1
|
Klinkby N, Rasmussen AP, Lauridsen AGS, Andersen LH. Absorption and Excited-State Coherences of Cryogenically Cold Retinal Protonated Schiff Base in Vacuo. Chemphyschem 2025; 26:e202400878. [PMID: 39570028 DOI: 10.1002/cphc.202400878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Retinal protonated Schiff base (RPSB), found in its all-trans conformer in Bacteriorhodopsin, undergoes barrier-controlled isomerization upon photoabsorption through polyene chain torsion. The effects of the protein environment on the active vibrations during photoabsorption and their redistribution are still not understood. This paper reports on femtosecond time-resolved action-absorption measurements of cryogenically cooled gas-phase all-trans RPSB, which exhibit two coherent vibrational oscillations, 167(14) cm- 1 ${^{ - 1} }$ and 117(1) cm- 1 ${^{ - 1} }$ , of the first excited state with dephasing times of∼ 1 ${{\rm{ \sim }}1}$ ps. The absence of the high-frequency vibration in solution and the low-frequency vibration in the protein indicates that these vibrations are sensitive to environments. An action-absorption spectrum of cryogenically cold all-trans RPSB, reveals a∼ 310 ${{\rm{ \sim }}310}$ cm- 1 ${^{ - 1} }$ active vibration when using a hole-burning technique and 1500 cm- 1 ${^{ - 1} }$ C=C stretching modes.
Collapse
Affiliation(s)
- Nikolaj Klinkby
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| | - Anne P Rasmussen
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
2
|
Ostrovsky MA, Nadtochenko VA. Femtochemistry of Rhodopsins. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The review considers the spectral kinetic data obtained by us by femtosecond absorption laser spectroscopy for the photochromic reaction of retinal isomerization in animal rhodopsin (type II), namely, bovine visual rhodopsin and microbial rhodopsins (type I), such as Exiguobacterium sibiricum rhodopsin and Halobacterium salinarum bacteriorhodopsin. It is shown that the elementary act of the photoreaction of retinal isomerization in type I and type II rhodopsins can be interpreted as a transition through a conical intersection with retention of the coherence of the vibrational wave packets generated during excitation. The coherent nature of the reaction is most pronounced in visual rhodopsin as a result of the barrier-free movement along the excited surface of potential energy, which also leads to an extremely high rate of retinal isomerization compared to microbial rhodopsins. Differences in the dynamics of photochemical reactions of type I and type II rhodopsins can be related to both differences in the initial isomeric forms of their chromophores (all-trans and 11-cis retinal, respectively), as well as with the effect of the protein environment on the chromophore. Despite the practically identical values of the quantum yields of the direct photoreaction of visual rhodopsin and bacteriorhodopsin, the reverse photoreaction of visual rhodopsin is much less effective (φ = 0.15) than in the case of bacteriorhodopsin (φ = 0.81). It can be assumed that the photobiological mechanism for converting light into an information process in the evolutionarily younger visual rhodopsins (type II rhodopsins) should be more reliable than the mechanism for converting light into a photoenergetic process in the evolutionarily more ancient microbial rhodopsins (type I rhodopsins). The low value of the quantum yield of the reverse reaction of visual rhodopsin can be considered as an increase in the reliability of the forward reaction, which triggers the process of phototransduction.
