1
|
Yan Q, Yan X, Yang X, Li S, Song J. The use of PET/MRI in radiotherapy. Insights Imaging 2024; 15:63. [PMID: 38411742 PMCID: PMC10899128 DOI: 10.1186/s13244-024-01627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/21/2024] [Indexed: 02/28/2024] Open
Abstract
Positron emission tomography/magnetic resonance imaging (PET/MRI) is a hybrid imaging technique that quantitatively combines the metabolic and functional data from positron emission tomography (PET) with anatomical and physiological information from MRI. As PET/MRI technology has advanced, its applications in cancer care have expanded. Recent studies have demonstrated that PET/MRI provides unique advantages in the field of radiotherapy and has become invaluable in guiding precision radiotherapy techniques. This review discusses the rationale and clinical evidence supporting the use of PET/MRI for radiation positioning, target delineation, efficacy evaluation, and patient surveillance.Critical relevance statement This article critically assesses the transformative role of PET/MRI in advancing precision radiotherapy, providing essential insights into improved radiation positioning, target delineation, efficacy evaluation, and patient surveillance in clinical radiology practice.Key points• The emergence of PET/MRI will be a key bridge for precise radiotherapy.• PET/MRI has unique advantages in the whole process of radiotherapy.• New tracers and nanoparticle probes will broaden the use of PET/MRI in radiation.• PET/MRI will be utilized more frequently for radiotherapy.
Collapse
Affiliation(s)
- Qi Yan
- Cancer Center, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xia Yan
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Xin Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.
| | - Jianbo Song
- Cancer Center, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China.
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China.
| |
Collapse
|
2
|
Choi CH, Felder J, Lerche C, Shah NJ. MRI Coil Development Strategies for Hybrid MR-PET Systems: A Review. IEEE Rev Biomed Eng 2024; 17:342-350. [PMID: 37015609 DOI: 10.1109/rbme.2022.3227337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simultaneously operating MR-PET systems have the potential to provide synergetic multi-parametric information, and, as such, interest surrounding their use and development is increasing. However, despite the potential advantages offered by fully combined MR-PET systems, implementing this hybrid integration is technically laborious, and any factors degrading the quality of either modality must be circumvented to ensure optimal performance. In order to attain the best possible quality from both systems, most full MR-PET integrations tend to place the shielded PET system inside the MRI system, close to the target volume of the subject. The radiofrequency (RF) coil used in MRI systems is a key factor in determining the quality of the MR images, and, in simultaneous acquisition, it is generally positioned inside the PET system and PET imaging region, potentially resulting in attenuation and artefacts in the PET images. Therefore, when designing hybrid MR-PET systems, it is imperative that consideration be given to the RF coils inside the PET system. In this review, we present current state-of-the-art RF coil designs used for hybrid MR-PET experiments and discuss various design strategies for constructing PET transparent RF coils.
Collapse
|
3
|
Arabi H, Zaidi H. Recent Advances in Positron Emission Tomography/Magnetic Resonance Imaging Technology. Magn Reson Imaging Clin N Am 2023; 31:503-515. [PMID: 37741638 DOI: 10.1016/j.mric.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
More than a decade has passed since the clinical deployment of the first commercial whole-body hybrid PET/MR scanner in the clinic. The major advantages and limitations of this technology have been investigated from technical and medical perspectives. Despite the remarkable advantages associated with hybrid PET/MR imaging, such as reduced radiation dose and fully simultaneous functional and structural imaging, this technology faced major challenges in terms of mutual interference between MRI and PET components, in addition to the complexity of achieving quantitative imaging owing to the intricate MRI-guided attenuation correction in PET/MRI. In this review, the latest technical developments in PET/MRI technology as well as the state-of-the-art solutions to the major challenges of quantitative PET/MR imaging are discussed.
Collapse
Affiliation(s)
- Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland; Geneva University Neurocenter, Geneva University, Geneva CH-1205, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense 500, Denmark.
| |
Collapse
|
4
|
Krokos G, MacKewn J, Dunn J, Marsden P. A review of PET attenuation correction methods for PET-MR. EJNMMI Phys 2023; 10:52. [PMID: 37695384 PMCID: PMC10495310 DOI: 10.1186/s40658-023-00569-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Despite being thirteen years since the installation of the first PET-MR system, the scanners constitute a very small proportion of the total hybrid PET systems installed. This is in stark contrast to the rapid expansion of the PET-CT scanner, which quickly established its importance in patient diagnosis within a similar timeframe. One of the main hurdles is the development of an accurate, reproducible and easy-to-use method for attenuation correction. Quantitative discrepancies in PET images between the manufacturer-provided MR methods and the more established CT- or transmission-based attenuation correction methods have led the scientific community in a continuous effort to develop a robust and accurate alternative. These can be divided into four broad categories: (i) MR-based, (ii) emission-based, (iii) atlas-based and the (iv) machine learning-based attenuation correction, which is rapidly gaining momentum. The first is based on segmenting the MR images in various tissues and allocating a predefined attenuation coefficient for each tissue. Emission-based attenuation correction methods aim in utilising the PET emission data by simultaneously reconstructing the radioactivity distribution and the attenuation image. Atlas-based attenuation correction methods aim to predict a CT or transmission image given an MR image of a new patient, by using databases containing CT or transmission images from the general population. Finally, in machine learning methods, a model that could predict the required image given the acquired MR or non-attenuation-corrected PET image is developed by exploiting the underlying features of the images. Deep learning methods are the dominant approach in this category. Compared to the more traditional machine learning, which uses structured data for building a model, deep learning makes direct use of the acquired images to identify underlying features. This up-to-date review goes through the literature of attenuation correction approaches in PET-MR after categorising them. The various approaches in each category are described and discussed. After exploring each category separately, a general overview is given of the current status and potential future approaches along with a comparison of the four outlined categories.
