan-4 core protein. Co-immunoprecipitation assays and affinity proteomics also confirmed the role of syndecan-4 in the cellular entry of AAV9. Overall, our findings highlight the universally expressed syndecan-4 as a significant contributor to the cellular internalization of AAV9 and provide a molecular-based, rational explanation for the low gene delivery potential of AAV9 into the CNS.
Collapse
|
21
|
Calvo-López T, Grueso E, Sánchez-Martínez C, Almendral JM. Intracellular virion traffic to the endosome driven by cell type specific sialic acid receptors determines parvovirus tropism. Front Microbiol 2023; 13:1063706. [PMID: 36756201 PMCID: PMC9899843 DOI: 10.3389/fmicb.2022.1063706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Parvoviruses are promising anticancer and gene therapy agents, but a deep knowledge of the entry process is crucial to exploit their therapeutic potential. We addressed this issue while attempting to retarget the oncolytic parvovirus minute virus of mice (MVMp) to the tumor vasculature. Residues at three functional domains of the icosahedral capsid were substituted by rational design with peptides competing with the vascular endothelial growth factor. Most substitutions impaired virus maturation, though some yielded infectious chimeric virions, and substitutions in a dimple at the twofold axis that allocates sialic acid (SIA) receptors altered viral tropism. One dimple-modified chimeric virion was efficiently attached as MVMp to α2-linked SIA moieties, but the infection was impaired by the binding to some inhibitory α2-3,-6,-8 SIA pseudoreceptors, which hampers intracellular virus traffic to the endosome in a cell type-dependent manner. Infectious from nonproductive traffic could be mechanistically discriminated by an endosomal drastic capsid structural transition comprising the cleavage of some VP2-Nt sequences and its associated VP1-Nt exposure. Correspondingly, neuraminidase removal of inhibitory SIA moieties enhanced the infection quantitatively, correlating to the restored virus traffic to the endosome and the extent of VP2-Nt cleavage/VP1-Nt exposure. This study illustrates (i) structural constraints to retarget parvoviruses with evolutionary adopted narrow grooves allocating small SIA receptors, (ii) the possibility to enhance parvovirus oncolysis by relaxing the glycan network on the cancer cell surface, and (iii) the major role played by the attachment to cell type-specific SIAs in the intracellular virus traffic to the endosome, which may determine parvovirus tropism and host range.
Collapse
Affiliation(s)
- Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Grueso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Sánchez-Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain,*Correspondence: José M. Almendral ✉
| |
Collapse
|
22
|
Okamoto K, Kamikubo Y, Yamauchi K, Okamoto S, Takahashi M, Ishida Y, Koike M, Ikegaya Y, Sakurai T, Hioki H. Specific AAV2/PHP.eB-mediated gene transduction of CA2 pyramidal cells via injection into the lateral ventricle. Sci Rep 2023; 13:323. [PMID: 36609635 PMCID: PMC9822962 DOI: 10.1038/s41598-022-27372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Given its limited accessibility, the CA2 area has been less investigated compared to other subregions of the hippocampus. While the development of transgenic mice expressing Cre recombinase in the CA2 has revealed unique features of this area, the use of mouse lines has several limitations, such as lack of specificity. Therefore, a specific gene delivery system is required. Here, we confirmed that the AAV-PHP.eB capsid preferably infected CA2 pyramidal cells following retro-orbital injection and demonstrated that the specificity was substantially higher after injection into the lateral ventricle. In addition, a tropism for the CA2 area was observed in organotypic slice cultures. Combined injection into the lateral ventricle and stereotaxic injection into the CA2 area specifically introduced the transgene into CA2 pyramidal cells, enabling us to perform targeted patch-clamp recordings and optogenetic manipulation. These results suggest that AAV-PHP.eB is a versatile tool for specific gene transduction in CA2 pyramidal cells.
Collapse
Affiliation(s)
- Kazuki Okamoto
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Yuji Kamikubo
- grid.258269.20000 0004 1762 2738Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Kenta Yamauchi
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Shinichiro Okamoto
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Megumu Takahashi
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258799.80000 0004 0372 2033Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501 Japan ,grid.54432.340000 0001 0860 6072Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 102-0083 Japan
| | - Yoko Ishida
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Masato Koike
- grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Yuji Ikegaya
- grid.26999.3d0000 0001 2151 536XLaboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo‐ku, Tokyo, 113‐0033 Japan ,grid.28312.3a0000 0001 0590 0962Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka 565-0871 Japan ,grid.26999.3d0000 0001 2151 536XInstitute for AI and Beyond, The University of Tokyo, Bunkyo‐ku, Tokyo, 113‐0033 Japan
| | - Takashi Sakurai
- grid.258269.20000 0004 1762 2738Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421, Japan. .,Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421, Japan. .,Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
23
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
24
|
Sun K, Liao MZ. Clinical Pharmacology Considerations on Recombinant Adeno‐Associated Virus–Based Gene Therapy. J Clin Pharmacol 2022; 62 Suppl 2:S79-S94. [DOI: 10.1002/jcph.2141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Kefeng Sun
- Takeda Development Center Americas Cambridge Massachusetts USA
| | - Michael Z. Liao
- Clinical Pharmacology, Genentech Inc. South San Francisco California USA
| |
Collapse
|
25
|
Nambiar K, Wang Q, Yan H, Wilson JM. Characterizing Complex Populations of Endogenous Adeno-Associated Viruses by Single-Genome Amplification. Hum Gene Ther 2022; 33:1164-1173. [PMID: 35906801 DOI: 10.1089/hum.2022.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The isolation of adeno-associated virus (AAV) genomes from biomaterials at the molecular level has traditionally relied on polymerase chain reaction-based and cloning-based techniques. However, when applied to samples containing multiple species, traditional techniques for isolating viral genomes can amplify artificial recombinants and introduce polymerase misincorporation errors. In this study, we describe AAV single-genome amplification (AAV-SGA): a powerful technique to isolate, amplify, and sequence single AAV genomes from mammalian genomic DNA, which can then be used to construct vectors for gene therapy. We used AAV-SGA to precisely isolate 15 novel AAV genomes belonging to AAV clades A, D, and E and the Fringe outgroup. This technique also enables investigations of AAV population dynamics and recombination events to provide insights into virus-host interactions and virus biology. Using AAV-SGA, we identified regional heterogeneity within AAV populations from different lobes of the liver of a rhesus macaque and found evidence of frequent genomic recombination between AAV populations. This study highlights the strengths of AAV-SGA and demonstrates its capability to provide valuable insights into the biology and diversity of AAVs.
