1
|
Krassnig SC, Mäser M, Probst NA, Werner J, Schlett C, Schumann N, von Scheven G, Mangerich A, Bürkle A. Comparative analysis of chlorambucil-induced DNA lesion formation and repair in a spectrum of different human cell systems. Toxicol Rep 2023; 10:171-189. [PMID: 36714466 PMCID: PMC9881385 DOI: 10.1016/j.toxrep.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Chlorambucil (CLB) belongs to the class of nitrogen mustards (NMs), which are highly reactive bifunctional alkylating agents and were the first chemotherapeutic agents developed. They form DNA interstrand crosslinks (ICLs), which cause a blockage of DNA strand separation, inhibiting essential processes in DNA metabolism like replication and transcription. In fast replicating cells, e.g., tumor cells, this can induce cell death. The upregulation of ICL repair is thought to be a key factor for the resistance of tumor cells to ICL-inducing cytostatic agents including NMs. To monitor induction and repair of CLB-induced ICLs, we adjusted the automated reversed fluorometric analysis of alkaline DNA unwinding assay (rFADU) for the detection of ICLs in adherent cells. For the detection of monoalkylated DNA bases we established an LC-MS/MS method. We performed a comparative analysis of adduct formation and removal in five human cell lines and in peripheral blood mononuclear cells (PBMCs) after treatment with CLB. Dose-dependent increases in adduct formation were observed, and suitable treatment concentrations were identified for each cell line, which were then used for monitoring the kinetics of adduct formation. We observed significant differences in the repair kinetics of the cell lines tested. For example, in A2780 cells, hTERT immortalized VH10 cells, and in PBMCs a time-dependent repair of the two main monoalkylated DNA-adducts was confirmed. Regarding ICLs, repair was observed in all cell systems except for PBMCs. In conclusion, LC-MS/MS analyses combined with the rFADU technique are powerful tools to study the molecular mechanisms of NM-induced DNA damage and repair. By applying these methods to a spectrum of human cell systems of different origin and transformation status, we obtained insight into the cell-type specific repair of different CLB-induced DNA lesions, which may help identify novel resistance mechanisms of tumors and define molecular targets for therapeutic interventions.
Collapse
Key Words
- BER, base excision repair
- CLB, chlorambucil
- Chlorambucil
- DNA repair kinetics
- ICL, interstrand crosslink
- Interstrand crosslink
- MS, mass spectrometry
- Mass spectrometry
- Monoalkylated DNA adducts
- NER, nucleotide excision repair
- NM, Nitrogen mustard
- Nitrogen mustard
- PBMCs, peripheral blood mononuclear cells
- PI, propidium iodide
- RPE-1, human retinal pigment epithelial
- SD, standard deviation
- VH10, human foreskin fibroblasts
- dG, 2'-deoxyguanosine
- hTERT, human telomerase reverse transcriptase
- rFADU, reverse fluorometric analysis of alkaline DNA unwinding
Collapse
Affiliation(s)
- Sarah Ceylan Krassnig
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Marina Mäser
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nicola Anna Probst
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Jens Werner
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Charlotte Schlett
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nina Schumann
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Gudrun von Scheven
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany
| | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
2
|
Narayan V, Pandey AK, Dwivedi A, Mwankemwa BS, Maurya A, Sharma AK, Singh V. Comprehensive quantum chemical calculations and molecular docking analysis of uracil mustard by first principle. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Biswas S, Shah PK, Shukla PK. Methylation of DNA bases by methyl free radicals: mechanism of formation of C8-methylguanine. Struct Chem 2018. [DOI: 10.1007/s11224-018-1118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Dehestani M, Pourestarabadi S, Zeidabadinejad L. Quantum chemical investigation on the structural and electronic properties of α-, β-, and γ-cyclodextrin complexes: DFT and QTAIM analysis. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2016. [DOI: 10.1134/s0036024416060066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015; 16:26555-81. [PMID: 26556350 PMCID: PMC4661830 DOI: 10.3390/ijms161125971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.