Collapse
Affiliation(s)
- Georgios Krokos
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Jane MacKewn
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Joel Dunn
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Paul Marsden
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
5
|
Aizaz M, van der Pol JAJ, Wierts R, Zwart H, van der Werf AJ, Wildberger JE, Bucerius JA, Moonen RPM, Kooi ME. Evaluation of a Dedicated Radiofrequency Carotid PET/MRI Coil. J Clin Med 2022; 11:jcm11092569. [PMID: 35566694 PMCID: PMC9101928 DOI: 10.3390/jcm11092569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Carotid radiofrequency coils inside a PET/MRI system can result in PET quantification errors. We compared the performance of a dedicated PET/MRI carotid coil against a coil for MRI-only use. An 18F-fluorodeoxyglucose (18F-FDG) phantom was scanned without and with an MRI-only coil and with the PET/MRI coil. The decay-corrected normalized activity was compared for the different coil configurations. Eighteen patients were scanned with the three coil configurations. The maximal standardized uptake values (SUVmax) and signal-to-noise ratios (SNR) were calculated. Repeated measures ANOVA was performed to assess the differences in SUVmax and SNR between the coil configurations. In the phantom study, the PET/MRI coil demonstrated a slight decrease (<5%), while the MRI-only coil showed a substantial decrease (up to 10%) in normalized activity at the position of coil elements compared to no dedicated coil configuration. In the patient study, the SUVmax values for both no surface coil (3.59 ± 0.15) and PET/MRI coil (3.54 ± 0.15) were significantly higher (p = 0.03 and p = 0.04, respectively) as compared to the MRI-only coil (3.28 ± 0.16). No significant difference was observed between PET/MRI and no surface coil (p = 1.0). The SNR values for both PET/MRI (7.31 ± 0.44) and MRI-only (7.62 ± 0.42) configurations demonstrated significantly higher (p < 0.001) SNR values as compared to the no surface coil (3.78 ± 0.22), while no significant difference was observed in SNR between the PET/MRI and MRI-only coil (p = 1.0). This study demonstrated that the PET/MRI coil can be used for PET imaging without requiring attenuation correction while acquiring high-resolution MR images.
Collapse
Affiliation(s)
- Mueez Aizaz
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands; (M.A.); (J.A.J.v.d.P.); (R.W.); (J.E.W.); (J.A.B.); (R.P.M.M.)
- CARIM School for Cardiovascular Diseases, 6229 ER Maastricht, The Netherlands
| | - Jochem A. J. van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands; (M.A.); (J.A.J.v.d.P.); (R.W.); (J.E.W.); (J.A.B.); (R.P.M.M.)
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands; (M.A.); (J.A.J.v.d.P.); (R.W.); (J.E.W.); (J.A.B.); (R.P.M.M.)
| | - Hans Zwart
- Machnet B.V, 9301 LK Roden, The Netherlands; (H.Z.); (A.J.v.d.W.)
| | | | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands; (M.A.); (J.A.J.v.d.P.); (R.W.); (J.E.W.); (J.A.B.); (R.P.M.M.)
- CARIM School for Cardiovascular Diseases, 6229 ER Maastricht, The Netherlands
| | - Jan A. Bucerius
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands; (M.A.); (J.A.J.v.d.P.); (R.W.); (J.E.W.); (J.A.B.); (R.P.M.M.)
- CARIM School for Cardiovascular Diseases, 6229 ER Maastricht, The Netherlands
- Department of Nuclear Medicine, University Medicine Goettingen, Georg-August-University Goettingen, 37073 Goettingen, Germany
| | - Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands; (M.A.); (J.A.J.v.d.P.); (R.W.); (J.E.W.); (J.A.B.); (R.P.M.M.)
- CARIM School for Cardiovascular Diseases, 6229 ER Maastricht, The Netherlands
| | - Marianne Eline Kooi
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands; (M.A.); (J.A.J.v.d.P.); (R.W.); (J.E.W.); (J.A.B.); (R.P.M.M.)
- CARIM School for Cardiovascular Diseases, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-387-4910
| |
Collapse
|
6
|
Choi CH, Hong SM, Felder J, Tellmann L, Scheins J, Kops ER, Lerche C, Shah NJ. A Novel J-Shape Antenna Array for Simultaneous MR-PET or MR-SPECT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1104-1113. [PMID: 34860648 DOI: 10.1109/tmi.2021.3132576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Simultaneous MR-PET/-SPECT is an emerging technology that capitalises on the invaluable advantages of both modalities, allowing access to numerous sensitive tracers and superior soft-tissue contrast alongside versatile functional imaging capabilities. However, to optimise these capabilities, concurrent acquisitions require the MRI antenna located inside the PET/SPECT field-of-view to be operated without compromising any aspects of system performance or image quality compared to the stand-alone instrumentation. Here, we report a novel gamma-radiation-transparent antenna concept. The end-fed J-shape antenna is particularly adept for hybrid ultra-high field MR-PET/-SPECT applications as it enables all highly attenuating materials to be placed outside the imaging field-of-view. Furthermore, this unique configuration also provides advantages in stand-alone MR applications by reducing the amount of coupling between the cables and the antenna elements, and by lowering the potential specific absorption rate burden. The use of this new design was experimentally verified according to the important features for both ultra-high field MRI and the 511 keV transmission scan. The reconstructed attenuation maps evidently showed much lower attenuation ( ∼ 15 %) for the proposed array when compared to the conventional dipole antenna array since there were no high-density components. In MR, it was observed that the signal-to-noise ratio from the whole volume obtained using the proposed array was comparable to that acquired by the conventional array which was also in agreement with the simulation results. The unique feature, J-shape array, would enable simultaneous MR-PET/-SPECT experiments to be conducted without unduly compromising any aspects of system performance and image quality compared to the stand-alone instrumentation.