Collapse
Affiliation(s)
- Kalyani Nambiar
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qiang Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hanying Yan
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Yom-Tov N, Guy R, Offen D. Extracellular vesicles over adeno-associated viruses: Advantages and limitations as drug delivery platforms in precision medicine. Adv Drug Deliv Rev 2022; 190:114535. [PMID: 36210573 DOI: 10.1016/j.addr.2022.114535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023]
Abstract
Tissue-specific uptake and sufficient biodistribution are central goals in drug development. Crossing the blood-brain barrier (BBB) represents a major challenge in delivering therapeutics to the central nervous system (CNS). Since its discovery in the late 19th century, considerable efforts have been invested in an attempt to decipher the BBB structure complexity and plasticity. In parallel, another prevalent approach is to improve a delivery system by harnessing the biological machinery in an attempt to enhance therapeutic-agent permeability. Here, we review the advantages and limitations of using extracellular vesicles over AAV systems as a delivery system for therapy, focusing on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nataly Yom-Tov
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reut Guy
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Offen
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
27
|
Zhou K, Han J, Wang Y, Zhang Y, Zhu C. Routes of administration for adeno-associated viruses carrying gene therapies for brain diseases. Front Mol Neurosci 2022; 15:988914. [PMID: 36385771 PMCID: PMC9643316 DOI: 10.3389/fnmol.2022.988914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 08/27/2023] Open
Abstract
Gene therapy is a powerful tool to treat various central nervous system (CNS) diseases ranging from monogenetic diseases to neurodegenerative disorders. Adeno-associated viruses (AAVs) have been widely used as the delivery vehicles for CNS gene therapies due to their safety, CNS tropism, and long-term therapeutic effect. However, several factors, including their ability to cross the blood-brain barrier, the efficiency of transduction, their immunotoxicity, loading capacity, the choice of serotype, and peripheral off-target effects should be carefully considered when designing an optimal AAV delivery strategy for a specific disease. In addition, distinct routes of administration may affect the efficiency and safety of AAV-delivered gene therapies. In this review, we summarize different administration routes of gene therapies delivered by AAVs to the brain in mice and rats. Updated knowledge regarding AAV-delivered gene therapies may facilitate the selection from various administration routes for specific disease models in future research.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Department of Hematology and Oncology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Centre for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Jäschke N, Büning H. Adeno-Associated Virus Vector Design-Moving the Adeno-Associated Virus to a Bioengineered Therapeutic Nanoparticle. Hematol Oncol Clin North Am 2022; 36:667-685. [PMID: 35778330 DOI: 10.1016/j.hoc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although the number of market-approved gene therapies is still low, this new class of therapeutics has become an integral part of modern medicine. The success and safety of gene therapy depend on the vectors used to deliver the therapeutic material. Adeno-associated virus (AAV) vectors have emerged as the most frequently used delivery system for in vivo gene therapy. This success was achieved with first-generation vectors, using capsids derived from natural AAV serotypes. Their broad tropism, the high seroprevalence for many of the AAV serotypes in the human population, and the high vector doses needed to transduce a sufficient number of therapy-relevant target cells are challenges that are addressed by engineering the capsid and the vector genome, improving the efficacy of these biological nanoparticles.
Collapse
Affiliation(s)
- Nico Jäschke
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; German Center for Infection Research, Partner Site Hannover-Braunschweig.
| |
Collapse
|
29
|
Beck H, Härter M, Haß B, Schmeck C, Baerfacker L. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the Bayer Chemical Research Laboratory. Drug Discov Today 2022; 27:1560-1574. [PMID: 35202802 DOI: 10.1016/j.drudis.2022.02.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
The year 2021 marks the 125th anniversary of the Bayer Chemical Research Laboratory in Wuppertal, Germany. A significant number of prominent small-molecule drugs, from aspirin to Xarelto, have emerged from this research site. In this review, we shed light on historic cornerstones of small-molecule drug research, discussing current and future trends in drug discovery as well as providing a personal outlook on the future of drug research with a focus on small molecules.
