1
|
Sulbaek Andersen MP, Borcher JE, Blair C, Robin ML, Nielsen OJ. Atmospheric Chemistry of ( E)- and ( Z)-CF 3CF 2CH═CHCF 2CF 3 (HFO-153-10mczz): Kinetics and Mechanisms of the Reactions with Cl Atoms, OH Radicals, and O 3. J Phys Chem A 2024; 128:10167-10180. [PMID: 39556320 DOI: 10.1021/acs.jpca.4c05302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Smog chamber experiments were conducted to establish the atmospheric chemistry of (E)- and (Z)-CF3CF2CH═CHCF2CF3. Kinetics of the reactions of the two compounds with Cl atoms and OH radicals were measured using relative rate techniques, giving k(Cl + (E)-CF3CF2CH═CHCF2CF3) = (5.63 ± 0.84) × 10-12, k(Cl + (Z)-CF3CF2CH═CHCF2CF3) = (1.17 ± 0.20) × 10-11, k(OH + (E)-CF3CF2CH═CHCF2CF3) = (1.64 ± 0.21) × 10-13, and k(OH + (Z)-CF3CF2CH═CHCF2CF3) = (3.13 ± 0.38) × 10-13 cm3 molecule-1 s-1 in 680 Torr air/N2/O2 diluents at 296 ± 2 K. Rate coefficients for the reactions with O3, k(O3 + (E)-CF3CF2CH═CHCF2CF3) ∼ 1 × 10-22 and k(O3 + (Z)-CF3CF2CH═CHCF2CF3) ≤ 5× 10-24 cm3 molecule-1 s-1, were established using absolute techniques in a 680 Torr air diluent and 296 ± 2 K. The Cl reaction with (E)-CF3CF2CH═CHCF2CF3 gives CF3CF2CHClC(O)CF2CF3 as the sole oxidation product, whereas the reaction with (Z)-CF3CF2CH═CHCF2CF3 also gives rise to the formation of the (E)-isomer in minor yields. The reaction of OH radicals with CF3CF2CH═CHCF2CF3 gives CF3CF2CHO in a yield of 177 ± 17%. The main atmospheric fate of (E)- and (Z)-CF3CF2CH═CHCF2CF3 is the reaction with OH radicals, resulting in overall atmospheric lifetime estimates of 71 and 37 days, for (E)- and (Z)-CF3CF2CH═CHCF2CF3, respectively. The IR absorption cross sections are reported, and the global warming potentials of (E)- and (Z)-CF3CF2CH═CHCF2CF3 for the 20-, 100-, and 500-year time horizons are calculated to be 36, 10, and 3 for the (E)-isomer and 11, 3, and 1 for the (Z)-isomer, respectively. Atmospheric processing of (E)- and (Z)-CF3CF2CH═CHCF2CF3 is expected to yield CF3CF2COOH and CF3COOH in yields of <10%. This study provides a comprehensive description of the atmospheric chemistry and fate of (E)- and (Z)-CF3CF2CH═CHCF2CF3.
