1
|
Ishihara S, Bahuguna A, Kumar S, Krishnan V, Labuta J, Nakanishi T, Tanaka T, Kataura H, Kon Y, Hong D. Cascade Reaction-Based Chemiresistive Array for Ethylene Sensing. ACS Sens 2020; 5:1405-1410. [PMID: 32390438 DOI: 10.1021/acssensors.0c00194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemiresistive sensors, which are based on semiconducting materials, offer real-time monitoring of environment. However, detection of nonpolar chemical substances is often challenging because of the weakness of the doping effect. Herein, we report a concept of combining a cascade reaction (CR) and a chemiresistive sensor array for sensitive and selective detection of a target analyte (herein, ethylene in air). Ethylene was converted to acetaldehyde through a Pd-catalyzed heterogeneous Wacker reaction at 40 °C, followed by condensation with hydroxylamine hydrochloride to emit HCl vapor. HCl works as a strong dopant for single-walled carbon nanotubes (SWCNTs), enabling the main sensor to detect ethylene with excellent sensitivity (10.9% ppm-1) and limit of detection (0.2 ppm) in 5 min. False responses that occur in the main sensor are easily discriminated by reference sensors that partially employ CR. Moreover, though the sensor monitors the variation of normalized electric resistance (ΔR/R0) in the SWCNT network, temporary deactivation of CR yields a sensor system that does not require analyte-free air for a baseline correction (i.e., estimation of R0) and recovery of response. The concept presented here is generally applicable and offers a solution for several issues that are inherently present in chemiresistive sensing systems.
Collapse
Affiliation(s)
- Shinsuke Ishihara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Ashish Bahuguna
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175075, India
| | - Suneel Kumar
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175075, India
| | - Venkata Krishnan
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175075, India
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Nakanishi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Dachao Hong
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| |
Collapse
|
2
|
Tune DD, Shapter JG. Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells. NANOMATERIALS 2013; 3:655-673. [PMID: 28348358 PMCID: PMC5304592 DOI: 10.3390/nano3040655] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/21/2022]
Abstract
The results of measurements on solar cells made from randomly aligned thin films of single walled carbon nanotubes (SWCNTs) on n-type monocrystalline silicon are presented. The films are made by vacuum filtration from aqueous TritonX-100 suspensions of large diameter arc-discharge SWCNTs. The dependence of the solar cell performance on the thickness of the SWCNT film is shown in detail, as is the variation in performance due to doping of the SWCNT film with SOCl2.
Collapse
Affiliation(s)
- Daniel D Tune
- School of Chemical and Physical Sciences and Flinders Centre for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| | - Joseph G Shapter
- School of Chemical and Physical Sciences and Flinders Centre for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| |
Collapse
|
3
|
Tey JN, Ho X, Wei J. Effect of doping on single-walled carbon nanotubes network of different metallicity. NANOSCALE RESEARCH LETTERS 2012; 7:548. [PMID: 23033837 PMCID: PMC3480836 DOI: 10.1186/1556-276x-7-548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/13/2012] [Indexed: 05/13/2023]
Abstract
Effects of doping on single-walled carbon nanotubes (SWNT) networks with different metallicity are reported through the study of sheet resistance changes upon annealing and acid treatment. SWNT film with high metallic tube content is found to have relatively good chemical stability against post treatments, as demonstrated from its stable film performance in ambient after annealing, and merely 15% reduction in sheet resistance upon sulfuric acid treatment. Conversely, film stability of SWNT film with low metallic content which comprises largely of semiconducting SWNT varies with days in ambient, and its sheet resistance changes drastically after treated with acid, indicating the extreme sensitivity of semiconducting SWNT to surrounding environment. The results suggest that annealing removes unintentional oxygen doping from the ambient and shifts the Fermi level towards the intrinsic Fermi level. Acid treatment, on the other hand, introduces physisorbed and chemisorbed oxygen and shifts the Fermi level away from the intrinsic level and increases the hole doping.
Collapse
Affiliation(s)
- Ju Nie Tey
- Joining Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore, 639798, Singapore
| | - Xinning Ho
- Joining Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore, 639798, Singapore
| | - Jun Wei
- Joining Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore, 639798, Singapore
| |
Collapse
|
4
|
Im H, Jang EY, Choi A, Kim WJ, Kang TJ, Park YW, Kim YH. Enhancement of heating performance of carbon nanotube sheet with granular metal. ACS APPLIED MATERIALS & INTERFACES 2012; 4:2338-2342. [PMID: 22534584 DOI: 10.1021/am300477u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A strategy for enhancing the heating performance of freestanding carbon nanotube (CNT) sheet is presented that involves decorating the sheet with granular-type palladium (Pd) particles. When Pd is added to the sheet, the heating efficiency of CNT sheet is increased by a factor of 3.6 (99.9 °C cm(2)/W vs 27.3 °C cm(2)/W with no Pd). Suppression of convective heat transfer loss attributes to the enhanced heat generation efficiency. However, higher heating response of CNT/Pd sheet was observed compared to CNT sheet, hence suggesting that the electron-lattice energy exchange could be additional heating mechanism in the presence of granular-type particles of Pd having a diameter of 10 nm or less. CNT sheet/Pd is quite stable, retaining its initial characteristics even after 300 cycles of on-off voltage pulses and shows fast thermal responses of the heating and cooling rates being 154 and -248 °C/s, respectively.
Collapse
Affiliation(s)
- Hyeongwook Im
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, South Korea
| | | | | | | | | | | | | |
Collapse
|