Collapse
|
3
|
Nass Kovacs G, Colletier JP, Grünbein ML, Yang Y, Stensitzki T, Batyuk A, Carbajo S, Doak RB, Ehrenberg D, Foucar L, Gasper R, Gorel A, Hilpert M, Kloos M, Koglin JE, Reinstein J, Roome CM, Schlesinger R, Seaberg M, Shoeman RL, Stricker M, Boutet S, Haacke S, Heberle J, Heyne K, Domratcheva T, Barends TRM, Schlichting I. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat Commun 2019; 10:3177. [PMID: 31320619 PMCID: PMC6639342 DOI: 10.1038/s41467-019-10758-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2019] [Indexed: 11/10/2022] Open
Abstract
Bacteriorhodopsin (bR) is a light-driven proton pump. The primary photochemical event upon light absorption is isomerization of the retinal chromophore. Here we used time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultrafast spectroscopy were used to identify a sequential two-photon absorption process, leading to excitation of a tryptophan residue flanking the retinal chromophore, as a first manifestation of multiphoton effects. We resolve distinct stages in the structural dynamics of the all-trans retinal in photoexcited bR to a highly twisted 13-cis conformation. Other active site sub-picosecond rearrangements include correlated vibrational motions of the electronically excited retinal chromophore, the surrounding amino acids and water molecules as well as their hydrogen bonding network. These results show that this extended photo-active network forms an electronically and vibrationally coupled system in bR, and most likely in all retinal proteins. Bacteriorhodopsin (bR) is a light-driven proton pump. Here the authors combine time-resolved crystallography at a free-electron laser, ultrafast spectroscopy and quantum chemistry to study the structural changes following multiphoton photoexcitation of bR and find that they occur within 300 fs not only in the light-absorbing chromophore but also in the surrounding protein.
Collapse
Affiliation(s)
- Gabriela Nass Kovacs
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Jacques-Philippe Colletier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Marie Luise Grünbein
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Yang Yang
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Till Stensitzki
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - David Ehrenberg
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Raphael Gasper
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Alexander Gorel
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Marco Kloos
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Jason E Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jochen Reinstein
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christopher M Roome
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Miriam Stricker
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Stefan Haacke
- Université de Strasbourg-CNRS, UMR 7504, IPCMS, 23 Rue du Loess, 67034, Strasbourg, France
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Karsten Heyne
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Tatiana Domratcheva
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| | - Thomas R M Barends
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Roy PP, Abe-Yoshizumi R, Kandori H, Buckup T. Point Mutation of Anabaena Sensory Rhodopsin Enhances Ground-State Hydrogen Out-of-Plane Wag Raman Activity. J Phys Chem Lett 2019; 10:1012-1017. [PMID: 30742765 DOI: 10.1021/acs.jpclett.8b03805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interaction between the retinal protonated Schiff base (RPSB) and surrounding protein residues inside the retinal pocket is believed to play a major role in the ultrafast isomerization of the former. Coherent time-resolved vibrational spectroscopic techniques are applied to reveal the effect of changes in the protein architecture by point mutations (V112N and L83Q) close to the RPSB in Anabaena sensory rhodopsin (ASR). Our study reveals that such point mutations have a minor effect on the low-frequency (<400 cm-1) torsional modes but dramatically influence the ground-state vibrational Raman activity of the C14-H out-of-plane (HOOP) wag mode (800-820 cm-1). In mutated ASR, the increase of HOOP Raman activity in the ground state is experimentally observed for the all- trans RPSB, which has shorter excited-state lifetime than in wild-type ASR. This indicates that predistortion of the RPSB inside the mutated retinal pocket is a major factor in the acceleration of the isomerization rate.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69120 Heidelberg , Germany
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
- OptoBioTechnology Research Center , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69120 Heidelberg , Germany
| |
Collapse
|
5
|
Kraack JP, Motzkus M, Buckup T. Excited State Vibrational Spectra of All- trans Retinal Derivatives in Solution Revealed By Pump-DFWM Experiments. J Phys Chem B 2018; 122:12271-12281. [PMID: 30507189 DOI: 10.1021/acs.jpcb.8b08495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ultrafast structural changes during the photoinduced isomerization of the retinal-protonated Schiff base (RPSB) is still a poorly understood aspect in the retinal's photochemistry. In this work, we apply pump-degenerate four-wave mixing (pump-DFWM) to all- trans retinal (ATR) and retinal Schiff bases (RSB) to resolve coherent high- and low-frequency vibrational signatures from excited electronic states. We show that the vibrational spectra of excited singlet states in these samples exhibit pronounced differences compared to the relaxed ground state. Pump-DFWM results indicate three major features for ATR and RSB. (i) Excited state vibrational spectra of ATR and RSB consist predominately of low-frequency modes in the energetic range 100-500 cm-1. (ii) Excited state vibrational spectra show distinct differences for excitation in specific regions of electronic transitions of excited state absorption and emission. (iii) Low-frequency modes in ATR and RSB are inducible during the entire lifetime of the excited electronic states. This latter effect points to a transient molecular structure that, following initial relaxation between different excited electronic states, does not change anymore over the lifetime of the finally populated excited electronic state.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| |