Collapse
Affiliation(s)
- Mads P Sulbaek Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, California 91330-8262, United States
- Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Frederiksberg, Copenhagen Ø DK-2100, Denmark
| | - Josefine Ellerup Borcher
- Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Frederiksberg, Copenhagen Ø DK-2100, Denmark
| | - Connor Blair
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, California 91330-8262, United States
| | - Mark L Robin
- The Chemours Company, 1007 Market Street, Wilmington, Delaware 19899, United States
| | - Ole John Nielsen
- Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Frederiksberg, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
2
|
Wu Z, Ji Y, Li H, Bi F, Yanqin R, Gao R, Liu C, Li L, Zhang H, Zhang X, Wang X. Study on the pyrolysis characteristics of a series of fluorinated cyclopentenes and implication of their environmental influence. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Baidya B, Lily M, Chandra AK. Kinetics of Reactions of CHF
2
CF
2
CH
2
OH with Cl Atoms and CHF
2
CF
2
CHO with OH Radicals and Atmospheric Degradation Pathways of CHF
2
CF
2
CH
2
OH: A Theoretical Investigation. ChemistrySelect 2019. [DOI: 10.1002/slct.201901571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bidisha Baidya
- Department of ChemistryNorth-Eastern Hill University, Shillong India
| | - Makroni Lily
- Department of ChemistryNorth-Eastern Hill University, Shillong India
| | - Asit K. Chandra
- Department of ChemistryNorth-Eastern Hill University, Shillong India
| |
Collapse
|
4
|
Hui AO, Fradet M, Okumura M, Sander SP. Temperature Dependence Study of the Kinetics and Product Yields of the HO 2 + CH 3C(O)O 2 Reaction by Direct Detection of OH and HO 2 Radicals Using 2f-IR Wavelength Modulation Spectroscopy. J Phys Chem A 2019; 123:3655-3671. [PMID: 30942073 DOI: 10.1021/acs.jpca.9b00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HO2 + CH3C(O)O2 reaction consists of three product channels: CH3C(O)OOH + O2 (R1a), CH3C(O)OH + O3 (R1b), and OH + CH3C(O)O + O2 (R1c). The overall rate constant ( k1) and product yields (α1a, α1b, and α1c) were determined over the atmospherically relevant temperature range of 230-294 K at 100 Torr in N2. Time-resolved kinetics measurements were performed in a pulsed laser photolysis experiment in a slow flow cell by employing simultaneous infrared (IR) and ultraviolet (UV) absorption spectroscopy. HO2 and CH3C(O)O2 were formed by Cl-atom reactions with CH3OH and CH3CHO, respectively. Heterodyne near- and mid-infrared (NIR and MIR) wavelength modulation spectroscopy (WMS) was employed to selectively detect HO2 and OH radicals. Ultraviolet absorption at 225 and 250 nm was used to detect various peroxy radicals as well as ozone (O3). These experimental techniques enabled direct measurements of α1c and α1b via time-resolved spectroscopic detection in the MIR and the UV, respectively. At each temperature, experiments were performed at various ratios of initial HO2 and CH3C(O)O2 concentrations to quantify the secondary chemistry. The Arrhenius expression was found to be k1( T) = 1.38-0.63+1.17 × 10-12 exp[(730 ± 170)/ T] cm3 molecule-1 s-1. α1a was temperature-independent while α1b and α1c decreased and increased, respectively, with increasing temperatures. These trends are consistent with the current recommendation by the IUPAC data evaluation. Hydrogen-bonded adducts of HO2 with the precursors, HO2·CH3OH and HO2·CH3CHO, played a role at lower temperatures; as part of this work, rate enhancements of the HO2 self-reaction due to reactions of the adducts with HO2 were also measured.
Collapse
Affiliation(s)
- Aileen O Hui
- Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Physics , California Institute of Technology , M/S 127-72, 1200 East California Boulevard , Pasadena , California 91125 , United States
| | - Mathieu Fradet
- Jet Propulsion Laboratory , California Institute of Technology , 4800 Oak Grove Drive , Pasadena , California 91109 , United States
| | - Mitchio Okumura
- Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Physics , California Institute of Technology , M/S 127-72, 1200 East California Boulevard , Pasadena , California 91125 , United States
| | - Stanley P Sander
- Jet Propulsion Laboratory , California Institute of Technology , 4800 Oak Grove Drive , Pasadena , California 91109 , United States
| |
Collapse
|
5
|
Berrueta Martínez Y, Bava YB, Cavasso Filho RL, Erben MF, Romano RM, Della Védova CO. Valence and Inner Electronic Excitation, Ionization, and Fragmentation of Perfluoropropionic Acid. J Phys Chem A 2018; 122:9842-9850. [DOI: 10.1021/acs.jpca.8b09252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanina Berrueta Martínez
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| | - Yanina B. Bava
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| | | | - Mauricio F. Erben
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| | - Rosana M. Romano
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| | - Carlos O. Della Védova
- CEQUINOR (UNLP-CONICET-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, República Argentina
| |
Collapse
|
6
|
Bečanová J, Melymuk L, Vojta Š, Komprdová K, Klánová J. Screening for perfluoroalkyl acids in consumer products, building materials and wastes. CHEMOSPHERE 2016; 164:322-329. [PMID: 27592321 DOI: 10.1016/j.chemosphere.2016.08.112] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/27/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a large group of important chemical compounds with unique and useful physico-chemical properties, widely produced and used in many applications. However, due to the toxicity, bioaccumulation and long-range transport potential of certain PFASs, they are of significant concern to scientists and policy makers. To assess human exposure to PFASs, it is necessary to understand the concentrations of these emerging contaminants in our environment, and particularly environments where urban population spend most of their time, i.e. buildings and vehicles. A total of 126 samples of building materials, consumer products, car interior materials and wastes were therefore analyzed for their content of key PFASs - 15 perfluoroalkyl acids (PFAAs). At least one of the target PFAAs was detected in 88% of all samples. The highest concentration of Σ15PFAAs was found in textile materials (77.61 μg kg-1), as expected, since specific PFAAs are known to be used for textile treatment during processing. Surprisingly, PFAAs were also detected in all analyzed composite wood building materials, which were dominated by perfluoroalkyl carboxylic acids with 5-8 carbons in the chain (Σ4PFCAs up to 32.9 μg kg-1). These materials are currently widely used for building refurbishment, and this is the first study to find evidence of the presence of specific PFASs in composite wood materials. Thus, in addition to consumer products treated with PFASs, materials used in the construction of houses, schools and office buildings may also play an important role in human exposure to PFASs.