Collapse
Affiliation(s)
- Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany.
| | - Michael Härter
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Bastian Haß
- Digital & Commercial Innovation, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Carsten Schmeck
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Lars Baerfacker
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| |
Collapse
|
30
|
Achberger K, Cipriano M, Düchs MJ, Schön C, Michelfelder S, Stierstorfer B, Lamla T, Kauschke SG, Chuchuy J, Roosz J, Mesch L, Cora V, Pars S, Pashkovskaia N, Corti S, Hartmann SM, Kleger A, Kreuz S, Maier U, Liebau S, Loskill P. Human stem cell-based retina on chip as new translational model for validation of AAV retinal gene therapy vectors. Stem Cell Reports 2021; 16:2242-2256. [PMID: 34525384 PMCID: PMC8452599 DOI: 10.1016/j.stemcr.2021.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
Gene therapies using adeno-associated viruses (AAVs) are among the most promising strategies to treat or even cure hereditary and acquired retinal diseases. However, the development of new efficient AAV vectors is slow and costly, largely because of the lack of suitable non-clinical models. By faithfully recreating structure and function of human tissues, human induced pluripotent stem cell (iPSC)-derived retinal organoids could become an essential part of the test cascade addressing translational aspects. Organ-on-chip (OoC) technology further provides the capability to recapitulate microphysiological tissue environments as well as a precise control over structural and temporal parameters. By employing our recently developed retina on chip that merges organoid and OoC technology, we analyzed the efficacy, kinetics, and cell tropism of seven first- and second-generation AAV vectors. The presented data demonstrate the potential of iPSC-based OoC models as the next generation of screening platforms for future gene therapeutic studies.
Collapse
Affiliation(s)
- Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Madalena Cipriano
- Department of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias J Düchs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christian Schön
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | - Thorsten Lamla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Stefan G Kauschke
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Johanna Chuchuy
- Department of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Roosz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Lena Mesch
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Selin Pars
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Natalia Pashkovskaia
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Serena Corti
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sophia-Marie Hartmann
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Sebastian Kreuz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Udo Maier
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
31
|
Tchedre KT, Batabyal S, Galicia M, Narcisse D, Mustafi SM, Ayyagari A, Chavala S, Mohanty SK. Biodistribution of adeno-associated virus type 2 carrying multi-characteristic opsin in dogs following intravitreal injection. J Cell Mol Med 2021; 25:8676-8686. [PMID: 34418301 PMCID: PMC8435460 DOI: 10.1111/jcmm.16823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy of retinal diseases using recombinant adeno-associated virus (rAAV) vector-based delivery has shown clinical success, and clinical trials based on rAAV-based optogenetic therapies are currently in progress. Recently, we have developed multi-characteristic opsin (MCO), which has been shown to effectively re-photosensitize photoreceptor-degenerated retina in mice leading to vision restoration at ambient light environment. Here, we report the biodistribution of the rAAV2 carried MCO (vMCO-I) in live samples and post-mortem organs following intraocular delivery in wild-type dogs. Immunohistochemistry showed that the intravitreal injection of vMCO-I resulted in gene transduction in the inner nuclear layer (INL) but did not induce detectable inflammatory or immune reaction in the dog retina. Vector DNA analysis of live body wastes and body fluids such as saliva and nasal secretions using quantitative polymerase chain reaction (qPCR) showed no correlative increase of vector copy in nasal secretions or saliva, minimal increase of vector copy in urine in the low-dose group 13 weeks after injection and in the faeces of the high-dose group at 3-13 weeks after injection suggesting clearance of the virus vector via urine and faeces. Further analysis of vector DNA extracted from faeces using PCR showed no transgene after 3 weeks post-injection. Intravitreal injection of vMCO-I resulted in few sporadic off-target presences of the vector in the mesenteric lymph node, liver, spleen and testis. This study showed that intravitreal rAAV2-based delivery of MCO-I for retinal gene therapy is safe.
Collapse
Affiliation(s)
- Kissaou T. Tchedre
- Nanoscope Technologies LLCArlingtonTexasUSA
- Nanoscope Therapeutics IncBedfordTexasUSA
| | | | | | | | | | - Ananta Ayyagari
- Nanoscope Technologies LLCArlingtonTexasUSA
- Nanoscope Therapeutics IncBedfordTexasUSA
| | | | - Samarendra K. Mohanty
- Nanoscope Technologies LLCArlingtonTexasUSA
- Nanoscope Therapeutics IncBedfordTexasUSA
| |
Collapse
|
32
|
Abulimiti A, Lai MSL, Chang RCC. Applications of adeno-associated virus vector-mediated gene delivery for neurodegenerative diseases and psychiatric diseases: Progress, advances, and challenges. Mech Ageing Dev 2021; 199:111549. [PMID: 34352323 DOI: 10.1016/j.mad.2021.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022]
Abstract
Neurodegeneration is the most common disease in the elderly population due to its slowly progressive nature of neuronal deterioration, eventually leading to executive dysfunction. The pathological markers of neurological disorders are relatively well-established, however, detailed molecular mechanisms of progression and therapeutic targets are needed to develop novel treatments in human patients. Treating known therapeutic targets of neurological diseases has been aided by recent advancements in adeno-associated virus (AAV) technology. AAVs are known for their low-immunogenicity, blood-brain barrier (BBB) penetrating ability, selective neuronal tropism, stable transgene expression, and pleiotropy. In addition, the usage of AAVs has enormous potential to be optimized. Therefore, AAV can be a powerful tool used to uncover the underlying pathophysiology of neurological disorders and to increase the success in human gene therapy. This review summarizes different optimization approaches of AAV vectors with their current applications in disease modeling, neural tracing and gene therapy, hence exploring progressive mechanisms of neurodegenerative diseases as well as effective therapy. Lastly, this review discusses the limitations and future perspectives of the AAV-mediated transgene delivery system.
