Kayinamura YP, Ovadia M, Zavitz D, Rubinson JF. Investigation of near ohmic behavior for poly(3,4-ethylenedioxythiophene): a model consistent with systematic variations in polymerization conditions.
ACS APPLIED MATERIALS & INTERFACES 2010;
2:2653-2662. [PMID:
20715789 DOI:
10.1021/am100480s]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The impedance behavior of semiconducting polymer film electrodes based on poly(3,4-ethylenedioxythiophene) (PEDOT) in combination with a series of anionic dopants has been investigated using electrochemical impedance spectroscopy (EIS) over the frequency range from 0.1 Hz to 100 kHz. Films were electrodeposited on gold-coated Pt wire electrodes from a nonaqueous solution containing 3,4-ethylenedioxythiophene (EDOT). EIS results reveal that, under the optimal synthesis conditions, PEDOT electrodes consistently exhibit low, frequency-independent impedance over a wide frequency range (from ∼10 Hz to 100 kHz). These results suggest that the behavior originates from the two-layer homogeneous morphology of the film. A model for conduction in the films that is supported by experimental evidence is proposed, and EIS data for electrodes produced under a variety of electropolymerization conditions are presented.
Collapse