Collapse
Affiliation(s)
- Jitka Bečanová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lisa Melymuk
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Šimon Vojta
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Klára Komprdová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jana Klánová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
7
|
Schwantes RH, Teng AP, Nguyen TB, Coggon MM, Crounse JD, St Clair JM, Zhang X, Schilling KA, Seinfeld JH, Wennberg PO. Isoprene NO3 Oxidation Products from the RO2 + HO2 Pathway. J Phys Chem A 2015; 119:10158-71. [PMID: 26335780 DOI: 10.1021/acs.jpca.5b06355] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the products of the reaction of the hydroperoxy radical (HO(2)) with the alkylperoxy radical formed following addition of the nitrate radical (NO(3)) and O(2) to isoprene. NO(3) adds preferentially to the C(1) position of isoprene (>6 times more favorably than addition to C(4)), followed by the addition of O(2) to produce a suite of nitrooxy alkylperoxy radicals (RO(2)). At an RO(2) lifetime of ∼30 s, δ-nitrooxy and β-nitrooxy alkylperoxy radicals are present in similar amounts. Gas-phase product yields from the RO(2) + HO(2) pathway are identified as 0.75-0.78 isoprene nitrooxy hydroperoxide (INP), 0.22 methyl vinyl ketone (MVK) + formaldehyde (CH(2)O) + hydroxyl radical (OH) + nitrogen dioxide (NO(2)), and 0-0.03 methacrolein (MACR) + CH(2)O + OH + NO(2). We further examined the photochemistry of INP and identified propanone nitrate (PROPNN) and isoprene nitrooxy hydroxyepoxide (INHE) as the main products. INHE undergoes similar heterogeneous chemistry as isoprene dihydroxy epoxide (IEPOX), likely contributing to atmospheric secondary organic aerosol formation.
Collapse
Affiliation(s)
- Rebecca H Schwantes
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Alexander P Teng
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Tran B Nguyen
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Matthew M Coggon
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - John D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Jason M St Clair
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center , Greenbelt, Maryland 20771, United States.,Joint Center for Earth Systems Technology, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Xuan Zhang
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Katherine A Schilling
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States.,Division of Engineering and Applied Science, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States.,Division of Engineering and Applied Science, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Sun Y, Zhang Q, Wang H, Wang W. OH radical-initiated oxidation degradation and atmospheric lifetime of N-ethylperfluorobutyramide in the presence of O₂/NOx. CHEMOSPHERE 2015; 134:241-249. [PMID: 25957036 DOI: 10.1016/j.chemosphere.2015.04.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
The OH radical-initiated oxidation degradation of N-ethylperfluorobutyramide (EtFBA) in the presence of O2/NOx was investigated theoretically by using density functional theory (DFT). All possible pathways involved in the oxidation process were presented and discussed. The study shows that the H abstraction from the C(2)H(2) group in EtFBA is the most energetically favorable because of the lowest barrier and highest exothermicity. Canonical variational transition-state (CVT) theory with small curvature tunneling (SCT) contribution was used to predict the rate constants over the temperature range of 180-370 K. At 296 K, the calculated overall rate constant of EtFBA with OH radicals is 2.50 × 10(-12)cm(3)molecule(-1)s(-1). The atmospheric lifetime of EtFBA determined by OH radicals is short, about 4.6 days at 296K. However, the atmospheric lifetimes of its primary oxidation products, C3F7C(O)N(H)C(O)CH3, C3F7C(O)N(H)CH2CHO and C3F7C(O)NH2, are much longer, about 30-50 days. It demonstrates the possibility that the atmospheric oxidation degradation of polyfluorinated amides (PFAMs) contributes to the burden of observed perfluorinated pollutants in the Arctic region. This study reveals for the first time that the water molecule plays an important catalytic effect on several key elementary steps and promotes the degradation potential of EtFBA.