Collapse
Affiliation(s)
- Amina Abulimiti
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Michael Siu-Lun Lai
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
33
|
Kulkarni A, Ferreira T, Bretscher C, Grewenig A, El-Andaloussi N, Bonifati S, Marttila T, Palissot V, Hossain JA, Azuaje F, Miletic H, Ystaas LAR, Golebiewska A, Niclou SP, Roeth R, Niesler B, Weiss A, Brino L, Marchini A. Oncolytic H-1 parvovirus binds to sialic acid on laminins for cell attachment and entry. Nat Commun 2021; 12:3834. [PMID: 34158478 PMCID: PMC8219832 DOI: 10.1038/s41467-021-24034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
H-1 parvovirus (H-1PV) is a promising anticancer therapy. However, in-depth understanding of its life cycle, including the host cell factors needed for infectivity and oncolysis, is lacking. This understanding may guide the rational design of combination strategies, aid development of more effective viruses, and help identify biomarkers of susceptibility to H-1PV treatment. To identify the host cell factors involved, we carry out siRNA library screening using a druggable genome library. We identify one crucial modulator of H-1PV infection: laminin γ1 (LAMC1). Using loss- and gain-of-function studies, competition experiments, and ELISA, we validate LAMC1 and laminin family members as being essential to H-1PV cell attachment and entry. H-1PV binding to laminins is dependent on their sialic acid moieties and is inhibited by heparin. We show that laminins are differentially expressed in various tumour entities, including glioblastoma. We confirm the expression pattern of laminin γ1 in glioblastoma biopsies by immunohistochemistry. We also provide evidence of a direct correlation between LAMC1 expression levels and H-1PV oncolytic activity in 59 cancer cell lines and in 3D organotypic spheroid cultures with different sensitivities to H-1PV infection. These results support the idea that tumours with elevated levels of γ1 containing laminins are more susceptible to H-1PV-based therapies.
Collapse
Affiliation(s)
- Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Annabel Grewenig
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Nazim El-Andaloussi
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Lonza Cologne GmbH, Köln, Germany
| | - Serena Bonifati
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Tiina Marttila
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Valérie Palissot
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jubayer A Hossain
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Francisco Azuaje
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Genomics England, London, United Kingdom
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Lars A R Ystaas
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Golebiewska
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ralf Roeth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Amélie Weiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany.
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
34
|
Korneyenkov MA, Zamyatnin AA. Next Step in Gene Delivery: Modern Approaches and Further Perspectives of AAV Tropism Modification. Pharmaceutics 2021; 13:pharmaceutics13050750. [PMID: 34069541 PMCID: PMC8160765 DOI: 10.3390/pharmaceutics13050750] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Today, adeno-associated virus (AAV) is an extremely popular choice for gene therapy delivery. The safety profile and simplicity of the genome organization are the decisive advantages which allow us to claim that AAV is currently among the most promising vectors. Several drugs based on AAV have been approved in the USA and Europe, but AAV serotypes’ unspecific tissue tropism is still a serious limitation. In recent decades, several techniques have been developed to overcome this barrier, such as the rational design, directed evolution and chemical conjugation of targeting molecules with a capsid. Today, all of the abovementioned approaches confer the possibility to produce AAV capsids with tailored tropism, but recent data indicate that a better understanding of AAV biology and the growth of structural data may theoretically constitute a rational approach to most effectively produce highly selective and targeted AAV capsids. However, while we are still far from this goal, other approaches are still in play, despite their drawbacks and limitations.
Collapse
Affiliation(s)
- Maxim A. Korneyenkov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: ; Tel.: +7-495-622-9843
| |
Collapse
|
35
|
Radhiyanti PT, Konno A, Matsuzaki Y, Hirai H. Comparative study of neuron-specific promoters in mouse brain transduced by intravenously administered AAV-PHP.eB. Neurosci Lett 2021; 756:135956. [PMID: 33989730 DOI: 10.1016/j.neulet.2021.135956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/30/2022]
Abstract
Adeno-associated virus (AAV)- PHP.B and AAV-PHP.eB (PHP.eB), a capsid variant of AAV serotype 9, efficiently penetrates the mouse blood-brain barrier and predominantly infects neurons. Thus, the PHP.B / PHP.eB capsid and a neuron-specific promoter is a reasonable combination for effective neuronal transduction. However, the transduction characteristics of intravenously administered PHP.B / PHP.eB carrying different neuron-specific promoters have not been studied systematically. In this study, using an intravenous infusion of PHP.eB in mice, we performed a comparative study of the ubiquitous CBh and three neuron-specific promoters, the Ca2+/calmodulin-dependent kinase subunit α (CaMKII) promoter, neuron-specific enolase (NSE) promoter, and synapsin I with a minimal CMV sequence (SynI-minCMV) promoter. Expression levels of a transgene by three neuron-specific promoters were comparable to or higher than those of the CBh promoter. Among the promoters examined, the NSE promoter showed the highest transgene expression. All neuron-specific promoters were activated specifically in the neurons. PHP.eB carrying the CaMKII promoter, which is generally believed to exert its function exclusively in the excitatory neurons, transduced both the excitatory and inhibitory neurons without bias, whereas PHP.eB with the NSE and SynI-minCMV promoters transduced neurons with significant bias toward inhibitory neurons. These results are useful in neuron-targeted broad transgene expression through systemic infusion of blood-brain-barrier-penetrating AAV vectors carrying the neuron-specific promoter.