Collapse
|
6
|
Feldman TB, Smitienko OA, Shelaev IV, Gostev FE, Nekrasova OV, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:296-305. [PMID: 27723489 DOI: 10.1016/j.jphotobiol.2016.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
Photochromic ultrafast reactions of bacteriorhodopsin (H. salinarum) and bovine rhodopsin were conducted with a femtosecond two-pump probe pulse setup with the time resolution of 20-25fs. The dynamics of the forward and reverse photochemical reactions for both retinal-containing proteins was compared. It is demonstrated that when retinal-containing proteins are excited by femtosecond pulses, dynamics pattern of the vibrational coherent wave packets in the course of the reaction is different for bacteriorhodopsin and visual rhodopsin. As shown in these studies, the low-frequencies that form a wave packets experimentally observed in the dynamics of primary products formation as a result of retinal photoisomerization have different intensities and are clearer for bovine rhodopsin. Photo-reversible reactions for both retinal proteins were performed from the stage of the relatively stable photointermediates that appear within 3-5ps after the light pulse impact. It is demonstrated that the efficiency of the reverse phototransition K-form→bacteriorhodopsin is almost five-fold higher than that of the Batho-intermediate→visual rhodopsin phototransition. The results obtained indicate that in the course of evolution the intramolecular mechanism of the chromophore-protein interaction in visual rhodopsin becomes more perfect and specific. The decrease in the probability of the reverse chromophore photoisomerization (all-trans→11-cis retinal) in primary photo-induced rhodopsin products causes an increase in the efficiency of the photoreception process.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia.
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| | - Ivan V Shelaev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Dmitriy A Dolgikh
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia; Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432, Russia
| | - Mikhail P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| |
Collapse
|
7
|
Ghosh S, Roscioli JD, Bishop MM, Gurchiek JK, LaFountain AM, Frank HA, Beck WF. Torsional Dynamics and Intramolecular Charge Transfer in the S2 (1(1)Bu(+)) Excited State of Peridinin: A Mechanism for Enhanced Mid-Visible Light Harvesting. J Phys Chem Lett 2016; 7:3621-3626. [PMID: 27571487 DOI: 10.1021/acs.jpclett.6b01642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Of the carotenoids known in photosynthetic organisms, peridinin exhibits one of the highest quantum efficiencies for excitation energy transfer to chlorophyll (Chl) a acceptors. The mechanism for this enhanced performance involves an order-of-magnitude slowing of the S2 (1(1)Bu(+)) → S1 (2(1)Ag(-)) nonradiative decay pathway compared to carotenoids lacking carbonyl substitution. Using femtosecond transient grating spectroscopy with optical heterodyne detection, we have obtained the first evidence that the nonradiative decay of the S2 state of peridinin is promoted by large-amplitude torsional motions. The decay of an intermediate state termed Sx, which we assign to a twisted form of the S2 state, is substantially slowed by solvent friction in peridinin due to its intramolecular charge transfer (ICT) character.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jerome D Roscioli
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Michael M Bishop
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jason K Gurchiek
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
8
|
Iyer ESS, Misra R, Maity A, Liubashevski O, Sudo Y, Sheves M, Ruhman S. Temperature Independence of Ultrafast Photoisomerization in Thermophilic Rhodopsin: Assessment versus Other Microbial Proton Pumps. J Am Chem Soc 2016; 138:12401-7. [DOI: 10.1021/jacs.6b05002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ramprasad Misra
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arnab Maity
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Oleg Liubashevski
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuki Sudo
- Division
of Pharmaceutical sciences, Okayama University, Kita-Ku, Okayama 700-0082, Japan
| | - Mordechai Sheves
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sanford Ruhman
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
9
|
Halpin A, Johnson PJM, Tempelaar R, Murphy RS, Knoester J, Jansen TLC, Miller RJD. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat Chem 2014; 6:196-201. [DOI: 10.1038/nchem.1834] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
|
10
|
Renth F, Siewertsen R, Strübe F, Mattay J, Temps F. Ultrafast Z → E photoisomerisation of structurally modified furylfulgides. Phys Chem Chem Phys 2014; 16:19556-63. [DOI: 10.1039/c4cp01739k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond transient absorption spectroscopy of Z-fulgides with selected structural motifs revealed fast and direct excited-state dynamics independent of chemical modifications.