Collapse
Affiliation(s)
- Yanhui Sun
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Jinan 250100, PR China.
| | - Hui Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| |
Collapse
|
9
|
Vasiliev ES, Knyazev VD, Karpov GV, Morozov II. Kinetics and mechanism of the reaction of fluorine atoms with pentafluoropropionic acid. J Phys Chem A 2014; 118:4013-8. [PMID: 24819330 DOI: 10.1021/jp5029382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The kinetics of the reaction between fluorine atoms and pentafluoropropionic acid has been studied experimentally at T = 262-343 K. The overall reaction rate constant decreases with temperature: k1(T) = 6.1 × 10(-13) exp(+1166 K)/T) cm(3) molecule(-1) s(-1). The potential energy surface of the reaction has been studied using quantum chemistry. The results were used in transition state theory calculations of the temperature dependences of the rate constants of the two channels of the reaction. The abstraction channel ultimately producing HF, C2F5, and CO2 is dominant at the experimental temperatures; the addition-elimination channel producing C2F5 and CF(O)OH becomes important above 1000 K.
Collapse
Affiliation(s)
- E S Vasiliev
- Semenov Institute of Chemical Physics RAS, 4 Kosygin St., 119991 Moscow, Russia
| | | | | | | |
Collapse
|
10
|
Orlando JJ, Tyndall GS. Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance. Chem Soc Rev 2012; 41:6294-317. [PMID: 22847633 DOI: 10.1039/c2cs35166h] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- John J Orlando
- National Center for Atmospheric Research, Earth System Laboratory, Atmospheric Chemistry Division, Boulder, USA.
| | | |
Collapse
|
11
|
Thomsen DL, Andersen VF, Nielsen OJ, Wallington TJ. Atmospheric chemistry of C2F5CH2OCH3 (HFE-365mcf). Phys Chem Chem Phys 2011; 13:2758-64. [DOI: 10.1039/c0cp01609h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Young CJ, Mabury SA. Atmospheric perfluorinated acid precursors: chemistry, occurrence, and impacts. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 208:1-109. [PMID: 20811862 DOI: 10.1007/978-1-4419-6880-7_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Perfluorocarboxylic acids (PFCAs) can be found from the hydrolysis of perfluoroacyl fluorides and chlorides, which can be produced in three separate ways in the atmosphere. Alternatively, PFCAs can be formed directly in the gas phase through reaction of perfluoroacyl peroxy radicals or perfluorinated aldehyde hydrates. All five mechanisms have been elucidated using smog chamber techniques. Yields of the PFCAs from this process vary from less than 10% to greater than 100%, depending on the mechanism. The formation of perfluorosulfonic acids in the atmosphere can also occur, though the mechanism has not been entirely elucidated. A large number of compounds have been confirmed as perfluorinated acid precursors, including CFC-replacement compounds, anesthetics, fluorotelomer compounds, and perfluorosulfonamides. Levels of some of these compounds have been measured in the atmosphere, but concentration for the majority have yet to be detected. It is clear that atmospheric oxidation of volatile precursors contributes to the overall burden of PFAs, though the extent to which this occurs is compound and environment dependent and is difficult to assess accurately.