Collapse
Affiliation(s)
- Putri T Radhiyanti
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan; Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan.
| |
Collapse
|
36
|
Wang J, Zhang L. Retrograde Axonal Transport Property of Adeno-Associated Virus and Its Possible Application in Future. Microbes Infect 2021; 23:104829. [PMID: 33878458 DOI: 10.1016/j.micinf.2021.104829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
Gene therapy has become a treatment method for many diseases. Adeno-associated virus (AAV) is one of the most common virus vectors, is also widely used in the gene therapy field. During the past 2 decades, the retrograde axonal transportability of AAV has been discovered and utilized. Many studies have worked on the retrograde axonal transportability of AAV, and more and more people are interested in this field. This review described the current application, influence factors, and mechanism of retrograde axonal transportability of AAV and predicted its potential use in disease treatment in near future.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Gastroenterology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Liqin Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Dongcheng Qu, Beijing, 100730, China.
| |
Collapse
|
37
|
Mihara E, Watanabe S, Bashiruddin NK, Nakamura N, Matoba K, Sano Y, Maini R, Yin Y, Sakai K, Arimori T, Matsumoto K, Suga H, Takagi J. Lasso-grafting of macrocyclic peptide pharmacophores yields multi-functional proteins. Nat Commun 2021; 12:1543. [PMID: 33750839 PMCID: PMC7943567 DOI: 10.1038/s41467-021-21875-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Protein engineering has great potential for devising multifunctional recombinant proteins to serve as next-generation protein therapeutics, but it often requires drastic modifications of the parental protein scaffolds e.g., additional domains at the N/C-terminus or replacement of a domain by another. A discovery platform system, called RaPID (Random non-standard Peptides Integrated Discovery) system, has enabled rapid discovery of small de novo macrocyclic peptides that bind a target protein with high binding specificity and affinity. Capitalizing on the optimized binding properties of the RaPID-derived peptides, here we show that RaPID-derived pharmacophore sequences can be readily implanted into surface-exposed loops on recombinant proteins and maintain both the parental peptide binding function(s) and the host protein function. We refer to this protein engineering method as lasso-grafting and demonstrate that it can endow specific binding capacity toward various receptors into a diverse set of scaffolds that includes IgG, serum albumin, and even capsid proteins of adeno-associated virus, enabling us to rapidly formulate and produce bi-, tri-, and even tetra-specific binder molecules.
Collapse
Affiliation(s)
- Emiko Mihara
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Satoshi Watanabe
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Nasir K Bashiruddin
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nozomi Nakamura
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kyoko Matoba
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yumi Sano
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Rumit Maini
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yizhen Yin
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Takao Arimori
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
38
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
39
|
Piguet F, de Saint Denis T, Audouard E, Beccaria K, André A, Wurtz G, Schatz R, Alves S, Sevin C, Zerah M, Cartier N. The Challenge of Gene Therapy for Neurological Diseases: Strategies and Tools to Achieve Efficient Delivery to the Central Nervous System. Hum Gene Ther 2021; 32:349-374. [PMID: 33167739 DOI: 10.1089/hum.2020.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For more than 10 years, gene therapy for neurological diseases has experienced intensive research growth and more recently therapeutic interventions for multiple indications. Beneficial results in several phase 1/2 clinical studies, together with improved vector technology have advanced gene therapy for the central nervous system (CNS) in a new era of development. Although most initial strategies have focused on orphan genetic diseases, such as lysosomal storage diseases, more complex and widespread conditions like Alzheimer's disease, Parkinson's disease, epilepsy, or chronic pain are increasingly targeted for gene therapy. Increasing numbers of applications and patients to be treated will require improvement and simplification of gene therapy protocols to make them accessible to the largest number of affected people. Although vectors and manufacturing are a major field of academic research and industrial development, there is a growing need to improve, standardize, and simplify delivery methods. Delivery is the major issue for CNS therapies in general, and particularly for gene therapy. The blood-brain barrier restricts the passage of vectors; strategies to bypass this obstacle are a central focus of research. In this study, we present the different ways that can be used to deliver gene therapy products to the CNS. We focus on results obtained in large animals that have allowed the transfer of protocols to human patients and have resulted in the generation of clinical data. We discuss the different routes of administration, their advantages, and their limitations. We describe techniques, equipment, and protocols and how they should be selected for safe delivery and improved efficiency for the next generation of gene therapy trials for CNS diseases.