Collapse
|
7
|
Lindemann ME, Oehmigen M, Lanz T, Grafe H, Bruckmann NM, Umutlu L, Quick HH. Evaluation of improved CT‐based hardware attenuation correction in PET/MRI: Application to a 16‐channel RF breast coil. Med Phys 2022; 49:2279-2294. [DOI: 10.1002/mp.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Maike E. Lindemann
- High‐Field and Hybrid MR Imaging University Hospital Essen University Duisburg‐Essen Essen Germany
| | - Mark Oehmigen
- High‐Field and Hybrid MR Imaging University Hospital Essen University Duisburg‐Essen Essen Germany
| | | | - Hong Grafe
- Department of Nuclear Medicine University Hospital Essen University Duisburg‐Essen Essen Germany
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology University Hospital Duesseldorf University Duesseldorf Duesseldorf Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Harald H. Quick
- High‐Field and Hybrid MR Imaging University Hospital Essen University Duisburg‐Essen Essen Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging University Duisburg‐Essen Essen Germany
| |
Collapse
|
8
|
Lindemann ME, Gratz M, Blumhagen JO, Jakoby B, Quick HH. MR-based truncation correction using an advanced HUGE method to improve attenuation correction in PET/MR imaging of obese patients. Med Phys 2022; 49:865-877. [PMID: 35014697 DOI: 10.1002/mp.15446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Truncation artifacts in the periphery of the magnetic resonance (MR) field-of-view (FOV) and thus, in the MR-based attenuation correction (AC) map, may hamper accurate positron emission tomography (PET) quantification in whole-body PET/MR, which is especially problematic in patients with obesity with overall large body dimensions. Therefore, an advanced truncation correction (TC) method to extend the conventional MR FOV is needed. METHODS The extent of MR-based AC-map truncations in obese patients was determined in a data set including n = 10 patients that underwent whole-body PET/MR exams. Patient inclusion criteria were defined as BMI > 30 kg/m2 and body weight > 100 kg. Truncations in PET/MR patients with obesity were quantified comparing the MR-based AC-map volume to segmented non-AC PET data, serving as the reference body volume without truncations to demonstrate the need of improved TC. The new method implemented in this study, termed "advanced HUGE", was modified and extended from the original HUGE method by Blumhagen et al. in order to provide improved TC across the entire axial MR FOV and to unlock new clinical applications of PET/MR. Advanced HUGE was then systematically tested in PET/MR NEMA phantom measurements. Relative differences between computed tomography (CT) AC PET data of the phantom setup (reference) and MR-based Dixon AC, respectively Dixon + advanced HUGE AC, were calculated. The applicability of the method for advanced TC was then demonstrated in first MR-based measurements in healthy volunteers. RESULTS It was found that the MR-based AC maps of obese patients often reveal truncations in anterior-posterior direction. Especially the abdominal region could benefit from improved TC, where maximal relative differences in the AC-map volume up to -17 % were calculated. Applying advanced HUGE to improve the MR-based AC in PET/MR, PET quantification errors in the large-volume phantom setup could be considerably reduced from average -18.6 % (Dixon AC) to 4.6 % compared to the CT AC reference. Volunteer measurements demonstrate that formerly missing AC-map volume in the Dixon-VIBE AC-map could be added due to advanced HUGE in anterior-posterior direction and thus, potentially improves AC in PET/MR. CONCLUSIONS The advanced HUGE method for truncation correction considerably reduces truncations in anterior-posterior direction demonstrated in phantom measurements and healthy volunteers and thus, further improves MR-based AC in PET/MR imaging. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcel Gratz
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | | | | | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Lindemann ME, Oehmigen M, Lanz T, Grafe H, Bruckmann NM, Umutlu L, Quick HH. CAD-based hardware attenuation correction in PET/MRI: First methodical investigations and clinical application of a 16-channel RF breast coil. Med Phys 2021; 48:6696-6709. [PMID: 34655079 DOI: 10.1002/mp.15284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Aim of this study was to evaluate the use of computer-aided design (CAD) models for attenuation correction (AC) of hardware components in positron emission tomography/magnetic resonance (PET/MR) imaging. METHODS The technical feasibility and quantitative impact of CAD-AC compared to computer tomography (CT)-based AC (reference) was investigated on a modular phantom consisting of 19 different material samples (plastics and metals arranged around a cylindrical emission phantom) typically used in phantoms, patient tables, and radiofrequency (RF) coils in PET/MR. The clinical applicability of the CAD-AC method was then evaluated on a 16-channel RF breast coil in a PET/MR patient study. The RF breast coil in this study was specifically designed PET compatible. Using this RF breast coil, the impact on clinical PET/MR breast imaging was systematically evaluated in breast phantom measurements and, furthermore, in n = 10 PET/MR patients with breast cancer. PET data were reconstructed three times: (1) no AC (NAC), (2) established CT-AC, and (3) CAD-AC. For both phantom measurements, a scan without attenuating hardware components (material probes or RF breast coil) was acquired serving as reference. Relative differences in PET data were calculated for all experiments. RESULTS In all phantom and patient measurements, significant gains in PET signal compared to NAC data were measurable with CT and CAD-AC. In initial phantom experiments, mean relative differences of -0.2% for CT-AC and 0.2% for CAD-AC were calculated compared to reference measurements without the material probes. The application to a RF breast coil depicts that CAD-AC results in significant gains compared to NAC data (10%) and a slight underestimation in PET signal of -1.3% in comparison to the no-coil reference measurement. In the patient study, a total of 15 congruent lesions in all 10 patients with a mean relative difference of 14% (CT and CAD-AC) in standardized uptake value compared to NAC data could be detected. CONCLUSIONS To ensure best possible PET image quality and accurate PET quantification in PET/MR imaging, the AC of hardware components such as phantoms and RF coils is important. In initial phantom experiments and in clinical application to an RF breast coil, it was found that CAD-based AC results in significant gains in PET signal compared to NAC data and provides comparably good results to the established method of CT-based AC.
