1
|
Geçit FH, Aksu H. Charge-Transfer Processes within the Isolated Tetramer Models of the Reaction Center Rhodobacter sphaeroides. J Phys Chem B 2025; 129:2915-2924. [PMID: 40062696 DOI: 10.1021/acs.jpcb.4c08094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Over the last two decades, advancements in structural resolution and spectral characterization have significantly enhanced our understanding of photosynthesis. However, the complexity of photosystem (PS) supercomplexes still presents challenges. In the Rhodobacter sphaeroides reaction center (RSRC), the charge separation process begins with a charge-transfer (CT) step at the special pair (P), a dimer of bacteriochlorophyll a (BChl), which acts as the donor, and continues with electron transport through the active pigments. Our computational study explores CT rectification in RSRC. We find that the CT rate is faster in the A branch compared with the B branch, which can be attributed to the orientation of the pigments near P and the influence of the surrounding protein complex on the dielectric constant. The calculated rate constants are derived using Fermi's golden rule, with a first-principles approach that employs an optimally tuned screened range-separated hybrid functional within a polarizable continuum model (SRSH-PCM).
Collapse
Affiliation(s)
- Fehime Hayal Geçit
- Department of Physics, Faculty of Science at Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| | - Hüseyin Aksu
- Department of Physics, Faculty of Science at Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| |
Collapse
|
2
|
Aksu H, Maiti B, Ptaszek M, Dunietz BD. Photoinduced charge transfer in Zn(II) and Au(III)-ligated symmetric and asymmetric bacteriochlorin dyads: A computational study. J Chem Phys 2021; 153:134111. [PMID: 33032416 DOI: 10.1063/5.0023609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The excited-state properties and photoinduced charge-transfer (CT) kinetics in a series of symmetrical and asymmetrical Zn- and Au-ligated meso-meso-connected bacteriochlorin (BChl) complexes are studied computationally. BChl derivatives, which are excellent near-IR absorbing chromophores, are found to play a central role in bacterial photosynthetic reaction centers but are rarely used in artificial solar energy harvesting systems. The optical properties of chemically linked BChl complexes can be tuned by varying the linking group and involving different ligated metal ions. We investigate charge transfer in BChl dyads that are either directly linked or through a phenylene ring (1,4-phenylene) and which are ligating Zn or Au ions. The directly linked dyads with a nearly perpendicular arrangement of the BChl units bear markedly different properties than phenylene linked dyads. In addition, we find that the dielectric dependence of the intramolecular CT rate is very strong in neutral Zn-ligated dyads, whereas cationic Au-ligated dyads show negligible dielectric dependence of the CT rate. Rate constants of the photo induced CT process are calculated at the semiclassical Marcus level and are compared to fully quantum mechanical Fermi's golden rule based values. The rates are calculated using a screened range separated hybrid functional that offers a consistent framework for addressing environment polarization. We study solvated systems in two solvents of a low and a high scalar dielectric constant.
Collapse
Affiliation(s)
- Huseyin Aksu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA
| | - Buddhadev Maiti
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland 21250-1000, USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA
| |
Collapse
|
3
|
Aksu H, Schubert A, Bhandari S, Yamada A, Geva E, Dunietz BD. On the Role of the Special Pair in Photosystems as a Charge Transfer Rectifier. J Phys Chem B 2020; 124:1987-1994. [PMID: 32109062 DOI: 10.1021/acs.jpcb.9b11431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The special pair, a bacteriochlorophyll a (BChl) dimer found at the core of bacterial reaction centers, is known to play a key role in the functionality of photosystems as a precursor to the photosynthesis process. In this paper, we analyze the inherent affinity of the special pair to rectify the intrapair photo-induced charge transfer (CT). In particular, we show that the molecular environment affects the nuclear geometry, resulting in symmetry breaking between the two possible intrapair CT processes. To this end, we study the relationships of the intrapair CT and the molecular geometry with respect to the effective dielectric constant provided by the molecular environment. We identify the special pair structural feature that breaks the symmetry between the two molecules, leading to CT rectification. Excited state energies, oscillator strengths, and electronic coupling values are obtained via time-dependent density functional theory, employing a recently developed framework based on a screened range-separated hybrid functional within a polarizable continuum model (SRSH-PCM). We analyze the rectification capability of the special pair by calculating the CT rates using a first-principles-based Fermi's golden rule approach.
