1
|
Bertoni I, Soares MF, Roberts ISD, Connor T. Radiation nephropathy is associated with a glomerular thrombotic microangiopathy and progression to end-stage kidney disease. Clin Kidney J 2023; 16:1534-1537. [PMID: 37664570 PMCID: PMC10468744 DOI: 10.1093/ckj/sfad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 09/05/2023] Open
Abstract
Radiation nephropathy is a rare complication following total body irradiation (TBI) and peptide receptor radionuclide therapy (PRRT). Yttrium 90-DOTATOC (Y90) is a somatostatin analogue labelled with Y90 used for somatostatin-positive neuroendocrine tumours. Y90 is renally excreted and has a cumulative effect in the renal parenchyma Despite fractionation and co-administration of renoprotective intravenous amino acids, targeted radionuclide therapy can still be nephrotoxic. Rising adoption of PRRT has led to the re-emergence of radiation nephropathy. We report on three recent cases of insidious onset of progressive kidney dysfunction and biopsy-proven thrombotic microangiopathy following PRRT and TBI.
Collapse
Affiliation(s)
| | - Maria F Soares
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ian S D Roberts
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | |
Collapse
|
2
|
Poletto G, Cecchin D, Sperti S, Filippi L, Realdon N, Evangelista L. Head-to-Head Comparison between Peptide-Based Radiopharmaceutical for PET and SPECT in the Evaluation of Neuroendocrine Tumors: A Systematic Review. Curr Issues Mol Biol 2022; 44:5516-5530. [PMID: 36354685 PMCID: PMC9689511 DOI: 10.3390/cimb44110373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 08/04/2023] Open
Abstract
We compared head-to-head the most used radiolabeled peptides for single photon computed emission tomography (SPECT) and positron emission tomography (PET) imaging of neuroendocrine tumors (NETs). A comprehensive literature search was performed in PubMed, Web of Science, and Scopus databases. The following words, coupled two by two, were used: 68Ga-DOTATOC; 68Ga-DOTATATE; 68Ga-DOTANOC; 99mTc-EDDA/HYNIC-TOC; 64Cu-DOTATATE; and 111In-DTPA-octreotide. Moreover, a second-step search strategy was adopted by using the following combined terms: "Somatostatin receptor imaging,"; "Somatostatin receptor imaging" and "Functional,"; "Somatostatin receptor imaging" and "SPECT,"; and "Somatostatin receptor imaging" and "PET". Eligible criteria were: (1) original articles focusing on the clinical application of the radiopharmaceutical agents in NETs; (2) original articles in the English language; (3) comparative studies (head-to-head comparative or matched-paired studies). Editorials, letters to the editor, reviews, pictorial essays, clinical cases, or opinions were excluded. A total of 1077 articles were found in the three electronic databases. The full texts of 104 articles were assessed for eligibility. Nineteen articles were finally included. Most articles focused on the comparison between 111In-DTPA-Octreotide and 68Ga-DOTATOC/TATE. Few papers compared 64Cu-DOTATATE and 68Ga-DOTATOC/TATE, or SPECT tracers. The rates of true positivity were 63.7%, 58.5%, 78.4% and 82.4%, respectively, for 111In-DTPA-Octreotide, 99mTc-EDDA/HYNIC-TOC, 68Ga-DOTATATE/TOC and 64Cu-DOTATATE. In conclusion, as highly expected, PET tracers are more suitable for the in vivo identification of NETs. Indeed, in comparative studies, they demonstrated a higher true positive rate than SPECT agents.
Collapse
Affiliation(s)
- Giulia Poletto
- Nuclear Medicine Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Stefania Sperti
- Nuclear Medicine Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Nicola Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| |
Collapse
|
3
|
Urso L, Nieri A, Rambaldi I, Castello A, Uccelli L, Cittanti C, Panareo S, Gagliardi I, Ambrosio MR, Zatelli MC, Bartolomei M. Radioligand therapy (RLT) as neoadjuvant treatment for inoperable pancreatic neuroendocrine tumors: a literature review. Endocrine 2022; 78:255-261. [PMID: 36018539 PMCID: PMC9585010 DOI: 10.1007/s12020-022-03170-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
In the last 10 years, several literature reports supported radioligand therapy (RLT) in neoadjuvant settings for pancreatic neuroendocrine tumors (PanNETs). Indeed, primary tumor shrinkage has been frequently reported following RLT in unresectable or borderline resectable PanNETs. Moreover, RLT-induced intratumoral modifications facilitate surgery, both on primary tumor and metastasis, having a great impact on progression free survival (PFS), overall survival (OS) and quality of life (QoL). However, prospective controlled investigations are necessary to confirm preliminary data and to define the best RLT scheme and the ideal patient that, in a multidisciplinary approach, should be referred to neoadjuvant RLT.