Collapse
Affiliation(s)
- Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mark Oehmigen
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Hong Grafe
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, University Hospital Duesseldorf, University of Duesseldorf, Duesseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Ahangari S, Hansen NL, Olin AB, Nøttrup TJ, Ryssel H, Berthelsen AK, Löfgren J, Loft A, Vogelius IR, Schnack T, Jakoby B, Kjaer A, Andersen FL, Fischer BM, Hansen AE. Toward PET/MRI as one-stop shop for radiotherapy planning in cervical cancer patients. Acta Oncol 2021; 60:1045-1053. [PMID: 34107847 DOI: 10.1080/0284186x.2021.1936164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radiotherapy (RT) planning for cervical cancer patients entails the acquisition of both Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Further, molecular imaging by Positron Emission Tomography (PET) could contribute to target volume delineation as well as treatment response monitoring. The objective of this study was to investigate the feasibility of a PET/MRI-only RT planning workflow of patients with cervical cancer. This includes attenuation correction (AC) of MRI hardware and dedicated positioning equipment as well as evaluating MRI-derived synthetic CT (sCT) of the pelvic region for positioning verification and dose calculation to enable a PET/MRI-only setup. MATERIAL AND METHODS 16 patients underwent PET/MRI using a dedicated RT setup after the routine CT (or PET/CT), including eight pilot patients and eight cervical cancer patients who were subsequently referred for RT. Data from 18 patients with gynecological cancer were added for training a deep convolutional neural network to generate sCT from Dixon MRI. The mean absolute difference between the dose distributions calculated on sCT and a reference CT was measured in the RT target volume and organs at risk. PET AC by sCT and a reference CT were compared in the tumor volume. RESULTS All patients completed the examination. sCT was inferred for each patient in less than 5 s. The dosimetric analysis of the sCT-based dose planning showed a mean absolute error (MAE) of 0.17 ± 0.12 Gy inside the planning target volumes (PTV). PET images reconstructed with sCT and CT had no significant difference in quantification for all patients. CONCLUSIONS These results suggest that multiparametric PET/MRI can be successfully integrated as a one-stop-shop in the RT workflow of patients with cervical cancer.
Collapse
Affiliation(s)
- Sahar Ahangari
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Naja Liv Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Beck Olin
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Trine Jakobi Nøttrup
- Department of Oncology, Section of Radiotherapy, University of Copenhagen, Rigshospitalet, Denmark
| | - Heidi Ryssel
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne Kiil Berthelsen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Johan Löfgren
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Richter Vogelius
- Department of Oncology, Section of Radiotherapy, University of Copenhagen, Rigshospitalet, Denmark
| | - Tine Schnack
- Department of Gynecology, University of Copenhagen, Copenhagen, Denmark
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | | | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The PET Centre, School of Biomedical Engineering and Imaging Sciences, Kings College London, St Thomas’ Hospital, London, UK
| | - Adam Espe Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Diagnostic Radiology, Rigshospitalet, University of Copenhagen, Denmark Copenhagen
| |
Collapse
|
11
|
Lee JS. A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3009269] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Sousa JM, Appel L, Merida I, Heckemann RA, Costes N, Engström M, Papadimitriou S, Nyholm D, Ahlström H, Hammers A, Lubberink M. Accuracy and precision of zero-echo-time, single- and multi-atlas attenuation correction for dynamic [ 11C]PE2I PET-MR brain imaging. EJNMMI Phys 2020; 7:77. [PMID: 33369700 PMCID: PMC7769756 DOI: 10.1186/s40658-020-00347-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A valid photon attenuation correction (AC) method is instrumental for obtaining quantitatively correct PET images. Integrated PET/MR systems provide no direct information on attenuation, and novel methods for MR-based AC (MRAC) are still under investigation. Evaluations of various AC methods have mainly focused on static brain PET acquisitions. In this study, we determined the validity of three MRAC methods in a dynamic PET/MR study of the brain. METHODS Nine participants underwent dynamic brain PET/MR scanning using the dopamine transporter radioligand [11C]PE2I. Three MRAC methods were evaluated: single-atlas (Atlas), multi-atlas (MaxProb) and zero-echo-time (ZTE). The 68Ge-transmission data from a previous stand-alone PET scan was used as reference method. Parametric relative delivery (R1) images and binding potential (BPND) maps were generated using cerebellar grey matter as reference region. Evaluation was based on bias in MRAC maps, accuracy and precision of [11C]PE2I BPND and R1 estimates, and [11C]PE2I time-activity curves. BPND was examined for striatal regions and R1 in clusters of regions across the brain. RESULTS For BPND, ZTE-MRAC showed the highest accuracy (bias < 2%) in striatal regions. Atlas-MRAC exhibited a significant bias in caudate nucleus (- 12%) while MaxProb-MRAC revealed a substantial, non-significant bias in the putamen (9%). R1 estimates had a marginal bias for all MRAC methods (- 1.0-3.2%). MaxProb-MRAC showed the largest intersubject variability for both R1 and BPND. Standardized uptake values (SUV) of striatal regions displayed the strongest average bias for ZTE-MRAC (~ 10%), although constant over time and with the smallest intersubject variability. Atlas-MRAC had highest variation in bias over time (+10 to - 10%), followed by MaxProb-MRAC (+5 to - 5%), but MaxProb showed the lowest mean bias. For the cerebellum, MaxProb-MRAC showed the highest variability while bias was constant over time for Atlas- and ZTE-MRAC. CONCLUSIONS Both Maxprob- and ZTE-MRAC performed better than Atlas-MRAC when using a 68Ge transmission scan as reference method. Overall, ZTE-MRAC showed the highest precision and accuracy in outcome parameters of dynamic [11C]PE2I PET analysis with use of kinetic modelling.