Collapse
Affiliation(s)
- Falk Renth
- Institut für Physikalische Chemie
- Christian-Albrechts-Universität zu Kiel
- D-24098 Kiel, Germany
| | - Ron Siewertsen
- Institut für Physikalische Chemie
- Christian-Albrechts-Universität zu Kiel
- D-24098 Kiel, Germany
| | - Frank Strübe
- Organische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33501 Bielefeld, Germany
| | - Jochen Mattay
- Organische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33501 Bielefeld, Germany
| | - Friedrich Temps
- Institut für Physikalische Chemie
- Christian-Albrechts-Universität zu Kiel
- D-24098 Kiel, Germany
| |
Collapse
|
11
|
Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. Shedding New Light on Retinal Protein Photochemistry. Annu Rev Phys Chem 2013; 64:437-58. [DOI: 10.1146/annurev-physchem-040412-110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
12
|
Kobayashi T. Development of Ultrafast Spectroscopy and Reaction Mechanisms Studied by the Observation of Ultrashort-Life Species and Transition States. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takayoshi Kobayashi
- Advanced Ultrafast Laser Research Center, The University of Electro-Communications
- JST, CREST
- Department of Electrophysics, National Chiao Tung University
- Institute of Laser Engineering, Osaka University
| |
Collapse
|
13
|
Kraack JP, Wand A, Buckup T, Motzkus M, Ruhman S. Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing. Phys Chem Chem Phys 2013; 15:14487-501. [DOI: 10.1039/c3cp50871d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Wand A, Loevsky B, Friedman N, Sheves M, Ruhman S. Probing Ultrafast Photochemistry of Retinal Proteins in the Near-IR: Bacteriorhodopsin and Anabaena Sensory Rhodopsin vs Retinal Protonated Schiff Base in Solution. J Phys Chem B 2012; 117:4670-9. [DOI: 10.1021/jp309189y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Boris Loevsky
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
15
|
Kraack JP, Buckup T, Motzkus M. Evidence for the Two-State-Two-Mode model in retinal protonated Schiff-bases from pump degenerate four-wave-mixing experiments. Phys Chem Chem Phys 2012; 14:13979-88. [DOI: 10.1039/c2cp42248d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Wand A, Rozin R, Eliash T, Jung KH, Sheves M, Ruhman S. Asymmetric Toggling of a Natural Photoswitch: Ultrafast Spectroscopy of Anabaena Sensory Rhodopsin. J Am Chem Soc 2011; 133:20922-32. [DOI: 10.1021/ja208371g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rinat Rozin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, South Korea
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
17
|
Groma GI, Colonna A, Martin JL, Vos MH. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy. Biophys J 2011; 100:1578-86. [PMID: 21402041 DOI: 10.1016/j.bpj.2011.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process.