Collapse
Affiliation(s)
- Luca Urso
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
- Translational Medicine Department, Ferrara University, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Alberto Nieri
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
| | - Ilaria Rambaldi
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
| | - Angelo Castello
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Licia Uccelli
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
- Translational Medicine Department, Ferrara University, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Corrado Cittanti
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
- Translational Medicine Department, Ferrara University, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, Modena, Italy
| | - Irene Gagliardi
- Section of Endocrinology, Geriatric and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Rosaria Ambrosio
- Section of Endocrinology, Geriatric and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology, Geriatric and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Glucose Metabolism Modification Induced by Radioligand Therapy with [ 177Lu]Lu/[ 90Y]Y-DOTATOC in Advanced Neuroendocrine Neoplasms: A Prospective Pilot Study within FENET-2016 Trial. Pharmaceutics 2022; 14:pharmaceutics14102009. [PMID: 36297443 PMCID: PMC9612170 DOI: 10.3390/pharmaceutics14102009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022] Open
Abstract
[18F]F-FDG (FDG) PET is emerging as a relevant diagnostic and prognostic tool in neuroendocrine neoplasms (NENs), as a simultaneous decrease in [68Ga]Ga-DOTA peptides and increase in FDG uptake (the “flip-flop” phenomenon) occurs during the natural history of these tumors. The aim of this study was to evaluate the variations on FDG PET in NEN patients treated with two different schemes of radioligand therapy (RLT) and to correlate them with clinical−pathologic variables. A prospective evaluation of 108 lesions in 56 patients (33 males and 23 females; median age, 64.5 years) affected by NENs of various primary origins (28 pancreatic, 13 gastrointestinal, 9 bronchial, 6 unknown primary (CUP-NENs) and 1 pheochromocytoma) and grades (median Ki-67 = 9%) was performed. The patients were treated with RLT within the phase II clinical trial FENET-2016 (CTID: NCT04790708). RLT was offered for 32 patients with the MONO scheme (five cycles of [177Lu]Lu-DOTATOC) and for 24 with the DUO scheme (three cycles of [177Lu]Lu-DOTATOC alternated with two cycles of [90Y]Y-DOTATOC). Variations in terms of the ΔSUVmax of a maximum of three target lesions per patient (58 for MONO and 50 for DUO RLT) were assessed between baseline and 3 months post-RLT FDG PET. In patients with negative baseline FDG PET, the three most relevant lesions on [68Ga]Ga-DOTA-peptide PET were assessed and matched on post-RLT FDG PET, to check for any possible changes in FDG avidity. Thirty-five patients (62.5%) had at least one pathological FDG uptake at the baseline scans, but the number was reduced to 29 (52%) after RLT. In the patients treated with DUO-scheme RLT, 20 out of 50 lesions were FDG positive before therapy, whereas only 14 were confirmed after RLT (p = 0.03). Moreover, none of the 30 FDG-negative lesions showed an increased FDG uptake after RLT. The lesions of patients with pancreatic and CUP-NENs treated with the DUO scheme demonstrated a significant reduction in ΔSUVmax in comparison to those treated with MONO RLT (p = 0.03 and p = 0.04, respectively). Moreover, we found a mild positive correlation between the grading and ΔSUVmax in patients treated with the MONO scheme (r = 0.39, p < 0.02), while no evidence was detected for patients treated with the DUO scheme. Our results suggest that RLT, mostly with the DUO scheme, could be effective in changing NEN lesions’ glycometabolism, in particular, in patients affected by pancreatic and CUP-NENs, regardless of their Ki-67 index. Probably, associating [90Y]Y-labelled peptides, which have high energy emission and a crossfire effect, and [177Lu]Lu ones, characterized by a longer half-life and a safer profile for organs at risk, might represent a valid option in FDG-positive NENs addressed to RLT. Further studies are needed to validate our preliminary findings. In our opinion, FDG PET/CT should represent a potent tool for fully assessing a patient’s disease characteristics, both before and after RLT.
Collapse
|
5
|
Uccelli L, Boschi A, Cittanti C, Martini P, Panareo S, Tonini E, Nieri A, Urso L, Caracciolo M, Lodi L, Carnevale A, Giganti M, Bartolomei M. 90Y/ 177Lu-DOTATOC: From Preclinical Studies to Application in Humans. Pharmaceutics 2021; 13:1463. [PMID: 34575538 PMCID: PMC8469896 DOI: 10.3390/pharmaceutics13091463] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
The PRRT (Peptide Receptor Radionuclide Therapy) is a promising modality treatment for patients with inoperable or metastatic neuroendocrine tumors (NETs). Progression-free survival (PFS) and overall survival (OS) of these patients are favorably comparable with standard therapies. The protagonist in this type of therapy is a somatostatin-modified peptide fragment ([Tyr3] octreotide), equipped with a specific chelating system (DOTA) capable of creating a stable bond with β-emitting radionuclides, such as yttrium-90 and lutetium-177. In this review, covering twenty five years of literature, we describe the characteristics and performances of the two most used therapeutic radiopharmaceuticals for the NETs radio-treatment: [90Y]Y-DOTATOC and [177Lu]Lu-DOTATOC taking this opportunity to retrace the most significant results that have determined their success, promoting them from preclinical studies to application in humans.
Collapse
Affiliation(s)
- Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.U.); (A.C.); (M.G.)