Collapse
Affiliation(s)
- João M Sousa
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Lieuwe Appel
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rolf A Heckemann
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Dag Nyholm
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
- Department of Neurosciences, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, King's College, London, UK
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
13
|
Abstract
Attenuation correction has been one of the main methodological challenges in the integrated positron emission tomography and magnetic resonance imaging (PET/MRI) field. As standard transmission or computed tomography approaches are not available in integrated PET/MRI scanners, MR-based attenuation correction approaches had to be developed. Aspects that have to be considered for implementing accurate methods include the need to account for attenuation in bone tissue, normal and pathological lung and the MR hardware present in the PET field-of-view, to reduce the impact of subject motion, to minimize truncation and susceptibility artifacts, and to address issues related to the data acquisition and processing both on the PET and MRI sides. The standard MR-based attenuation correction techniques implemented by the PET/MRI equipment manufacturers and their impact on clinical and research PET data interpretation and quantification are first discussed. Next, the more advanced methods, including the latest generation deep learning-based approaches that have been proposed for further minimizing the attenuation correction related bias are described. Finally, a future perspective focused on the needed developments in the field is given.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| |
Collapse
|
14
|
Deller TW, Mathew NK, Hurley SA, Bobb CM, McMillan AB. PET Image Quality Improvement for Simultaneous PET/MRI with a Lightweight MRI Surface Coil. Radiology 2020; 298:166-172. [PMID: 33141004 DOI: 10.1148/radiol.2020200967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background During simultaneous PET/MRI, flexible MRI surface coils that lay on the patient are often omitted from PET attenuation correction processing, leading to quantification bias in PET images. Purpose To identify potential PET image quality improvement by using a recently developed lightweight MRI coil technology for the anterior array (AA) surface coil in both a phantom and in vivo study. Materials and Methods A phantom study and a prospective in vivo study were performed with a PET/CT scanner under three conditions: (a) no MRI surface coil (standard of reference), (b) traditional AA coil, and (c) lightweight AA coil. AA coils were not used in attenuation correction processing to emulate clinical PET/MRI. For the phantom study, PET images were reconstructed with and without time of flight (TOF) to assess quantification accuracy and uniformity. The in vivo study consisted of 10 participants (mean age, 66 years ± 10 [standard deviation]; six men) referred for a PET/CT oncologic examination who had undergone imaging between October 2019 and February 2020. Assessment of image quantification bias (defined as the standard error of the mean values) was conducted by comparing mean liver region of interest standardized uptake values with the no-coil standard of reference. A Wilcoxon signed-rank test was used to establish significance. Results For TOF and non-TOF, respectively, the phantom study revealed a mean PET quantification bias of -9.0% and -8.6% with the traditional AA coil and a mean PET quantification bias of -4.3% and -4.0% with the lightweight AA coil. The coefficients of variation reduced from 4.3% and 6.2% with the traditional AA coil to 2.1% and 2.7% with the lightweight AA coil, which demonstrated a homogeneity benefit from the lightweight coil that was greater with, versus without, TOF reconstruction. For the in vivo study, the mean liver standardized uptake value error was -5.9% with the traditional AA coil (P = .002 vs no coil) and -2.4% with the lightweight AA coil (P = .004 vs no coil). Conclusion The lightweight anterior array coil reduced PET image quantification bias by more than 50% compared with the traditional coil. Using the lightweight coil and performing time of flight-based reconstruction each reduced the variation of error. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Timothy W Deller
- From the Departments of PET/MR Engineering (T.W.D.) and Clinical Development (C.M.B.), GE Healthcare, 3200 N Grandview Blvd, Waukesha, WI 53188; and Department of Radiology, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, Wis (N.K.M., S.A.H., A.B.M.)
| | - Nicholas K Mathew
- From the Departments of PET/MR Engineering (T.W.D.) and Clinical Development (C.M.B.), GE Healthcare, 3200 N Grandview Blvd, Waukesha, WI 53188; and Department of Radiology, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, Wis (N.K.M., S.A.H., A.B.M.)
| | - Samuel A Hurley
- From the Departments of PET/MR Engineering (T.W.D.) and Clinical Development (C.M.B.), GE Healthcare, 3200 N Grandview Blvd, Waukesha, WI 53188; and Department of Radiology, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, Wis (N.K.M., S.A.H., A.B.M.)
| | - Chad M Bobb
- From the Departments of PET/MR Engineering (T.W.D.) and Clinical Development (C.M.B.), GE Healthcare, 3200 N Grandview Blvd, Waukesha, WI 53188; and Department of Radiology, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, Wis (N.K.M., S.A.H., A.B.M.)
| | - Alan B McMillan
- From the Departments of PET/MR Engineering (T.W.D.) and Clinical Development (C.M.B.), GE Healthcare, 3200 N Grandview Blvd, Waukesha, WI 53188; and Department of Radiology, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, Wis (N.K.M., S.A.H., A.B.M.)