Collapse
Affiliation(s)
- Géza I Groma
- Laboratory for Optical Biosciences, Ecole Polytechnique, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Palaiseau, France.
| | | | | | | |
Collapse
|
18
|
Kraack JP, Buckup T, Hampp N, Motzkus M. Ground- and Excited-State Vibrational Coherence Dynamics in Bacteriorhodopsin Probed With Degenerate Four-Wave-Mixing Experiments. Chemphyschem 2011; 12:1851-9. [DOI: 10.1002/cphc.201100032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/24/2011] [Indexed: 11/06/2022]
|
19
|
Kobayashi T, Yabushita A. Transition-state spectroscopy using ultrashort laser pulses. CHEM REC 2011; 11:99-116. [DOI: 10.1002/tcr.201000018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Indexed: 11/11/2022]
|
20
|
Siewertsen R, Schönborn JB, Hartke B, Renth F, Temps F. Superior Z → E and E → Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at λ = 387 and 490 nm. Phys Chem Chem Phys 2011; 13:1054-63. [DOI: 10.1039/c0cp01148g] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Siewertsen R, Strübe F, Mattay J, Renth F, Temps F. Tuning of switching properties and excited-state dynamics of fulgides by structural modifications. Phys Chem Chem Phys 2011; 13:3800-8. [DOI: 10.1039/c0cp01890b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Kraack JP, Buckup T, Motzkus M. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases. Phys Chem Chem Phys 2011; 13:21402-10. [DOI: 10.1039/c1cp22245g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Yabushita A, Kobayashi T. Vibrational fine structures revealed by the frequency-to-time fourier transform of the transient spectrum in bacteriorhodopsin. J Phys Chem B 2010; 114:4632-6. [PMID: 20222701 DOI: 10.1021/jp9090014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A vibrational progression that is hidden in a featureless spectrum of induced absorption and stimulated emission was found in time-resolved absorption change spectra. The ultrahigh time resolution of the pump-probe measurement made by using an ultrashort laser pulse localizes the wave packet along the potential multimode hyper surfaces, represented by a vibrational progression. The transition energy of the induced absorption and stimulated emission corresponds to a localized point (space) on the hyper surface, which is visited by the wave packets with fixed phases.
Collapse
Affiliation(s)
- Atsushi Yabushita
- Department of Electrophysics, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu 3005, Taiwan.
| | | |
Collapse
|
24
|
Briand J, Bräm O, Réhault J, Léonard J, Cannizzo A, Chergui M, Zanirato V, Olivucci M, Helbing J, Haacke S. Coherent ultrafast torsional motion and isomerization of a biomimetic dipolar photoswitch. Phys Chem Chem Phys 2010; 12:3178-87. [PMID: 20237707 DOI: 10.1039/b918603d] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond fluorescence up-conversion, UV-Vis and IR transient absorption spectroscopy are used to study the photo-isomerization dynamics of a new type of zwitterionic photoswitch based on a N-alkylated indanylidene pyrroline Schiff base framework (ZW-NAIP). The system is biomimetic, as it mimics the photophysics of retinal, in coupling excited state charge translocation and isomerization. While the fluorescence lifetime is 140 fs, excited state absorption persists over 230 fs in the form of a vibrational wavepacket according to twisting of the isomerizing double bond. After a short "dark" time window in the UV-visible spectra, which we associate with the passage through a conical intersection (CI), the wavepacket appears on the ground state potential energy surface, as evidenced by the transient mid-IR data. This allows for a precise timing of the photoreaction all the way from the initial Franck-Condon region, through the CI and into both ground state isomers, until incoherent vibrational relaxation dominates the dynamics. The photo-reaction dynamics remarkably follow those observed for retinal in rhodopsin, with the additional benefit that in ZW-NAIP the conformational change reverses the zwitterion dipole moment direction. Last, the pronounced low-frequency coherences make these molecules ideal systems for investigating wavepacket dynamics in the vicinity of a CI and for coherent control experiments.