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy; (S.P.); (A.N.); (L.U.); (M.C.); (L.L.); (M.B.)
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.U.); (A.C.); (M.G.)
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy; (S.P.); (A.N.); (L.U.); (M.C.); (L.L.); (M.B.)
| | - Petra Martini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.U.); (A.C.); (M.G.)
| | - Stefano Panareo
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy; (S.P.); (A.N.); (L.U.); (M.C.); (L.L.); (M.B.)
| | - Eugenia Tonini
- Medical Physics Unit, University Hospital, 44124 Ferrara, Italy;
| | - Alberto Nieri
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy; (S.P.); (A.N.); (L.U.); (M.C.); (L.L.); (M.B.)
| | - Luca Urso
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy; (S.P.); (A.N.); (L.U.); (M.C.); (L.L.); (M.B.)
| | - Matteo Caracciolo
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy; (S.P.); (A.N.); (L.U.); (M.C.); (L.L.); (M.B.)
| | - Luca Lodi
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy; (S.P.); (A.N.); (L.U.); (M.C.); (L.L.); (M.B.)
| | - Aldo Carnevale
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.U.); (A.C.); (M.G.)
- Radiology Unit, University Hospital, 44124 Ferrara, Italy
| | - Melchiore Giganti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.U.); (A.C.); (M.G.)
- Radiology Unit, University Hospital, 44124 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy; (S.P.); (A.N.); (L.U.); (M.C.); (L.L.); (M.B.)
| |
Collapse
|
6
|
Buscombe J. The Future of Molecular Radiotherapy Services in the UK. Clin Oncol (R Coll Radiol) 2021; 33:137-143. [DOI: 10.1016/j.clon.2020.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
|
7
|
Taïeb D, Jha A, Treglia G, Pacak K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr Relat Cancer 2019; 26:R627-R652. [PMID: 31561209 PMCID: PMC7002202 DOI: 10.1530/erc-19-0165] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
In recent years, advancement in genetics has profoundly helped to gain a more comprehensive molecular, pathogenic, and prognostic picture of pheochromocytomas and paragangliomas (PPGLs). Newly discovered molecular targets, particularly those that target cell membranes or signaling pathways have helped move nuclear medicine in the forefront of PPGL precision medicine. This is mainly based on the introduction and increasing experience of various PET radiopharmaceuticals across PPGL genotypes quickly followed by implementation of novel radiotherapies and revised imaging algorithms. Particularly, 68Ga-labeled-SSAs have shown excellent results in the diagnosis and staging of PPGLs and in selecting patients for PRRT as a potential alternative to 123/131I-MIBG theranostics. PRRT using 90Y/177Lu-DOTA-SSAs has shown promise for treatment of PPGLs with improvement of clinical symptoms and/or disease control. However, more well-designed prospective studies are required to confirm these findings, in order to fully exploit PRRT's antitumoral properties to obtain the final FDA approval. Such an approval has recently been obtained for high-specific-activity 131I-MIBG for inoperable/metastatic PPGL. The increasing experience and encouraging preliminary results of these radiotherapeutic approaches in PPGLs now raises an important question of how to further integrate them into PPGL management (e.g. monotherapy or in combination with other systemic therapies), carefully taking into account the PPGLs locations, genotypes, and growth rate. Thus, targeted radionuclide therapy (TRT) should preferably be performed at specialized centers with an experienced interdisciplinary team. Future perspectives include the introduction of dosimetry and biomarkers for therapeutic responses for more individualized treatment plans, α-emitting isotopes, and the combination of TRT with other systemic therapies.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Treglia
- Clinic of Nuclear Medicine and PET/CT Center, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
- Health Technology Assessment Unit, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Nölting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, Grossman A, Pacak K. Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers (Basel) 2019; 11:cancers11101505. [PMID: 31597347 PMCID: PMC6827093 DOI: 10.3390/cancers11101505] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCC/PGLs) are rare, mostly catecholamine-producing neuroendocrine tumors of the adrenal gland (PCCs) or the extra-adrenal paraganglia (PGL). They can be separated into three different molecular clusters depending on their underlying gene mutations in any of the at least 20 known susceptibility genes: The pseudohypoxia-associated cluster 1, the kinase signaling-associated cluster 2, and the Wnt signaling-associated cluster 3. In addition to tumor size, location (adrenal vs. extra-adrenal), multiplicity, age of first diagnosis, and presence of metastatic disease (including tumor burden), other decisive factors for best clinical management of PCC/PGL include the underlying germline mutation. The above factors can impact the choice of different biomarkers and imaging modalities for PCC/PGL diagnosis, as well as screening for other neoplasms, staging, follow-up, and therapy options. This review provides a guide for practicing clinicians summarizing current management of PCC/PGL according to tumor size, location, age of first diagnosis, presence of metastases, and especially underlying mutations in the era of precision medicine.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstraße 1, 80336 München, Germany.
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
- Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 9, 01062 Dresden, Germany.
| | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford Ox3 7LJ, UK.
- Department of Gastroenterology, Royal Free Hospital ENETS Centre of Excellence, London NW3 2QG, UK.
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|