| |
Collapse
|
15
|
Farag A, Thompson RT, Thiessen JD, Biernaski H, Prato FS, Théberge J. Evaluation of 511 keV photon attenuation by a novel 32-channel phased array prospectively designed for cardiovascular hybrid PET/MRI imaging. Eur J Hybrid Imaging 2020; 4:7. [PMID: 32626841 PMCID: PMC7324084 DOI: 10.1186/s41824-020-00076-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Simultaneous cardiovascular imaging with positron emission tomography (PET) and magnetic resonance imaging (MRI) requires tools such as radio frequency (RF) phased arrays to achieve high temporal and spatial resolution in the MRI, as well as accurate quantification of PET. Today, high-density phased arrays (> 16 channels) used for cardiovascular PET/MRI are not designed to achieve low PET attenuation, and correcting the PET attenuation they cause requires off-line reconstruction, extra time and resources. PURPOSE Motivated by previous work assessing the MRI performance of a novel prospectively designed 32-channel phased array, this study assessed the PET image quality with this array in place. Guided by NEMA standards, PET performance was measured using global PET counts, regional background variation (BV), contrast recovery (CR) and contrast-to-noise ratio (CNR) for both the novel array and standard arrays (mMR 12-channel and MRI 32-channel). Nonattenuation-corrected (NAC) data from all arrays (and each part of the array) were processed and compared to no-array, and relative percentage difference (RPD) of the global means was estimated and reported for each part of the arrays. Attenuation correction (AC) of PET images (water in the phantom) using two approaches, MR-based AC map (MRAC) and dual-energy CT-based map (DCTAC), was performed, and RPD compared for each part of the arrays. Percent mean attenuation within regions of interests of the phantom images from each array were compared using a two-way analysis of variance (ANOVA). RESULTS The NAC data of the anterior part of the novel array recorded the least PET attenuation (≤ 2%); while the full novel array (anterior and posterior together) AC data, produced by MRAC and DCTAC approaches, recorded attenuation of 1.5 ± 2.9% and 0.0 ± 2.5%, respectively. The novel array PET count loss was significantly lower (p = 0.001) than those caused by the standard arrays. CONCLUSIONS Results of this novel 32-channel cardiac array PET performance evaluation, together with its previously reported MRI performance assessment, suggest the novel array to be a strong alternative to the standard arrays currently used for cardiovascular hybrid PET/MRI imaging. It enables accurate PET quantification and high-temporal and spatial resolution for MR imaging.
Collapse
Affiliation(s)
- Adam Farag
- Imaging Division, Lawson Health Research Institute, London, Ontario Canada
- Department of Medical Biophysics, Western University, London, Ontario Canada
| | - R. Terry Thompson
- Imaging Division, Lawson Health Research Institute, London, Ontario Canada
- Department of Medical Biophysics, Western University, London, Ontario Canada
| | - Jonathan D. Thiessen
- Imaging Division, Lawson Health Research Institute, London, Ontario Canada
- Department of Medical Biophysics, Western University, London, Ontario Canada
- Department of Medical Imaging, Western University, London, Ontario Canada
| | - Heather Biernaski
- Imaging Division, Lawson Health Research Institute, London, Ontario Canada
| | - Frank S. Prato
- Imaging Division, Lawson Health Research Institute, London, Ontario Canada
- Department of Medical Biophysics, Western University, London, Ontario Canada
- Department of Medical Imaging, Western University, London, Ontario Canada
- Diagnostic Imaging, St. Joseph’s Health Care, London, Ontario Canada
| | - Jean Théberge
- Imaging Division, Lawson Health Research Institute, London, Ontario Canada
- Department of Medical Biophysics, Western University, London, Ontario Canada
- Department of Medical Imaging, Western University, London, Ontario Canada
- Diagnostic Imaging, St. Joseph’s Health Care, London, Ontario Canada
| |
Collapse
|
16
|
Clinical Use of Integrated Positron Emission Tomography-Magnetic Resonance Imaging for Dementia Patients. Top Magn Reson Imaging 2020; 28:299-310. [PMID: 31794502 DOI: 10.1097/rmr.0000000000000225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combining magnetic resonance imaging (MRI) with 2-deoxy-2-F-fluoro-D-glucose positron emission tomography (FDG-PET) data improve the imaging accuracy for detection of Alzheimer disease and related dementias. Integrated FDG-PET-MRI is a recent technical innovation that allows both imaging modalities to be obtained simultaneously from individual patients with cognitive impairment. This report describes the practical benefits and challenges of using integrated FDG-PET-MRI to support the clinical diagnosis of various dementias. Over the past 7 years, we have performed integrated FDG-PET-MRI on >1500 patients with possible cognitive impairment or dementia. The FDG-PET and MRI protocols are the same as current conventions, but are obtained simultaneously over 25 minutes. An additional Dixon MRI sequence with superimposed bone atlas is used to calculate PET attenuation correction. A single radiologist interprets all imaging data and generates 1 report. The most common positive finding is concordant temporoparietal volume loss and FDG hypometabolism that suggests increased risk for underlying Alzheimer disease. Lobar-specific atrophy and FDG hypometabolism patterns that may be subtle, asymmetric, and focal also are more easily recognized using combined FDG-PET and MRI, thereby improving detection of other neurodegeneration conditions such as primary progressive aphasias and frontotemporal degeneration. Integrated PET-MRI has many practical benefits to individual patients, referrers, and interpreting radiologists. The integrated PET-MRI system requires several modifications to standard imaging center workflows, and requires training individual radiologists to interpret both modalities in conjunction. Reading MRI and FDG-PET together increases imaging diagnostic yield for individual patients; however, both modalities have limitations in specificity.