Collapse
Affiliation(s)
- Cora J Young
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| | | |
Collapse
|
13
|
Rayne S, Forest K, Friesen KJ. Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: rates of reaction with atmospheric oxidants, air-water partitioning, and wet/dry deposition lifetimes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2009; 44:936-954. [PMID: 19827486 DOI: 10.1080/10934520902996815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A quantitative structure-activity model has been validated for estimating congener specific gas-phase hydroxyl radical reaction rates for perfluoroalkyl sulfonic acids (PFSAs), carboxylic acids (PFCAs), aldehydes (PFAls) and dihydrates, fluorotelomer olefins (FTOls), alcohols (FTOHs), aldehydes (FTAls), and acids (FTAcs), and sulfonamides (SAs), sulfonamidoethanols (SEs), and sulfonamido carboxylic acids (SAAs), and their alkylated derivatives based on calculated semi-empirical PM6 method ionization potentials. Corresponding gas-phase reaction rates with nitrate radicals and ozone have also been estimated using the computationally derived ionization potentials. Henry's law constants for these classes of perfluorinated compounds also appear to be reasonably approximated by the SPARC software program, thereby allowing estimation of wet and dry atmospheric deposition rates. Both congener specific gas-phase atmospheric and air-water interface fractionation of these compounds is expected, complicating current source apportionment perspectives and necessitating integration of such differential partitioning influences into future multimedia models. The findings will allow development and refinement of more accurate and detailed local through global scale atmospheric models for the atmospheric fate of perfluoroalkyl compounds.
Collapse
Affiliation(s)
- Sierra Rayne
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada.
| | | | | |
Collapse
|
14
|
Hou H, Wang B. A systematic computational study on the reactions of HO2 with RO2: The HO2 + CH3O2(CD3O2) and HO2 + CH2FO2 reactions. J Phys Chem A 2007; 109:451-60. [PMID: 16833365 DOI: 10.1021/jp046329e] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A systematic theoretical study of the reactions of HO2 with RO2 has been carried out. The major concern of the present work is to gain insight into the reaction mechanism and then to explain experimental observations and to predict new product channels for this class of reactions of importance in the atmosphere. In this paper, the reaction mechanisms for two reactions, namely, HO2 + CH3O2 and HO2 + CH2FO2, are reported. Both singlet and triplet potential energy surfaces are investigated. The complexity of the present system makes it impossible to use a single ab initio method to map out all the reaction paths. Various ab initio methods including MP2, CISD, QCISD(T), CCSD(T), CASSCF, and density function theory (B3LYP) have been employed with the basis sets ranging from 6-31G(d) to an extrapolated complete basis set (CBS) limit. It has been established that the CCSD(T)/cc-pVDZ//B3LYP/6-311G(d,p) scheme represents the most feasible method for our systematic study. For the HO2 + CH3O2 reaction, the production of CH3OOH is determined to be the dominant channel. For the HO2 + CH2FO2 reaction, both CH2FOOH and CHFO are major products, whereas the formation of CHFO is dominant in the overall reaction. The computational findings give a fair explanation for the experimental observation of the products.
Collapse
Affiliation(s)
- Hua Hou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | |
Collapse
|
15
|
Waterland RL, Dobbs KD. Atmospheric Chemistry of Linear Perfluorinated Aldehydes: Dissociation Kinetics of CnF2n+1CO Radicals. J Phys Chem A 2007; 111:2555-62. [PMID: 17388359 DOI: 10.1021/jp067587+] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linear perfluorinated aldehydes (PFALs, CnF2n+1CHO) are important intermediate species in the atmospheric oxidation pathway of many polyfluorinated compounds. PFALs can be further oxidized in the gas phase to give perfluorinated carboxylic acids (PFCAs, CnF2n+1C(O)OH, n = 6, 12) which have been detected in animal tissues and at low parts per billion levels in human blood sera. In this paper, we report ab initio quantum chemistry calculations of the decarbonylation kinetics of CnF2n+1CO radicals. Our results show that CnF2n+1CO radicals have a strong tendency to decompose to give CnF2n+1 and CO under atmospheric conditions: the Arrhenius activation energies for decarbonylation of CF3CO, C2F5CO, and C3F7CO obtained using PMP4/6-311++G(2d,p) are 8.8, 6.6, and 5.8 kcal/mol, respectively, each of which is about 5 kcal/mol lower than the barrier for the corresponding nonfluorinated radicals. The lowering of the barrier for decarbonylation of CnF2n+1CO relative to that of CnH2n+1CO is well explained by electron withdrawal by F atoms that serve to weaken the critical C-CO bond. These results have important implications for the atmospheric fate of PFALs and the atmospheric pathways to PFCAs. The main effect of decarbonylation of CnF2n+1CO is to decrease the molar yield of CnF2n+1C(O)OH; if 100% of the CnF2n+1CO decompose, the yield of CnF2n+1C(O)OH must be zero. There is considerable scope for additional experimental and theoretical studies.
