1
|
Patel D, Parikh C, Gharavi D, Patil S, Werner T, Simone CB, Alavi A. Radiation-Induced Coronary Artery Disease in Lung and Breast Cancer Patients: Insights from PET Imaging and Long-Term Risk Assessment. PET Clin 2025; 20:231-241. [PMID: 39955159 DOI: 10.1016/j.cpet.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Radiation-induced coronary artery disease (RI-CAD) is a significant cardiovascular complication for cancer survivors treated with thoracic radiation therapy (RT). Despite advances in RT techniques, exposure to the heart during treatment remains a critical factor influencing long-term cardiac outcomes, particularly in patients with breast and lung cancer. RI-CAD develops due to radiation-induced endothelial injury, inflammation, and accelerated atherosclerosis, presenting a unique and aggressive disease profile. This review explores the pathophysiology, risk factors, and diagnostic advancements for RI-CAD, emphasizing the role of PET in improving patient outcomes.
Collapse
Affiliation(s)
- Dev Patel
- Department of Radiology, Hospital of the University of Pennsylvania, PA, USA; Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Chitra Parikh
- Department of Radiology, Hospital of the University of Pennsylvania, PA, USA; Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Daniel Gharavi
- Department of Radiology, Hospital of the University of Pennsylvania, PA, USA; Virginia Commonwealth University, Richmond, VA, USA
| | - Shiv Patil
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles B Simone
- New York Proton Center, 225 East 126th Street, New York, NY 10035, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Toner YC, Prévot G, van Leent MMT, Munitz J, Oosterwijk R, Verschuur AVD, van Elsas Y, Peric V, Maas RJF, Ranzenigo A, Morla-Folch J, Wang W, Umali M, de Dreu A, Fernandes JC, Sullivan NAT, Maier A, Mason C, Reiner T, Fayad ZA, Mulder WJM, Teunissen AJP, Pérez-Medina C. Macrophage PET imaging in mouse models of cardiovascular disease and cancer with an apolipoprotein-inspired radiotracer. NPJ IMAGING 2024; 2:12. [PMID: 38765879 PMCID: PMC11096117 DOI: 10.1038/s44303-024-00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/06/2024] [Indexed: 05/22/2024]
Abstract
Macrophages are key inflammatory mediators in many pathological conditions, including cardiovascular disease (CVD) and cancer, the leading causes of morbidity and mortality worldwide. This makes macrophage burden a valuable diagnostic marker and several strategies to monitor these cells have been reported. However, such strategies are often high-priced, non-specific, invasive, and/or not quantitative. Here, we developed a positron emission tomography (PET) radiotracer based on apolipoprotein A1 (ApoA1), the main protein component of high-density lipoprotein (HDL), which has an inherent affinity for macrophages. We radiolabeled an ApoA1-mimetic peptide (mA1) with zirconium-89 (89Zr) to generate a lipoprotein-avid PET probe (89Zr-mA1). We first characterized 89Zr-mA1's affinity for lipoproteins in vitro by size exclusion chromatography. To study 89Zr-mA1's in vivo behavior and interaction with endogenous lipoproteins, we performed extensive studies in wildtype C57BL/6 and Apoe-/- hypercholesterolemic mice. Subsequently, we used in vivo PET imaging to study macrophages in melanoma and myocardial infarction using mouse models. The tracer's cell specificity was assessed by histology and mass cytometry (CyTOF). Our data show that 89Zr-mA1 associates with lipoproteins in vitro. This is in line with our in vivo experiments, in which we observed longer 89Zr-mA1 circulation times in hypercholesterolemic mice compared to C57BL/6 controls. 89Zr-mA1 displayed a tissue distribution profile similar to ApoA1 and HDL, with high kidney and liver uptake as well as substantial signal in the bone marrow and spleen. The tracer also accumulated in tumors of melanoma-bearing mice and in the ischemic myocardium of infarcted animals. In these sites, CyTOF analyses revealed that natZr-mA1 was predominantly taken up by macrophages. Our results demonstrate that 89Zr-mA1 associates with lipoproteins and hence accumulates in macrophages in vivo. 89Zr-mA1's high uptake in these cells makes it a promising radiotracer for non-invasively and quantitatively studying conditions characterized by marked changes in macrophage burden.
Collapse
Affiliation(s)
- Yohana C. Toner
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geoffrey Prévot
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mandy M. T. van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jazz Munitz
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Roderick Oosterwijk
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anna Vera D. Verschuur
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Yuri van Elsas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vedran Peric
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rianne J. F. Maas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anna Ranzenigo
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Judit Morla-Folch
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - William Wang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Martin Umali
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Anne de Dreu
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jessica Chimene Fernandes
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Nathaniel A. T. Sullivan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alexander Maier
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Cardiology and Angiology, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Mason
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Department of Radiology, Weill Cornell Medical College, New York, NY USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Zahi A. Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Willem J. M. Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abraham J. P. Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Carlos Pérez-Medina
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
3
|
Raynor WY, Borja AJ, Rojulpote C, Høilund-Carlsen PF, Alavi A. 18F-sodium fluoride: An emerging tracer to assess active vascular microcalcification. J Nucl Cardiol 2021; 28:2706-2711. [PMID: 32390112 DOI: 10.1007/s12350-020-02138-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Affiliation(s)
- William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
- Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chaitanya Rojulpote
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Sier VQ, de Vries MR, van der Vorst JR, Vahrmeijer AL, van Kooten C, Cruz LJ, de Geus-Oei LF, Ferreira V, Sier CFM, Alves F, Muthana M. Cell-Based Tracers as Trojan Horses for Image-Guided Surgery. Int J Mol Sci 2021; 22:E755. [PMID: 33451116 PMCID: PMC7828607 DOI: 10.3390/ijms22020755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Surgeons rely almost completely on their own vision and palpation to recognize affected tissues during surgery. Consequently, they are often unable to distinguish between different cells and tissue types. This makes accurate and complete resection cumbersome. Targeted image-guided surgery (IGS) provides a solution by enabling real-time tissue recognition. Most current targeting agents (tracers) consist of antibodies or peptides equipped with a radiolabel for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), magnetic resonance imaging (MRI) labels, or a near-infrared fluorescent (NIRF) dye. These tracers are preoperatively administered to patients, home in on targeted cells or tissues, and are visualized in the operating room via dedicated imaging systems. Instead of using these 'passive' tracers, there are other, more 'active' approaches of probe delivery conceivable by using living cells (macrophages/monocytes, neutrophils, T cells, mesenchymal stromal cells), cell(-derived) fragments (platelets, extracellular vesicles (exosomes)), and microorganisms (bacteria, viruses) or, alternatively, 'humanized' nanoparticles. Compared with current tracers, these active contrast agents might be more efficient for the specific targeting of tumors or other pathological tissues (e.g., atherosclerotic plaques). This review provides an overview of the arsenal of possibilities applicable for the concept of cell-based tracers for IGS.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Cornelis van Kooten
- Department of Nephrology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Luis J. Cruz
- Department of Radiology, Translational Nanomaterials and Imaging Group, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Valerie Ferreira
- Department of Research and Development, UniQure, 1100 DA Amsterdam, The Netherlands;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
- Percuros B.V. Leiden, 2333 CL Leiden, The Netherlands
| | - Frauke Alves
- Translational Molecular Imaging, Clinic of Hematology and Medical Oncology, Institute of Diagnostic and Interventional Radiology, University Medicine Center Göttingen and Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany;
| | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK;
| |
Collapse
|