Collapse
Affiliation(s)
- Gaëlle Savreux-Lenglet
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| |
Collapse
|
6
|
EBRAHIMI ALI, HABIBI-KHORASANI MOSTAFA, REZAZADEH SHIVA, BEHAZIN ROYA, AZIZI ABOLFAZL. Theoretical study on the detailed repair of O6-methyl guanine to guanine by cysteine. J CHEM SCI 2015. [DOI: 10.1007/s12039-014-0724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Goswami DG, Kumar D, Tewari-Singh N, Orlicky DJ, Jain AK, Kant R, Rancourt RC, Dhar D, Inturi S, Agarwal C, White CW, Agarwal R. Topical nitrogen mustard exposure causes systemic toxic effects in mice. ACTA ACUST UNITED AC 2014; 67:161-70. [PMID: 25481215 DOI: 10.1016/j.etp.2014.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40-80% mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures.
Collapse
Affiliation(s)
- Dinesh G Goswami
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anil K Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raymond C Rancourt
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepanshi Dhar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Swetha Inturi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Dutta BJ, Bhattacharyya PK. Reactivity and Aromaticity of Nucleobases are Sensitive Toward External Electric Field. J Phys Chem B 2014; 118:9573-82. [DOI: 10.1021/jp5047535] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Biswa Jyoti Dutta
- Department of Chemistry, Arya Vidyapeeth College, Guwahati, Assam 781016, India
| | | |
Collapse
|
9
|
Sinha S, Bhattacharyya PK. Alkylation of guanine by formononetin nitrogen mustard derivatives: A DFT study. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2013.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
|
11
|
Inturi S, Tewari-Singh N, Jain AK, Roy S, White CW, Agarwal R. Absence of a p53 allele delays nitrogen mustard-induced early apoptosis and inflammation of murine skin. Toxicology 2013; 311:184-90. [PMID: 23845566 DOI: 10.1016/j.tox.2013.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022]
Abstract
Bifunctional alkylating agent sulfur mustard (SM) and its analog nitrogen mustard (NM) cause DNA damage leading to cell death, and potentially activating inflammation. Transcription factor p53 plays a critical role in DNA damage by regulating cell cycle progression and apoptosis. Earlier studies by our laboratory demonstrated phosphorylation of p53 at Ser15 and an increase in total p53 in epidermal cells both in vitro and in vivo following NM exposure. To elucidate the role of p53 in NM-induced skin toxicity, we employed SKH-1 hairless mice harboring wild type (WT) or heterozygous p53 (p53+/-). Exposure to NM (3.2mg) caused a more profound increase in epidermal thickness and apoptotic cell death in WT relative to p53+/- mice at 24h. However, by 72h after exposure, there was a comparable increase in NM-induced epidermal cell death in both WT and p53+/- mice. Myeloperoxidase activity data showed that neutrophil infiltration was strongly enhanced in NM-exposed WT mice at 24h persisting through 72h of exposure. Conversely, robust NM-induced neutrophil infiltration (comparable to WT mice) was seen only at 72h after exposure in p53+/- mice. Similarly, NM-exposure strongly induced macrophage and mast cell infiltration in WT, but not p53+/- mice. Together, these data indicate that early apoptosis and inflammation induced by NM in mouse skin are p53-dependent. Thus, targeting this pathway could be a novel strategy for developing countermeasures against vesicants-induced skin injury.