Collapse
Affiliation(s)
- Françoise Piguet
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Timothée de Saint Denis
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,APHP, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, APHP Centre. Université de Paris, Paris, France
| | - Emilie Audouard
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Kevin Beccaria
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,APHP, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, APHP Centre. Université de Paris, Paris, France
| | - Arthur André
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,APHP, Department of Neurosurgery, Hôpitaux Universitaires La Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Guillaume Wurtz
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Raphael Schatz
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Sandro Alves
- BrainVectis-Askbio France, iPeps Paris Brain Institute, Paris, France
| | - Caroline Sevin
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,BrainVectis-Askbio France, iPeps Paris Brain Institute, Paris, France.,APHP, Department of Neurology, Hopital le Kremlin Bicetre, Paris, France
| | - Michel Zerah
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,APHP, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, APHP Centre. Université de Paris, Paris, France
| | - Nathalie Cartier
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
40
|
Efficient whole brain transduction by systemic infusion of minimally purified AAV-PHP.eB. J Neurosci Methods 2020; 346:108914. [DOI: 10.1016/j.jneumeth.2020.108914] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
|
41
|
SUMOylation Targets Adeno-associated Virus Capsids but Mainly Restricts Transduction by Cellular Mechanisms. J Virol 2020; 94:JVI.00871-20. [PMID: 32669341 DOI: 10.1128/jvi.00871-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus (AAV) has proven to be a promising candidate for gene therapy due to its nonpathogenic nature, ease of production, and broad tissue tropism. However, its transduction capabilities are not optimal due to the interaction with various host factors within the cell. In a previous study, we identified members of the small ubiquitin-like modifier (SUMO) pathway as significant restriction factors in AAV gene transduction. In the present study, we explored the scope of this restriction by focusing on the AAV capsid and host cell proteins as targets. We show that during vector production, the capsid protein VP2 becomes SUMOylated, as indicated by deletion and point mutations of VP2 or the obstruction of its N terminus via the addition of a tag. We observed that SUMOylated AAV capsids display higher stability than non-SUMOylated capsids. Prevention of capsid SUMOylation by VP2 mutations did not abolish transduction restriction by SUMOylation; however, it reduced activation of gene transduction by shutdown of the cellular SUMOylation pathway. This indicates a link between capsid SUMOylation and SUMOylation of cellular proteins in restricting gene transduction. Infection with AAV triggers general SUMOylation of cellular proteins. In particular, the DAXX protein, a putative host cell restriction factor that can become SUMOylated, is able to restrict AAV gene transduction by reducing the intracellular accumulation of AAV vectors. We also observe that the coexpression of a SUMOylation inhibitor with an AAV2 reporter gene vector increased gene transduction significantly.IMPORTANCE Host factors within the cell are the major mode of restriction of adeno-associated virus (AAV) and keep it from fulfilling its maximum potential as a gene therapy vector. A better understanding of the intricacies of restriction would enable the engineering of better vectors. Via a genome-wide short interfering RNA screen, we identified that proteins of the small ubiquitin-like modifier (SUMO) pathway play an important role in AAV restriction. In this study, we investigate whether this restriction is targeted to the AAV directly or indirectly through host cell factors. The results indicate that both targets act in concert to restrict AAV.
Collapse
|
42
|
Havlik LP, Simon KE, Smith JK, Klinc KA, Tse LV, Oh DK, Fanous MM, Meganck RM, Mietzsch M, Kleinschmidt J, Agbandje-McKenna M, Asokan A. Coevolution of Adeno-associated Virus Capsid Antigenicity and Tropism through a Structure-Guided Approach. J Virol 2020; 94:e00976-20. [PMID: 32669336 PMCID: PMC7495376 DOI: 10.1128/jvi.00976-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated viruses (AAV) are composed of nonenveloped, icosahedral protein shells that can be adapted to package and deliver recombinant therapeutic DNA. Approaches to engineer recombinant capsids for gene therapy applications have focused on rational design or library-based approaches that can address one or two desirable attributes; however, there is an unmet need to comprehensively improve AAV vector properties. Such cannot be achieved by utilizing sequence data alone but requires harnessing the three-dimensional (3D) structural properties of AAV capsids. Here, we solve the structures of a natural AAV isolate complexed with antibodies using cryo-electron microscopy and harness this structural information to engineer AAV capsid libraries through saturation mutagenesis of different antigenic footprints. Each surface loop was evolved by infectious cycling in the presence of a helper adenovirus to yield a new AAV variant that then serves as a template for evolving the next surface loop. This stepwise process yielded a humanized AAV8 capsid (AAVhum.8) displaying nonnatural surface loops that simultaneously display tropism for human hepatocytes, increased gene transfer efficiency, and neutralizing antibody evasion. Specifically, AAVhum.8 can better evade neutralizing antisera from multiple species than AAV8. Further, AAVhum.8 displays robust transduction in a human liver xenograft mouse model with expanded tropism for both murine and human hepatocytes. This work supports the hypothesis that critical properties, such as AAV capsid antibody evasion and tropism, can be coevolved by combining rational design and library-based evolution for clinical gene therapy.IMPORTANCE Clinical gene therapy with recombinant AAV vectors has largely relied on natural capsid isolates. There is an unmet need to comprehensively improve AAV tissue tropism, transduction efficiency, and antibody evasion. Such cannot be achieved by utilizing capsid sequence data alone but requires harnessing the 3D structural properties of AAV capsids. Here, we combine rational design and library-based evolution to coevolve multiple, desirable properties onto AAV by harnessing 3D structural information.