Collapse
|
17
|
Sgard B, Khalifé M, Bouchut A, Fernandez B, Soret M, Giron A, Zaslavsky C, Delso G, Habert MO, Kas A. ZTE MR-based attenuation correction in brain FDG-PET/MR: performance in patients with cognitive impairment. Eur Radiol 2019; 30:1770-1779. [DOI: 10.1007/s00330-019-06514-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/28/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
18
|
Hulsen DJW, Geurts J, Arts JJ, Loeffen D, Mitea C, Vöö SA. Hybrid FDG-PET/MR imaging of chronic osteomyelitis: a prospective case series. Eur J Hybrid Imaging 2019; 3:7. [PMID: 34191175 PMCID: PMC8218079 DOI: 10.1186/s41824-019-0055-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) and 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography paired with computed tomography (PET/CT) are two commonly used imaging modalities in the complicated diagnostic workup of osteomyelitis. Diagnosis using these modalities relies on, respectively, anatomical (MRI) and metabolic (PET) signs. With hybrid PET/MRI being recently available, our goal is to qualitatively compare hybrid FDG PET/MRI to FDG PET/CT in the diagnosis and operative planning of chronic osteomyelitis. Methods Five patients with suspected chronic osteomyelitis in an extremity underwent an 18F-FDG single-injection/dual-imaging protocol with hybrid PET/CT and hybrid PET/MR. Images and clinical features were evaluated using a standardized assessment method. Standardized uptake value (SUV) measurements were performed on all images. Concordant and discordant findings between PET/MRI and PET/CT were analysed. Results The consensus diagnoses based on PET/MRI and PET/CT images were identical for all five patients. One discrepancy between PET/MRI and PET/CT was found in the assessment of the features in one patient. PET signal intensities and target-to-background ratios were on average highest for PET/MRI. On PET/MRI, the location of infection based on FDG uptake could clearly be correlated with certain soft tissue structures (oedema, fluid collection, or muscle), which is paramount for surgical planning. Conclusions In the presented cases, FDG PET/MRI led to the same diagnosis and provided at least the same diagnostic information as PET/CT. PET/MRI was able to provide additional soft-tissue information for the physician planning treatment. Because of this, we suggest that PET/MRI could be used for osteomyelitis diagnosis and treatment planning.
Collapse
Affiliation(s)
- Dennis Jan Willem Hulsen
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands. .,MICT Department, Jeroen Bosch Ziekenhuis, 's-Hertogenbosch, The Netherlands.
| | - Jan Geurts
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jacobus J Arts
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daan Loeffen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stefan Adrian Vöö
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.,Institute of Nuclear Medicine, University College Hospital, London, UK
| |
Collapse
|
19
|
Langer NH, Langer SW, Johannesen HH, Hansen AE, Costa J, Klausen TL, Forman J, Olin A, Rasmussen SH, Sørensen JB, Löfgren J, Kjær A, Fischer BM. Very Early Response Evaluation by PET/MR in Patients with Lung Cancer-Timing and Feasibility. Diagnostics (Basel) 2019; 9:diagnostics9010035. [PMID: 30917539 PMCID: PMC6468790 DOI: 10.3390/diagnostics9010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: With the increasing number of therapy options available for patients with lung cancer, early response evaluation is needed. We performed this pilot study to assess the feasibility of early, repeated Positron emission tomography-magnetic resonance (PET/MR), the impact of timing and the capability for response prediction in lung tumors during chemotherapy. Methods: Patients with stage IV non-small cell lung cancer referred for chemotherapy were prospectively recruited. Fluorine-18-Fluorodeoxyglucose(18F-FDG)-PET/MR scans were performed prior to, during and after the first or second cycle of chemotherapy. Primary tumors were defined on all scans and size, FDG-uptake and apparent diffusion coefficient (ADC) were measured. Early response was described over time and a Standard Linear Mixed Model was applied to analyze changes over time. Results: 45 FDG-PET/MR scans were performed in 11 patients. Whereas the overall changes measured by ADC did not change significantly, there was an overall significant decrease in FDG-uptake from pre to post treatment scans. There was no difference in the FDG-uptake measured 1 or 3 weeks after therapy, but uptake measured 2 weeks after therapy differed from measurements at week 3. Changes measured in patients scanned during the first treatment cycle appeared more pronounced than during the second cycle. Conclusions: This pilot study indicates that response evaluation shortly after initiation of chemotherapy appears concordant with later evaluation and probably more reliable than evaluation midway between cycles. Responses during or after the first cycle of chemotherapy rather than during subsequent cycles are likely to be more readily measured.
Collapse
Affiliation(s)
- Natasha Hemicke Langer
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Seppo W Langer
- Dept. of Oncology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Helle Hjorth Johannesen
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Adam Espe Hansen
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Junia Costa
- Dept. of Radiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Thomas Levin Klausen
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Julie Forman
- Section of Biostatistics, Dept. of Public Health, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Anders Olin
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Sine Hvid Rasmussen
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Jens Benn Sørensen
- Dept. of Oncology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Johan Löfgren
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Andreas Kjær
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Barbara Malene Fischer
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- PET Centre, School of Biomedical Engineering and Imaging Sciences, Kings College Hospital, Guy's & St Thomas Hospital, SE1 9RT London, UK.
| |
Collapse
|
20
|
Abstract
OBJECTIVE The purpose of this article is to provide an update on clinical PET/MRI, including current and developing clinical indications and technical developments. CONCLUSION PET/MRI is evolving rapidly, transitioning from a predominant research focus to exciting clinical practice. Key technical obstacles have been overcome, and further technical advances promise to herald significant advancements in image quality. Further optimization of protocols to address challenges posed by this hybrid modality will ensure the long-term success of PET/MRI.