Collapse
Affiliation(s)
- Robert L Waterland
- DuPont Central Research & Development, Experimental Station, P. O. Box 80320, Wilmington, Delaware 19880-0320, USA.
| | | |
Collapse
|
16
|
Hurley MD, Ball JC, Wallington TJ, Sulbaek Andersen MP, Nielsen OJ, Ellis DA, Martin JW, Mabury SA. Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 2, 3, 4): Fate of n-CxF2x+1C(O) Radicals. J Phys Chem A 2006; 110:12443-7. [PMID: 17091948 DOI: 10.1021/jp064029m] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Smog chamber/FTIR techniques were used to study the atmospheric fate of n-C(x)F(2)(x)(+1)C(O) (x = 1, 2, 3, 4) radicals in 700 Torr O(2)/N(2) diluent at 298 +/- 3 K. A competition is observed between reaction with O(2) to form n-C(x)()F(2)(x)()(+1)C(O)O(2) radicals and decomposition to form n-C(x)F(2)(x)(+1) radicals and CO. In 700 Torr O(2)/N(2) diluent at 298 +/- 3 K, the rate constant ratio, k(n-C(x)F(2)(x)(+1)C(O) + O(2) --> n-C(x)F(2)(x)(+1)C(O)O(2))/k(n-C(x)F(2)(x)(+1)C(O) --> n-C(x)F(2)(x)(+1) + CO) = (1.30 +/- 0.05) x 10(-17), (1.90 +/- 0.17) x 10(-19), (5.04 +/- 0.40) x 10(-20), and (2.67 +/- 0.42) x 10(-20) cm(3) molecule(-1) for x = 1, 2, 3, 4, respectively. In one atmosphere of air at 298 K, reaction with O(2) accounts for 99%, 50%, 21%, and 12% of the loss of n-C(x)F(2)(x)(+1)C(O) radicals for x = 1, 2, 3, 4, respectively. Results are discussed with respect to the atmospheric chemistry of n-C(x)F(2)(x)(+1)C(O) radicals and their possible role in contributing to the formation of perfluorocarboxylic acids in the environment.
Collapse
Affiliation(s)
- M D Hurley
- Ford Motor Company, P.O. Box 2053, Dearborn, Michigan 48121-2053, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Setokuchi O, Kutsuna S, Sato M. A theoretical study of thermal decomposition of CF3CO, C2F5CO and C3F7CO. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Sulbaek Andersen MP, Toft A, Nielsen OJ, Hurley MD, Wallington TJ, Chishima H, Tonokura K, Mabury SA, Martin JW, Ellis DA. Atmospheric Chemistry of Perfluorinated Aldehyde Hydrates (n-CxF2x+1CH(OH)2, x = 1, 3, 4): Hydration, Dehydration, and Kinetics and Mechanism of Cl Atom and OH Radical Initiated Oxidation. J Phys Chem A 2006; 110:9854-60. [PMID: 16898686 DOI: 10.1021/jp060404z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure k(Cl+C(x)F(2x+1)CH(OH)(2)) (x = 1, 3, 4) = (5.84 +/- 0.92) x 10(-13) and k(OH+C(x)F(2x+1)CH(OH)(2)) = (1.22 +/- 0.26) x 10(-13) cm(3) molecule(-1) s(-1) in 700 Torr of N(2) or air at 296 +/- 2 K. The Cl initiated oxidation of CF(3)CH(OH)(2) in 700 Torr of air gave CF(3)COOH in a molar yield of 101 +/- 6%. IR spectra of C(x)F(2x+1)CH(OH)(2) (x = 1, 3, 4) were recorded and are presented. An upper limit of k(CF(3)CHO+H(2)O) < 2 x 10(-23) cm(3) molecule(-1) s(-1) was established for the gas-phase hydration of CF(3)CHO. Bubbling CF(3)CHO/air mixtures through liquid water led to >80% conversion of CF(3)CHO into the hydrate within the approximately 2 s taken for passage through the bubbler. These results suggest that OH radical initiated oxidation of C(x)F(2x+1)CH(OH)(2) hydrates could be a significant source of perfluorinated carboxylic acids in the environment.