Collapse
Affiliation(s)
- Huseyin Aksu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Alexander Schubert
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Atsushi Yamada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
4
|
Chojecki M, Rutkowska-Zbik D, Korona T. Dimerization Behavior of Methyl Chlorophyllide a as the Model of Chlorophyll a in the Presence of Water Molecules-Theoretical Study. J Chem Inf Model 2019; 59:2123-2140. [PMID: 30998013 DOI: 10.1021/acs.jcim.8b00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A dimerization of methyl chlorophyllide a molecules and a role of water in stabilization and properties of methyl chlorophyllide a dimers were studied by means of symmetry-adapted perturbation theory (SAPT), functional-group SAPT (F-SAPT), density-functional theory (DFT), and time-dependent DFT approaches. The quantification of various types of interactions, such as π-π stacking, coordinative, and hydrogen bonding by applying the F-SAPT energy decomposition scheme shows the major role of the magnesium atom and the pheophytin macrocycle in the stability of the complex. The examination of interaction energy components with respect to a mutual orientation of monomers and in the presence or absence of water molecules reveals that the dispersion energy is the main binding factor of the interaction, while water molecules tend to weaken the attraction between methyl chlorophyllide a species. The dimerization can be seen in computed UV-vis spectra, and results in a doubling of the lowest peaks, as compared to the monomer spectrum, and in an intensity rise of the lowest 1.8 and 2.4 eV peaks at a cost of the 3.5 eV peaks for the majority of dimer configurations. The complexation of water has little effect on the peaks' position; however, it affects the overall shape of simulated spectra through changes in peak intensities, which is strongly dependent on the structure of the complex. The VCD spectra for the dimers show several characteristic features attributed to the interaction of substituting groups and/or water ligand attached to macrocycle groups belonging to different monomers. VCD is sensitive to the type of the formed dimer, but not to the number of water molecules it contains. This and several other features, as well as the differential UV-vis spectra, may serve as the indicator of the presence of a given dimer structure in the experiment.
Collapse
Affiliation(s)
- Michał Chojecki
- Faculty of Chemistry , University of Warsaw , ul. Pasteura 1 , 02-093 Warsaw , Poland
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , ul. Niezapominajek 8 , 30-239 Cracow , Poland
| | - Tatiana Korona
- Faculty of Chemistry , University of Warsaw , ul. Pasteura 1 , 02-093 Warsaw , Poland
| |
Collapse
|
5
|
KUWAHATA K, SAKUMA Y, KAWASHIMA Y, FUKUSHIMA A, NAGASHIMA U, KUSANO M, TACHIKAWA M. Application of Quantum Chemical Calculation for Prediction of Ultraviolet-vis Spectrum of Plant Self-protective MetabolitesProduced by UV-B Irradiation. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2019. [DOI: 10.2477/jccj.2019-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kazuaki KUWAHATA
- Graduate School of Nanobioscience, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yui SAKUMA
- Graduate School of Nanobioscience, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yukio KAWASHIMA
- RIKEN, Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047 Japan
| | - Atsushi FUKUSHIMA
- RIKEN, Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsukumi-ku, Yokohama, Japan
| | - Umpei NAGASHIMA
- Foundation for Computational Science, 7-1-28 Monatojimaminami-cho, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| | - Miyako KUSANO
- RIKEN, Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsukumi-ku, Yokohama, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Masanori TACHIKAWA
- Graduate School of Nanobioscience, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
6
|
Zheng F, Jin M, Mančal T, Zhao Y. Study of Electronic Structures and Pigment–Protein Interactions in the Reaction Center of Thermochromatium tepidum with a Dynamic Environment. J Phys Chem B 2016; 120:10046-10058. [DOI: 10.1021/acs.jpcb.6b06628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fulu Zheng
- Division
of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Mengting Jin
- Division
of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Tomáš Mančal
- Faculty
of Mathematics and Physics, Charles University in Prague, Ke Karlovu
5, 121 16 Prague
2, Czech Republic
| | - Yang Zhao
- Division
of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
7
|