Collapse
Affiliation(s)
- Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Almeida MO, Faria SHDM. Computational Study of the Alkylation Reaction of the Nitrogen Mustard Mechlorethamine Using NBO Model and the QTAIM Theory. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpc.2013.34016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Mechlorethamine (NTG) effects on the erythrocytic and leukocytic blood parameters during experimentally induced pleuritis in rats. Pharmacol Rep 2012; 64:650-72. [PMID: 22814019 DOI: 10.1016/s1734-1140(12)70861-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 01/12/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND According to cytotoxic and mutagenic properties, nitrogranulogen (NTG) changes the character of inflammatory reactions. Our previous studies have shown that NTG can enhance immunological defense reactions, because of its high affinity to DNA, and causes disorders in the synthesis of acute phase proteins (e.g., haptoglobin, transferrin, fibrinogen and complement protein C3) [15]. The aim of the current studies was to determine the influence of three different NTG doses: 5 μg/kg b.w. (body weight), 50 μg/kg b.w. and 600 μg/kg b.w. (cytotoxic dose) on the values of hematological blood parameters: RBC, HGB, HCT, RDW, MCV, MCH, MCHC, PLT, MPV, PCT, PDW, WBC, NEUT, LYMPH, MONO, EOS and BASO in pleuritis-induced rats. METHODS The animals were randomized into five groups: Group I - control group; Group II - IP (induced pleuritis) group; Group III - NTG5 group; Group IV - NTG50 group; Group V - NTG600 group. The blood was collected from all the groups at the 24(th) h, 48(th) h, and 72(nd) h after the initiation of the carrageenin-induced inflammatory reaction. RESULTS These investigations have revealed that NTG administered at the dose of 5 μg/kg b.w. caused the drop of the leukocyte and lymphocyte numbers and the rise of the neutrophil number at the 72(nd) h of the experimental-induced inflammatory reaction. Moreover, the dose of: 5 μg/kg b.w. was an immunomodulatory property and it also increased the erythrocytic parameters. On the contrary, NTG applied at the doses of 50 μg/kg and 600 μg/kg b.w. contributed to the drop of both: the erythrocytic and leukocytic parameters during the whole time of the inflammatory reaction. CONCLUSIONS The results suggest that nitrogranulogen affects the erythropoiesis.
Collapse
|
15
|
Polavarapu A, Stillabower JA, Stubblefield SGW, Taylor WM, Baik MH. The mechanism of guanine alkylation by nitrogen mustards: a computational study. J Org Chem 2012; 77:5914-21. [PMID: 22681226 DOI: 10.1021/jo300351g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thermodynamics and kinetics for the monofunctional binding of nitrogen mustard class of anticancer drugs to purine bases of DNA were studied computationally using guanine and adenine as model substrates. Mechlorethamine and melphalan are used as model systems in order to better understand the difference in antitumor activity of aliphatic and aromatic mustards, respectively. In good agreement with experiments that suggested the accumulation of a reactive intermediate in the case of mechlorethamine, our model predicts a significant preference for the formation of corresponding aziridinium ion for mechlorethamine, while the formation of the aziridinium ion is not computed to be preferred when melphalan is used. Two effects are found that contribute to this difference. First, the ground state of the drug shows a highly delocalized lone pair on the amine nitrogen of the melphalan, which makes the subsequent cyclization more difficult. Second, because of the aromatic substituent connected to the amine nitrogen of melphalan, a large energy penalty has to be paid for solvation. A detailed study of energy profiles for the two-step mechanism for alkylation of guanine and adenine was performed. Alkylation of guanine is ∼6 kcal mol(-1) preferred over adenine, and the factors contributing to this preference were explained in our previous study of cisplatin binding to purine bases. A detailed analysis of energy profiles of mechlorethamine and melphalan binding to guanine and adenine are presented to provide an insight into rate limiting step and the difference in reactivity and stability of the intermediate in both nitrogen mustards, respectively.