Collapse
Affiliation(s)
- Julien Briand
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg University, CNRS, IPCMS-DON, 23, rue du Loess, 67034 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bismuth O, Komm P, Friedman N, Eliash T, Sheves M, Ruhman S. Deciphering Excited State Evolution in Halorhodopsin with Stimulated Emission Pumping. J Phys Chem B 2010; 114:3046-51. [DOI: 10.1021/jp910853n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oshrat Bismuth
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pavel Komm
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noga Friedman
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Smitienko OA, Mozgovaya MN, Shelaev IV, Gostev FE, Feldman TB, Nadtochenko VA, Sarkisov OM, Ostrovsky MA. Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin. BIOCHEMISTRY (MOSCOW) 2010; 75:25-35. [DOI: 10.1134/s0006297910010049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Comparing photochemistry of n- and tert-butylamine all-trans retinal protonated Schiff-base: Effects of C N configurational inhomogeneity. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Control of retinal isomerization in bacteriorhodopsin in the high-intensity regime. Proc Natl Acad Sci U S A 2009; 106:10896-900. [PMID: 19564608 DOI: 10.1073/pnas.0904589106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A learning algorithm was used to manipulate optical pulse shapes and optimize retinal isomerization in bacteriorhodopsin, for excitation levels up to 1.8 x 10(16) photons per square centimeter. Below 1/3 the maximum excitation level, the yield was not sensitive to pulse shape. Above this level the learning algorithm found that a Fourier-transform-limited (TL) pulse maximized the 13-cis population. For this optimal pulse the yield increases linearly with intensity well beyond the saturation of the first excited state. To understand these results we performed systematic searches varying the chirp and energy of the pump pulses while monitoring the isomerization yield. The results are interpreted including the influence of 1-photon and multiphoton transitions. The population dynamics in each intermediate conformation and the final branching ratio between the all-trans and 13-cis isomers are modified by changes in the pulse energy and duration.
Collapse
|
29
|
Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues. Proc Natl Acad Sci U S A 2009; 106:7718-23. [PMID: 19416877 DOI: 10.1073/pnas.0812877106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrafast transient absorption spectroscopy of wild-type bacteriorhodopsin (WT bR) and 2 tryptophan mutants (W86F and W182F) is performed with visible light excitation (pump) and UV probe. The aim is to investigate the photoinduced change in the charge distribution with 50-fs time resolution by probing the effects on the tryptophan absorption bands. A systematic, quantitative comparison of the transient absorption of the 3 samples is carried out. The main result is the absence in the W86F mutant of a transient induced absorption band observed at approximately 300-310 nm in WT bR and W182F. A simple model describing the dipolar interaction of the retinal moiety with the 2 tryptophan residues of interest allows us to reproduce the dominant features of the transient signals observed in the 3 samples at ultrashort pump-probe delays. In particular, we show that Trp(86) undergoes a significant Stark shift induced by the transient retinal dipole moment. The corresponding transient signal can be isolated by direct subtraction of experimental data obtained for WT bR and W86F. It shows an instantaneous rise, followed by a decay over approximately 500 fs corresponding to the isomerization time. Interestingly, it does not decay back to zero, thus revealing a change in the local electrostatic environment that remains long after isomerization, in the K intermediate state of the protein cycle. The comparison of WT bR and W86F also leads to a revised interpretation of the overall transient UV absorption of bR.
Collapse
|
30
|
Yabushita A, Kobayashi T. Primary conformation change in bacteriorhodopsin on photoexcitation. Biophys J 2009; 96:1447-61. [PMID: 19217861 DOI: 10.1016/j.bpj.2008.10.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 10/15/2008] [Indexed: 11/29/2022] Open
Abstract
Ultrafast dynamics of bacteriorhodopsin (bR) has been extensively studied experimentally and theoretically. However, there are several contradictory results reported, indicating that its detailed dynamics and initial process have not yet been fully clarified. In this work, changes in the amplitude and phase of molecular vibration in the isomerization process of bR were real-time probed simultaneously at 128 different wavelengths through intensity modulation of the electronic transition. Systematic information on the transient change in continuous spectrum extending from 505 nm (2.45 eV) to 675 nm (1.84 eV) showed different dynamics in each spectral region reflecting the difference in the excited states and intermediates dominating the dynamics during the photoisomerization. Careful analysis of the transient spectral changes and spectrograms calculated from the vibrational real-time traces elucidated that the primary event just after photoexcitation is the deformation of the retinal configuration, which decays within 30 fs near the C=N bond in the protonated Schiff base. The intensity of C=N stretching mode starts to decrease before the initiation of the frequency modulation of the C=C stretching mode. The C=C stretching mode frequency was modulated by a coupled torsion around the C13=C14 bond, leading to the photoisomerization around the bond. This study clarified the dynamics of the C=N and C=C stretching modes working as key vibration modes in the photoisomerization of bR. Furthermore, we have elucidated the modulation and decay dynamics of the C=C stretching mode in the photoreaction starting from H (Franck-Condon excited state) followed by I (twisted excited), and J (first intermediate) states.