Collapse
Affiliation(s)
- L Patrick Havlik
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherine E Simon
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - J Kennon Smith
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Kelli A Klinc
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Longping V Tse
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel K Oh
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Marco M Fanous
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rita M Meganck
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jürgen Kleinschmidt
- German Cancer Research Center, Research Program Infection and Cancer, Heidelberg, Germany
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Regeneration Next, Duke University, Durham, North Carolina, USA
| |
Collapse
|
43
|
Tosolini AP, Sleigh JN. Intramuscular Delivery of Gene Therapy for Targeting the Nervous System. Front Mol Neurosci 2020; 13:129. [PMID: 32765219 PMCID: PMC7379875 DOI: 10.3389/fnmol.2020.00129] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-mediated gene therapy has the potential to deliver exogenous genetic material into specific cell types to promote survival and counteract disease. This is particularly enticing for neuronal conditions, as the nervous system is renowned for its intransigence to therapeutic targeting. Administration of gene therapy viruses into skeletal muscle, where distal terminals of motor and sensory neurons reside, has been shown to result in extensive transduction of cells within the spinal cord, brainstem, and sensory ganglia. This route is minimally invasive and therefore clinically relevant for gene therapy targeting to peripheral nerve soma. For successful transgene expression, viruses administered into muscle must undergo a series of processes, including host cell interaction and internalization, intracellular sorting, long-range retrograde axonal transport, endosomal liberation, and nuclear import. In this review article, we outline key characteristics of major gene therapy viruses—adenovirus, adeno-associated virus (AAV), and lentivirus—and summarize the mechanisms regulating important steps in the virus journey from binding at peripheral nerve terminals to nuclear delivery. Additionally, we describe how neuropathology can negatively influence these pathways, and conclude by discussing opportunities to optimize the intramuscular administration route to maximize gene delivery and thus therapeutic potential.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute, University College London, London, United Kingdom
| |
Collapse
|
44
|
Hartley A, Kavishwar G, Salvato I, Marchini A. A Roadmap for the Success of Oncolytic Parvovirus-Based Anticancer Therapies. Annu Rev Virol 2020; 7:537-557. [PMID: 32600158 DOI: 10.1146/annurev-virology-012220-023606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autonomous rodent protoparvoviruses (PVs) are promising anticancer agents due to their excellent safety profile, natural oncotropism, and oncosuppressive activities. Viral infection can trigger immunogenic cell death, activating the immune system against the tumor. However, the efficacy of this treatment in recent clinical trials is moderate compared with results seen in preclinical work. Various strategies have been employed to improve the anticancer activities of oncolytic PVs, including development of second-generation parvoviruses with enhanced oncolytic and immunostimulatory activities and rational combination of PVs with other therapies. Understanding the cellular factors involved in the PV life cycle is another important area of investigation. Indeed, these studies may lead to the identification of biomarkers that would allow a more personalized use of PV-based therapies. This review focuses on this work and the challenges that still need to be overcome to move PVs forward into clinical practice as an effective therapeutic option for cancer patients.
Collapse
Affiliation(s)
- Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Gayatri Kavishwar
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Ilaria Salvato
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany; .,Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
45
|
Cerebral Organoids: A Human Model for AAV Capsid Selection and Therapeutic Transgene Efficacy in the Brain. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:167-175. [PMID: 32637448 PMCID: PMC7327852 DOI: 10.1016/j.omtm.2020.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
The development of gene therapies for central nervous system disorders is challenging because it is difficult to translate preclinical data from current in vitro and in vivo models to the clinic. Therefore, we developed induced pluripotent stem cell (iPSC)-derived cerebral organoids as a model for recombinant adeno-associated virus (rAAV) capsid selection and for testing efficacy of AAV-based gene therapy in a human context. Cerebral organoids are physiological 3D structures that better recapitulate the human brain compared with 2D cell lines. To validate the model, we compared the transduction efficiency and distribution of two commonly used AAV serotypes (rAAV5 and rAAV9). In cerebral organoids, transduction with rAAV5 led to higher levels of vector DNA, transgenic mRNA, and protein expression as compared with rAAV9. The superior transduction of rAAV5 was replicated in iPSC-derived neuronal cells. Furthermore, rAAV5-mediated delivery of a human sequence-specific engineered microRNA to cerebral organoids led to a lower expression of its target ataxin-3. Our studies provide a new tool for selecting and deselecting AAV serotypes, and for demonstrating therapeutic efficacy of transgenes in a human context. Implementing cerebral organoids during gene therapy development could reduce the usage of animal models and improve translation to the clinic.