Collapse
Affiliation(s)
- Abhigna Polavarapu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
16
|
Sarmah N, Neog B, Bhattacharyya PK. Affinity of aziridinium ion towards different nucleophiles: A density functional study. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.07.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Całkosiński I, Rosińczuk-Tonderys J, Dzierzba K, Bronowicka-Szydełko A, Seweryn E, Majda J, Całkosińska M, Gamian A. Estimation of the action of three different mechlorethamine doses on biochemical parameters during experimentally induced pleuritis in rats. Pharmacol Rep 2011; 63:501-17. [PMID: 21602606 DOI: 10.1016/s1734-1140(11)70517-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 10/20/2010] [Indexed: 10/25/2022]
Abstract
Nitrogranulogen (NTG) may modify the character of inflammatory reactions. These modifications are a result of cytotoxic and mutagenic effects. NTG has high affinity to DNA and causes disorders in the synthesis of acute phase proteins (e.g., haptoglobin, transferrin, fibrinogen, and complement protein C3). Our previous studies have shown that small doses of NTG can enhance immunological defense reactions in the organism. The aim of the current studies was to determine how different NTG doses cause changes in the values of biochemical parameters in pleuritis-induced rats. The animals were randomized into five groups: Group I - control group; Group II - IP (induced pleuritis) group; Group III - NTG5 group; Group IV - NTG50 group; Group V - NTG600 group. Blood was collected from all groups of animals at 24, 48, and 72 h after the initiation of the carrageenin-induced inflammatory reaction. These investigations revealed that a dose of 5 μg NTG/kg b.w. (body weight) can change the character of the inflammation. Our studies also show that a dose of 600 μg NTG/kg b.w. causes a rapid decrease in the level of C3 at the 72 h of the experiment (after 3 applications every 24 h), which indicates a cytotoxic action of such a large NTG dose. NTG used at doses of 50 and 600 μg/kg b.w. causes the opposite metabolism of albumins and other serum proteins. Our studies show that the different doses of NTG have distinct effects on the inflammatory reaction.
Collapse
Affiliation(s)
- Ireneusz Całkosiński
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, PL 50-368 Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shukla P, Ganapathy V, Mishra P. A quantum theoretical study of reactions of methyldiazonium ion with DNA base pairs. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2011.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
|
20
|
De Rycke N, David O, Couty F. Assessing the rates of ring-opening of aziridinium and azetidinium ions: a dramatic ring size effect. Org Lett 2011; 13:1836-9. [PMID: 21384826 DOI: 10.1021/ol200348k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rates for the ring-opening of aziridinium and azetidinium ions by DMAP were measured. The four-membered ring appears to be ca. 17,000 times less reactive compared to the three-membered ring but is still highly relevant from a synthetic viewpoint. The electrophilicity of these strained ammonium ions is measured for the first time.
Collapse
Affiliation(s)
- Nicolas De Rycke
- Institut Lavoisier-Versailles, UMR 8180, Université de Versailles St-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
| | | | | |
Collapse
|
21
|
Mann DJ. Aziridinium Ion Ring Formation from Nitrogen Mustards: Mechanistic Insights from Ab Initio Dynamics. J Phys Chem A 2010; 114:4486-93. [DOI: 10.1021/jp9079553] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Shukla PK, Mishra PC. Repair of O6-methylguanine to guanine by cysteine in the absence and presence of histidine and by cysteine thiolate anion: a quantum chemical study. Phys Chem Chem Phys 2009; 11:8191-202. [PMID: 19756275 DOI: 10.1039/b908295f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O6-methylguanine (O6mG) is known to be a potential mutagenic modification of guanine as it mispairs with thymine in DNA and causes GC to AT transversion mutation. It is experimentally known that O6mG can be repaired to guanine by the protein O6-alkylguanine-DNA alkyltransferase (AGT), a cysteine residue being the main active site. In the present work, the mechanisms of repair of cis-O6-methylguanine (O6mG) to guanine due to its reaction with cysteine in the absence and presence of histidine and with cysteine thiolate anion were investigated theoretically using the B3LYP hybrid functional of density functional theory and the second order Møller-Plesset perturbation (MP2) theory. Reactant, intermediate and product complexes as well as transition states involved in these reactions were fully optimized at the B3LYP/6-31 + G* level of theory in the gas phase. The solvent effect of water was treated using the polarizable continuum model (PCM). Single point energy calculations were performed at the B3LYP/AUG-cc-pVDZ and MP2/6-31 + G* levels of theory in the gas phase and aqueous media. It is found that cysteine alone can repair the cis-O6mG to guanine, but the involvement of histidine along with cysteine lowers down the barrier energy significantly. However, when cysteine thiolate anion is used in place of cysteine, the barrier energy is strongly reduced. These results broadly support the suggestions based on experimental studies.
Collapse
Affiliation(s)
- P K Shukla
- Department of Physics, Banaras Hindu University, Varanasi - 221005, India
| | | |
Collapse
|
23
|
A quantum chemical study of reactions of DNA bases with sulphur mustard: a chemical warfare agent. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0514-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|