Suomivuori CM, Winter NOC, Hättig C, Sundholm D, Kaila VRI. Exploring the Light-Capturing Properties of Photosynthetic Chlorophyll Clusters Using Large-Scale Correlated Calculations. J Chem Theory Comput 2016; 12:2644-51. [DOI: 10.1021/acs.jctc.6b00237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Carl-Mikael Suomivuori
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtanens plats
1), FIN-00014 Helsinki, Finland
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, Garching, Germany
| | - Nina O. C. Winter
- Ruhr-University at Bochum, Universitätsstraße
150, 44801 Bochum, Germany
| | - Christof Hättig
- Ruhr-University at Bochum, Universitätsstraße
150, 44801 Bochum, Germany
| | - Dage Sundholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtanens plats
1), FIN-00014 Helsinki, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, Garching, Germany
| |
Collapse
|
8
|
Solovyeva A, Pavanello M, Neugebauer J. Spin densities from subsystem density-functional theory: Assessment and application to a photosynthetic reaction center complex model. J Chem Phys 2012; 136:194104. [DOI: 10.1063/1.4709771] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
9
|
Wawrzyniak PK, Beerepoot MTP, de Groot HJM, Buda F. Acetyl group orientation modulates the electronic ground-state asymmetry of the special pair in purple bacterial reaction centers. Phys Chem Chem Phys 2011; 13:10270-9. [DOI: 10.1039/c1cp20213h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Nilsson Lill SO. On the dimerization of chlorophyll in photosystem II. Phys Chem Chem Phys 2011; 13:16022-7. [DOI: 10.1039/c1cp21390c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Takano Y, Nakamura H. Electronic structures of heme a of cytochrome c oxidase in the redox states--charge density migration to the propionate groups of heme a. J Comput Chem 2010; 31:954-62. [PMID: 19645053 DOI: 10.1002/jcc.21379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The electronic structures of heme a of cytochrome c oxidase in the redox states were studied, using hybrid density functional theory with a polarizable continuum model and a point charge model. We found that the most stable electronic configurations of the d electrons of the Fe ion are determined by the orbital interactions of the d orbitals of the Fe ion with the pi orbitals of the porphyrin ring and the His residues. The redox reaction of the Fe ion influences the charge density on the formyl group through the pi conjugation of the porphyrin ring. In addition, we found the charge transfer from the Fe ion to the propionate group of heme a in the redox change despite the lack of the pi-conjugation. We elucidated that the charge propagation originates from the heme a structure itself and that the origin of the charge delocalization to the heme propionate is the orbital interactions between the d orbital of the Fe ion and the p orbitals of the carboxylate part of the heme propionate via the pi conjugation of the porphyrin ring and the sigma* orbital of the C-C bond of the propionate group. The electrostatic effect by surrounding proteins enhances the charge transfer from the Fe ion to the propionate group. These results indicate that heme propionate groups serve electron mediators in electron transfer as well as electrostatic anchors, and that proteins surrounding the active site reinforce the congenital abilities of the cofactors.
Collapse
Affiliation(s)
- Yu Takano
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
12
|
Pudlak M, Pincak R. Electronic pathway in reaction centers from Rhodobacter sphaeroides and Chloroflexus aurantiacus. J Biol Phys 2010; 36:273-89. [PMID: 21629589 DOI: 10.1007/s10867-009-9183-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 12/09/2009] [Indexed: 12/13/2022] Open
Abstract
The reaction centers (RC) of Chloroflexus aurantiacus and Rhodobacter sphaeroidesH(M182)L mutant were investigated. Prediction for electron transfer (ET) at very low temperatures was also performed. To describe the kinetics of the C. aurantiacus RCs, the incoherent model of electron transfer was used. It was shown that the asymmetry in electronic coupling parameters must be included to explain the experiments. For the description of R. sphaeroidesH(M182)L mutant RCs, the coherent and incoherent models of electron transfer were used. These two models are discussed with regard to the observed electron transfer kinetics. It seems likely that the electron transfer asymmetry in R. sphaeroides RCs is caused mainly by the asymmetry in the free energy levels of L- and M-side cofactors. In the case of C. aurantiacus RCs, the unidirectionality of the charge separation can be caused mainly by the difference in the electronic coupling parameters in two branches.