Collapse
Affiliation(s)
- M P Sulbaek Andersen
- Department of Chemistry, University of Copenhagen, Universitet sparken 5, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hasson AS, Kuwata KT, Arroyo MC, Petersen EB. Theoretical studies of the reaction of hydroperoxy radicals (HO2) with ethyl peroxy (CH3CH2O2), acetyl peroxy (CH3C(O)O2), and acetonyl peroxy (CH3C(O)CH2O2) radicals. J Photochem Photobiol A Chem 2005. [DOI: 10.1016/j.jphotochem.2005.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Hurley MD, Misner JA, Ball JC, Wallington TJ, Ellis DA, Martin JW, Mabury SA, Sulbaek Andersen MP. Atmospheric Chemistry of CF3CH2CH2OH: Kinetics, Mechanisms and Products of Cl Atom and OH Radical Initiated Oxidation in the Presence and Absence of NOX. J Phys Chem A 2005; 109:9816-26. [PMID: 16833295 DOI: 10.1021/jp0535902] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF(3)CH(2)C(O)H and CF(3)CH(2)CH(2)OH in 700 Torr of N(2) or air diluent at 296 +/- 2 K. The rate constants determined were k(Cl+CF(3)CH(2)C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF(3)CH(2)C(O)H) = (2.57 +/- 0.44) x 10(-12), k(Cl+CF(3)CH(2)CH(2)OH) = (1.59 +/- 0.20) x 10(-11), and k(OH+CF(3)CH(2)CH(2)OH) = (6.91 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1). Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the absence of NO show the sole primary product to be CF(3)CH(2)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the presence of NO show the primary products to be CF(3)CH(2)C(O)H (81%), HC(O)OH (10%), and CF(3)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)C(O)H in the absence of NO show the primary products to be CF(3)C(O)H (76%), CF(3)CH(2)C(O)OH (14%), and CF(3)CH(2)C(O)OOH (< or =10%). As part of this work, an upper limit of k(O(3)+CF(3)CH(2)CH(2)OH) < 2 x 10(-21) cm(3) molecule(-1) s(-1) was established. Results are discussed with respect to the atmospheric chemistry of fluorinated alcohols.
Collapse
Affiliation(s)
- Michael D Hurley
- Ford Motor Company, Mail Drop SRL-3083, Dearborn, Michigan 48121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kelly T, Bossoutrot V, Magneron I, Wirtz K, Treacy J, Mellouki A, Sidebottom H, Le Bras G. A Kinetic and Mechanistic Study of the Reactions of OH Radicals and Cl Atoms with 3,3,3-Trifluoropropanol under Atmospheric Conditions. J Phys Chem A 2004; 109:347-55. [PMID: 16833353 DOI: 10.1021/jp0467402] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Product distribution studies of the OH radical and Cl atom initiated oxidation of CF3CH2CH2OH in air at 1 atm and 298 +/- 5 K have been carried out in laboratory and outdoor atmospheric simulation chambers in the presence and absence of NOx. The results show that CF3CH2CHO is the only primary product and that the aldehyde is fairly rapidly removed from the system. In the absence of NOx the major degradation product of CF3CH2CHO is CF3CHO, and the combined yields of the two aldehydes formed from CF3CH2CH2OH are close to unity (0.95 +/- 0.05). In the presence of NOx small amounts of CF3CH2C(O)O2NO2 were also observed (<15%). At longer reaction times CF3CHO is removed from the system to give mainly CF2O. The laser photolysis-laser induced fluorescence technique was used to determine values of k(OH + CF3CH2CH2OH) = (0.89 +/- 0.03) x 10(-12) and k(OH + CF3CH2CHO) = (2.96 +/- 0.04) x 10(-12) cm3 molecule(-1) s(-1). A relative rate method has been employed to measure the rate coefficients k(OH + CF3CH2CH2OH) = (1.08 +/- 0.05) x 10(-12), k(OH + C6F13CH2CH2OH) = (0.79 +/- 0.08) x 10(-12), k(Cl + CF3CH2CH2OH) = (22.4 +/- 0.4) x 10(-12), and k(Cl + CF3CH2CHO) = (25.7 +/- 0.4) x 10(-12) cm3 molecule(-1) s(-1). The results from this investigation are discussed in terms of the possible importance of emissions of fluorinated alcohols as a source of fluorinated carboxylic acids in the environment.