Collapse
|
21
|
Mannheim JG, Schmid AM, Schwenck J, Katiyar P, Herfert K, Pichler BJ, Disselhorst JA. PET/MRI Hybrid Systems. Semin Nucl Med 2018; 48:332-347. [PMID: 29852943 DOI: 10.1053/j.semnuclmed.2018.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, the combination of PET and MRI in one system has proven to be highly successful in basic preclinical research, as well as in clinical research. Nowadays, PET/MRI systems are well established in preclinical imaging and are progressing into clinical applications to provide further insights into specific diseases, therapeutic assessments, and biological pathways. Certain challenges in terms of hardware had to be resolved concurrently with the development of new techniques to be able to reach the full potential of both combined techniques. This review provides an overview of these challenges and describes the opportunities that simultaneous PET/MRI systems can exploit in comparison with stand-alone or other combined hybrid systems. New approaches were developed for simultaneous PET/MRI systems to correct for attenuation of 511 keV photons because MRI does not provide direct information on gamma photon attenuation properties. Furthermore, new algorithms to correct for motion were developed, because MRI can accurately detect motion with high temporal resolution. The additional information gained by the MRI can be employed to correct for partial volume effects as well. The development of new detector designs in combination with fast-decaying scintillator crystal materials enabled time-of-flight detection and incorporation in the reconstruction algorithms. Furthermore, this review lists the currently commercially available systems both for preclinical and clinical imaging and provides an overview of applications in both fields. In this regard, special emphasis has been placed on data analysis and the potential for both modalities to evolve with advanced image analysis tools, such as cluster analysis and machine learning.
Collapse
Affiliation(s)
- Julia G Mannheim
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas M Schmid
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Prateek Katiyar
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Jonathan A Disselhorst
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
22
|
Lerche CW, Kaltsas T, Caldeira L, Scheins J, Rota Kops E, Tellmann L, Pietrzyk U, Herzog H, Shah NJ. PET attenuation correction for rigid MR Tx/Rx coils from 176Lu background activity. Phys Med Biol 2018; 63:035039. [PMID: 29328049 DOI: 10.1088/1361-6560/aaa72a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One challenge for PET-MR hybrid imaging is the correction for attenuation of the 511 keV annihilation radiation by the required RF transmit and/or RF receive coils. Although there are strategies for building PET transparent Tx/Rx coils, such optimised coils still cause significant attenuation of the annihilation radiation leading to artefacts and biases in the reconstructed activity concentrations. We present a straightforward method to measure the attenuation of Tx/Rx coils in simultaneous MR-PET imaging based on the natural 176Lu background contained in the scintillator of the PET detector without the requirement of an external CT scanner or PET scanner with transmission source. The method was evaluated on a prototype 3T MR-BrainPET produced by Siemens Healthcare GmbH, both with phantom studies and with true emission images from patient/volunteer examinations. Furthermore, the count rate stability of the PET scanner and the x-ray properties of the Tx/Rx head coil were investigated. Even without energy extrapolation from the two dominant γ energies of 176Lu to 511 keV, the presented method for attenuation correction, based on the measurement of 176Lu background attenuation, shows slightly better performance than the coil attenuation correction currently used. The coil attenuation correction currently used is based on an external transmission scan with rotating 68Ge sources acquired on a Siemens ECAT HR + PET scanner. However, the main advantage of the presented approach is its straightforwardness and ready availability without the need for additional accessories.
Collapse
Affiliation(s)
- Christoph W Lerche
- Medical Imaging Physics Department, Institute for Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu T, Das S, Wong TZ. Integration of PET/MR Hybrid Imaging into Radiation Therapy Treatment. Magn Reson Imaging Clin N Am 2017; 25:377-430. [PMID: 28390536 DOI: 10.1016/j.mric.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hybrid PET/MR imaging is in early development for treatment planning. This article briefly reviews research and clinical applications of PET/MR imaging in radiation oncology. With improvements in workflow, more specific tracers, and fast and robust acquisition protocols, PET/MR imaging will play an increasingly important role in better target delineation for treatment planning and have clear advantages in the evaluation of tumor response and in a better understanding of tumor heterogeneity. With advances in treatment delivery and the potential of integrating PET/MR imaging with research on radiomics for radiation oncology, quantitative and physiologic information could lead to more precise and personalized RT.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA
| | - Shiva Das
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA
| | - Terence Z Wong
- Department of Radiology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Akram MSH, Obata T, Suga M, Nishikido F, Yoshida E, Saito K, Yamaya T. MRI compatibility study of an integrated PET/RF-coil prototype system at 3T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 283:62-70. [PMID: 28881235 DOI: 10.1016/j.jmr.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200mm and axial-length of 100mm), an increase of about a maximum of 3μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system for using with the existing MRI system.
Collapse
Affiliation(s)
- Md Shahadat Hossain Akram
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan.
| | - Takayuki Obata
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Mikio Suga
- Center for Frontier Medical Engineering, Chiba University, Japan
| | - Fumihiko Nishikido
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Eiji Yoshida
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Kazuyuki Saito
- Center for Frontier Medical Engineering, Chiba University, Japan
| | - Taiga Yamaya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan.
| |
Collapse
|
25
|
Eldib M, Oesingmann N, Faul DD, Kostakoglu L, Knešaurek K, Fayad ZA. Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study. Med Phys 2016; 43:4768. [DOI: 10.1118/1.4958958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
|