Zheltikov AM. Thermal and Quantum Barrier Passage as Potential-Driven Markovian Dynamics.
J Phys Chem B 2023;
127:9413-9422. [PMID:
37905974 PMCID:
PMC10863070 DOI:
10.1021/acs.jpcb.3c02744]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/08/2023] [Indexed: 11/02/2023]
Abstract
Rapidly progressing laser technologies provide powerful tools to study potential barrier-passage dynamics in physical, chemical, and biological systems with unprecedented temporal and spatial resolution and a remarkable chemical and structural specificity. The available theories of barrier passage, however, operate with equations, potentials, and parameters that are best suited for a specific area of research and a specific class of systems and processes. Making connections among these theories is often anything but easy. Here, we address this problem by presenting a unified framework for the description of a vast variety of classical and quantum barrier-passage phenomena, revealing an innate connection between various types of barrier-passage dynamics and providing closed-form equations showing how the signature exponentials in classical and quantum barrier-passage rates relate to and translate into each other. In this framework, the Arrhenius-law kinetics, the emergence of the Gibbs distribution, Hund's molecular wave-packet well-to-well oscillatory dynamics, Keldysh photoionization, and Kramers' escape over a potential barrier are all understood as manifestations of a potential-driven Markovian dynamics whereby a system evolves from a state of local stability. Key to the irreducibility of quantum tunneling to thermally activated barrier passage is the difference in the ways the diffusion-driving potentials emerge in these two tunneling settings, giving rise to stationary states with a distinctly different structure.
Collapse