Collapse
Affiliation(s)
- Tanya Kelly
- Chemistry Department, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hashikawa Y, Kawasaki M, Waterland R, Hurley M, Ball J, Wallington T, Andersen MS, Nielsen O. Gas phase UV and IR absorption spectra of CxF2x+1CHO (x = 1–4). J Fluor Chem 2004. [DOI: 10.1016/j.jfluchem.2004.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Sulbaek Andersen MP, Stenby C, Nielsen OJ, Hurley MD, Ball JC, Wallington TJ, Martin JW, Ellis DA, Mabury SA. Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 3, 4): Mechanism of the CxF2x+1C(O)O2 + HO2 Reaction. J Phys Chem A 2004. [DOI: 10.1021/jp048849f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Ellis DA, Martin JW, De Silva AO, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ. Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:3316-21. [PMID: 15260330 DOI: 10.1021/es049860w] [Citation(s) in RCA: 642] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Human and animal tissues collected in urban and remote global locations contain persistent and bioaccumulative perfluorinated carboxylic acids (PFCAs). The source of PFCAs was previously unknown. Here we present smog chamber studies that indicate fluorotelomer alcohols (FTOHs) can degrade in the atmosphere to yield a homologous series of PFCAs. Atmospheric degradation of FTOHs is likely to contribute to the widespread dissemination of PFCAs. After their bioaccumulation potential is accounted for, the pattern of PFCAs yielded from FTOHs could account for the distinct contamination profile of PFCAs observed in arctic animals. Furthermore, polar bear liver was shown to contain predominately linear isomers (>99%) of perfluorononanoic acid (PFNA), while both branched and linear isomers were observed for perfluorooctanoic acid, strongly suggesting a sole input of PFNA from "telomer"-based products. The significance of the gas-phase peroxy radical cross reactions that produce PFCAs has not been recognized previously. Such reactions are expected to occur during the atmospheric degradation of all polyfluorinated materials, necessitating a reexamination of the environmental fate and impact of this important class of industrial chemicals.
Collapse
Affiliation(s)
- David A Ellis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | | | | | | | | | | | |
Collapse
|
25
|
Hurley MD, Ball JC, Wallington TJ, Sulbaek Andersen MP, Ellis DA, Martin JW, Mabury SA. Atmospheric Chemistry of 4:2 Fluorotelomer Alcohol (CF3(CF2)3CH2CH2OH): Products and Mechanism of Cl Atom Initiated Oxidation. J Phys Chem A 2004. [DOI: 10.1021/jp0493576] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - M. P. Sulbaek Andersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
26
|
Sulbaek Andersen MP, Nielsen OJ, Hurley MD, Ball JC, Wallington TJ, Stevens JE, Martin JW, Ellis DA, Mabury SA. Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 3, 4): Reaction with Cl Atoms, OH Radicals and IR Spectra of CxF2x+1C(O)O2NO2. J Phys Chem A 2004. [DOI: 10.1021/jp0496598] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | - J. E. Stevens
- Department of Chemistry and Biochemistry, University of Detroit Mercy, 4001 West McNichols Road, P. O. Box 19900, Detroit, Michigan 48219-0900
| | | | | | | |
Collapse
|
27
|
Hurley MD, Wallington TJ, Sulbaek Andersen MP, Ellis DA, Martin JW, Mabury SA. Atmospheric Chemistry of Fluorinated Alcohols: Reaction with Cl Atoms and OH Radicals and Atmospheric Lifetimes. J Phys Chem A 2004. [DOI: 10.1021/jp0373088] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - M. P. Sulbaek Andersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|