Collapse
|
13
|
YAMASAKI H, TAKANO Y, NAKAMURA H. The Structural Origin of the Electronic Asymmetry of the Special Pair in the Photosynthetic Reaction Center: Quantum Chemical and Bioinformatics Approaches. ACTA ACUST UNITED AC 2009. [DOI: 10.2142/biophys.49.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Yu TAKANO
- Institute for Protein Research, Osaka University
| | | |
Collapse
|
14
|
Robotham B, O’Malley PJ. Density Functional Studies of the Spin Density Distribution of the P865 Cation Radical in the Reaction Center of Rb sphaeroides. Biochemistry 2008; 47:13261-6. [DOI: 10.1021/bi801395s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Robotham
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Patrick J. O’Malley
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
15
|
Yamasaki H, Takano Y, Nakamura H. Theoretical Investigation of the Electronic Asymmetry of the Special Pair Cation Radical in the Photosynthetic Type-II Reaction Center. J Phys Chem B 2008; 112:13923-33. [DOI: 10.1021/jp806309p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hideki Yamasaki
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu Takano
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
16
|
Takahashi R, Hasegawa K, Noguchi T. Effect of charge distribution over a chlorophyll dimer on the redox potential of P680 in photosystem II as studied by density functional theory calculations. Biochemistry 2008; 47:6289-91. [PMID: 18500822 DOI: 10.1021/bi8007998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of charge distribution over a chlorophyll dimer on the redox potential of P680 in photosystem II was studied by density functional theory calculations using the P680 coordinates in the X-ray structure. From the calculated ionization potentials of the dimer and the monomeric constituents, the decrease in the redox potential by charge delocalization over the dimer was estimated to be approximately 140 mV. Such charge delocalization was previously observed in the isolated D1-D2-Cyt b 559 complexes, whereas the charge was primarily localized on P D1 in the core complexes. The calculated potential decrease of approximately 140 mV can explain the inhibition of Y Z oxidation in the former complexes and in turn implies that the charge localization on P D1 upon formation of the core complex increases the P680 potential to the level necessary for water oxidation.
Collapse
Affiliation(s)
- Ryouta Takahashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | | | |
Collapse
|
17
|
Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M. Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 2008; 283:18198-209. [PMID: 18458090 DOI: 10.1074/jbc.m801805200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photochemically active photosystem (PS) I complexes were purified from the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017, and several of their properties were characterized. PS I complexes consist of 11 subunits, including PsaK1 and PsaK2; a new small subunit was identified and named Psa27. The new subunit might replace the function of PsaI that is absent in A. marina. The amounts of pigments per one molecule of Chl d' were 97.0 +/- 11.0 Chl d, 1.9 +/- 0.5 Chl a, 25.2 +/- 2.4 alpha-carotene, and two phylloquinone molecules. The light-induced Fourier transform infrared difference spectroscopy and light-induced difference absorption spectra reconfirmed that the primary electron donor of PS I (P740) was the Chl d dimer. In addition to P740, the difference spectrum contained an additional band at 728 nm. The redox potentials of P740 were estimated to be 439 mV by spectroelectrochemistry; this value was comparable with the potential of P700 in other cyanobacteria and higher plants. This suggests that the overall energetics of the PS I reaction were adjusted to the electron acceptor side to utilize the lower light energy gained by P740. The distribution of charge in P740 was estimated by a density functional theory calculation, and a partial localization of charge was predicted to P1 Chl (special pair Chl on PsaA). Based on differences in the protein matrix and optical properties of P740, construction of the PS I core in A. marina was discussed.
Collapse
Affiliation(s)
- Tatsuya Tomo
- Department of Technology and Ecology, Hall of Global Environmental Research, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|