Collapse
|
46
|
Maurer AC, Weitzman MD. Adeno-Associated Virus Genome Interactions Important for Vector Production and Transduction. Hum Gene Ther 2020; 31:499-511. [PMID: 32303138 PMCID: PMC7232694 DOI: 10.1089/hum.2020.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus has emerged as one of the most promising gene therapy delivery vectors. Development of these vectors took advantage of key features of the wild-type adeno-associated virus (AAV), enabled by basic studies of the underlying biology and requirements for transcription, replication, and packaging of the viral genome. Each step in generating and utilizing viral vectors involves numerous molecular interactions that together determine the efficiency of vector production and gene delivery. Once delivered into the cell, interactions with host proteins will determine the fate of the viral genome, and these will impact the intended goal of gene delivery. Here, we provide an overview of known interactions of the AAV genome with viral and cellular proteins involved in its amplification, packaging, and expression. Further appreciation of how the AAV genome interacts with host factors will enhance how this simple virus can be harnessed for an array of vector purposes that benefit human health.
Collapse
Affiliation(s)
- Anna C. Maurer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Matthew D. Weitzman
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Zingg B, Peng B, Huang J, Tao HW, Zhang LI. Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry. J Neurosci 2020; 40:3250-3267. [PMID: 32198185 PMCID: PMC7159884 DOI: 10.1523/jneurosci.2158-19.2020] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
Revealing the organization and function of neural circuits is greatly facilitated by viral tools that spread transsynaptically. Adeno-associated virus (AAV) exhibits anterograde transneuronal transport, however, the synaptic specificity of this spread and its broad application within a diverse set of circuits remains to be explored. Here, using anatomic, functional, and molecular approaches, we provide evidence for the preferential transport of AAV1 to postsynaptically connected neurons and reveal its spread is strongly dependent on synaptic transmitter release. In addition to glutamatergic pathways, AAV1 also spreads through GABAergic synapses to both excitatory and inhibitory cell types. We observed little or no transport, however, through neuromodulatory projections (e.g., serotonergic, cholinergic, and noradrenergic). In addition, we found that AAV1 can be transported through long-distance descending projections from various brain regions to effectively transduce spinal cord neurons. Combined with newly designed intersectional and sparse labeling strategies, AAV1 can be applied within a wide variety of pathways to categorize neurons according to their input sources, morphology, and molecular identities. These properties make AAV1 a promising anterograde transsynaptic tool for establishing a comprehensive cell-atlas of the brain, although its capacity for retrograde transport currently limits its use to unidirectional circuits.SIGNIFICANCE STATEMENT The discovery of anterograde transneuronal spread of AAV1 generates great promise for its application as a unique tool for manipulating input-defined cell populations and mapping their outputs. However, several outstanding questions remain for anterograde transsynaptic approaches in the field: (1) whether AAV1 spreads exclusively or specifically to synaptically connected neurons, and (2) how broad its application could be in various types of neural circuits in the brain. This study provides several lines of evidence in terms of anatomy, functional innervation, and underlying mechanisms, to strongly support that AAV1 anterograde transneuronal spread is highly synapse specific. In addition, several potentially important applications of transsynaptic AAV1 in probing neural circuits are described.
Collapse
Affiliation(s)
- Brian Zingg
- Zilkha Neurogenetic Institute
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Bo Peng
- Zilkha Neurogenetic Institute
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Junxiang Huang
- Zilkha Neurogenetic Institute
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute
- Department of Physiology and Neuroscience
| | - Li I Zhang
- Zilkha Neurogenetic Institute
- Department of Physiology and Neuroscience
| |
Collapse
|
48
|
Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiol Rev 2020; 100:1467-1525. [DOI: 10.1152/physrev.00035.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For long, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved and undergoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e. controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems. Multiple efforts have been undertaken to restore lost or hampered function in eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims at providing a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.
Collapse
Affiliation(s)
| | | | | | | | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Goettingen, Germany
| |
Collapse
|
49
|
Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21:255-272. [DOI: 10.1038/s41576-019-0205-4] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
|
50
|
Increased Temperature Facilitates Adeno-Associated Virus Vector Transduction of Colorectal Cancer Cell Lines in a Manner Dependent on Heat Shock Protein Signature. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9107140. [PMID: 32090115 PMCID: PMC7031720 DOI: 10.1155/2020/9107140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in human population. A great achievement in the treatment of CRC was the introduction of targeted biological drugs and solutions of chemotherapy, combined with hyperthermia. Cytoreductive surgery and HIPEC (hyperthermic intraperitoneal chemotherapy) extends the patients' survival with CRC. Recently, gene therapy approaches are also postulated. The studies indicate the possibility of enhancing the gene transfer to cells by recombinant adeno-associated vectors (rAAV) at hyperthermia. The rAAV vectors arouse a lot of attention in the field of cancer treatment due to many advantages. In this study, the effect of elevated temperature on the transduction efficiency of rAAV vectors on CRC cells with different origin and gene profile was examined. The effect of heat shock on the penetration of rAAV vectors into CRC cells in relation with the expression of HSP and AAV receptor genes was tested. It was found that the examined cells under hyperthermia (43°C, 1 h) are transduced at a higher level than in normal conditions (37°C). The results also indicate that studied RKO, HT-29, and LS411N cell lines express HSP genes at different levels under both 37°C and 43°C. Moreover, the results showed that the expression of AAV receptors increases in response to elevated temperature. The study suggests that increased rAAV transfer to CRC can be achieved under elevated temperature conditions. The obtained results provide information relevant to the design of new solutions in CRC therapy based on the combination of hyperthermia, chemotherapy, and gene therapy.
Collapse
|