Collapse
Affiliation(s)
- Atsushi Yabushita
- Department of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan.
| | | |
Collapse
|
31
|
Zgrablić G, Haacke S, Chergui M. Heterogeneity and Relaxation Dynamics of the Photoexcited Retinal Schiff Base Cation in Solution. J Phys Chem B 2009; 113:4384-93. [DOI: 10.1021/jp8077216] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Goran Zgrablić
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, BSP, CH-1015 Lausanne-Dorigny, Switzerland, Sincrotrone Trieste Elettra, S.S. 14 km 163.5 in Area Science Park, 34012 Basovizza, Trieste, Italy, and Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-ULP, 67034 Strasbourg Cédex, France
| | - Stefan Haacke
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, BSP, CH-1015 Lausanne-Dorigny, Switzerland, Sincrotrone Trieste Elettra, S.S. 14 km 163.5 in Area Science Park, 34012 Basovizza, Trieste, Italy, and Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-ULP, 67034 Strasbourg Cédex, France
| | - Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, BSP, CH-1015 Lausanne-Dorigny, Switzerland, Sincrotrone Trieste Elettra, S.S. 14 km 163.5 in Area Science Park, 34012 Basovizza, Trieste, Italy, and Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-ULP, 67034 Strasbourg Cédex, France
| |
Collapse
|
32
|
|
33
|
Kahan A, Nahmias O, Friedman N, Sheves M, Ruhman S. Following Photoinduced Dynamics in Bacteriorhodopsin with 7-fs Impulsive Vibrational Spectroscopy. J Am Chem Soc 2006; 129:537-46. [PMID: 17227016 DOI: 10.1021/ja064910d] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sub-10-fs laser pulses are used to impulsively photoexcite bacteriorhodopsin (BR) suspensions and probe the evolution of the resulting vibrational wave packets. Fourier analysis of the spectral modulations induced by transform-limited as well as linearly chirped excitation pulses allows the delineation of excited- and ground-state contributions to the data. On the basis of amplitude and phase variations of the modulations as a function of the dispersed probe wavelength, periodic modulations in absorption above 540 nm are assigned to ground-state vibrational coherences induced by resonance impulsive Raman spectral activity (RISRS). Probing at wavelengths below 540 nm-the red edge of the intense excited-state absorption band-uncovers new vibrational features which are accordingly assigned to wave packet motions along bound coordinates on the short-lived reactive electronic surface. They consist of high- and low-frequency shoulders adjacent to the strong C=C stretching and methyl rock modes, respectively, which have ground-state frequencies of 1008 and 1530 cm-1. Brief activity centered at approximately 900 cm-1, which is characteristic of ground-state HOOP modes, and strong modulations in the torsional frequency range appear as well. Possible assignments of the bands and their implication to photoinduced reaction dynamics in BR are discussed. Reasons for the absence of similar signatures in the pump-probe spectral modulations at longer probing wavelengths are considered as well.
Collapse
Affiliation(s)
- Anat Kahan
- Department of Physical Chemistry and the Farkas Center for Light Induced Processes, Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
34
|
Magyari K, Bálint Z, Simon V, Váró G. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2006; 85:140-4. [PMID: 16904334 DOI: 10.1016/j.jphotobiol.2006.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/08/2006] [Accepted: 05/20/2006] [Indexed: 11/20/2022]
Abstract
The function of three types of bacteriorhodopsins was compared: the wild-type, the bleached and retinal reconstituted and retinal deficient bacteriorhodopsin after retinal addition. The apparent pK(a) of the proton acceptor group for the bleached BR and retinal deficient BR shifted toward higher pH values compared to the wild-type BR. Fitting the photocycle model to the absorption kinetic signals for all three proteins showed the existence of the same intermediates, but the time-dependent concentration of the intermediates was different. Although measurements were made at pH 7, the absorption kinetics and photoelectric signals in both retinal reconstituted samples acted as wild-type bacteriorhodopsin at significantly higher pH. Below pH 3 the retinal deficient and reconstituted sample bleached. These results suggested that the added retinal was not able to rebind in the same position in the protein as in native bacteriorhodopsin. This points out that care should be taken, when bleached bacteriorhodopsin is reconstituted with different retinal analogs.
Collapse
Affiliation(s)
- Klára Magyari
- Department of Physics, University "Babes-Bolyai" Cluj-Napoca, Romania
| | | | | | | |
Collapse
|
35
|
Prokhorenko VI, Nagy AM, Waschuk SA, Brown LS, Birge RR, Miller RJD. Coherent control of retinal isomerization in bacteriorhodopsin. Science 2006; 313:1257-61. [PMID: 16946063 DOI: 10.1126/science.1130747] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Optical control of the primary step of photoisomerization of the retinal molecule in bacteriorhodopsin from the all-trans to the 13-cis state was demonstrated under weak field conditions (where only 1 of 300 retinal molecules absorbs a photon during the excitation cycle) that are relevant to understanding biological processes. By modulating the phases and amplitudes of the spectral components in the photoexcitation pulse, we showed that the absolute quantity of 13-cis retinal formed upon excitation can be enhanced or suppressed by +/-20% of the yield observed using a short transform-limited pulse having the same actinic energy. The shaped pulses were shown to be phase-sensitive at intensities too low to access different higher electronic states, and so these pulses apparently steer the isomerization through constructive and destructive interference effects, a mechanism supported by observed signatures of vibrational coherence. These results show that the wave properties of matter can be observed and even manipulated in a system as large and complex as a protein.
Collapse
Affiliation(s)
- Valentyn I Prokhorenko
- Institute for Optical Sciences, Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, M5S3H6, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Schenkl S, van Mourik F, Friedman N, Sheves M, Schlesinger R, Haacke S, Chergui M. Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption. Proc Natl Acad Sci U S A 2006; 103:4101-6. [PMID: 16537491 PMCID: PMC1449653 DOI: 10.1073/pnas.0506303103] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A visible-pump/UV-probe transient absorption is used to characterize the ultrafast dynamics of bacteriorhodopsin with 80-fs time resolution. We identify three spectral components in the 265- to 310-nm region, related to the all-trans retinal, tryptophan (Trp)-86 and the isomerized photoproduct, allowing us to map the dynamics from reactants to products, along with the response of Trp amino acids. The signal of the photoproduct appears with a time delay of approximately 250 fs and is characterized by a steep rise ( approximately 150 fs), followed by additional rise and decay components, with time scales characteristic of the J intermediate. The delayed onset and the steep rise point to an impulsive formation of a transition state on the way to isomerization. We argue that this impulsive formation results from a splitting of a wave packet of torsional modes on the potential surface at the branching between the all-trans and the cis forms. Parallel to these dynamics, the signal caused by Trp response rises in approximately 200 fs, because of the translocation of charge along the conjugate chain, and possible mechanisms are presented, which trigger isomerization.
Collapse
Affiliation(s)
- S. Schenkl
- *Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingeniérie Chimiques, Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
| | - F. van Mourik
- *Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingeniérie Chimiques, Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
| | - N. Friedman
- Departments of Organic Chemistry and Chemical Services, The Weizmann Institute of Sciences, Rehovot 76100, Israel; and
| | - M. Sheves
- Departments of Organic Chemistry and Chemical Services, The Weizmann Institute of Sciences, Rehovot 76100, Israel; and
| | - R. Schlesinger
- Institute for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - S. Haacke
- *Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingeniérie Chimiques, Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
| | - M. Chergui
- *Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingeniérie Chimiques, Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|