1
|
Yahyazadeh Shourabi A, Iacona M, Aubin-Tam ME. Microfluidic system for efficient molecular delivery to artificial cell membranes. LAB ON A CHIP 2025; 25:1842-1853. [PMID: 40047333 DOI: 10.1039/d4lc00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The cell membrane is a crucial biological interface to consider in biomedical research, as a significant proportion of drugs interacts with this barrier. While understanding membrane-drug interactions is important, existing in vitro platforms for drug screening predominantly focus on interactions with whole cells or tissues. This preference is partly due to the instability of membrane-based systems and the technical challenges associated with buffer replacement around lipid membranes formed on microfluidic chips. Here, we introduce a novel microfluidic design capable of forming stable freestanding lipid bilayers with efficient replacement of the media in their local environment for molecular delivery to the membrane. With the use of bubble traps and resistance channels, we achieved sufficient hydrodynamic control to maintain membrane stability during the membrane formation and the molecular delivery phases. As a proof of concept, we successfully formed 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers on the chip and delivered the antibiotic azithromycin at low (5 μM) and high (250 μM) doses. Using optical tweezers, we characterized how azithromycin influenced the membrane elastic properties, including tension and bending rigidity. This microfluidic device is a versatile tool that can deliver various buffers, molecules or nano-/microparticles to freestanding membranes, and study the resulting impact on the membranes' properties.
Collapse
Affiliation(s)
- Arash Yahyazadeh Shourabi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| | - Martina Iacona
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| |
Collapse
|
2
|
Yahyazadeh Shourabi A, Kieffer R, de Jong D, Tam D, Aubin-Tam ME. Mechanical characterization of freestanding lipid bilayers with temperature-controlled phase. SOFT MATTER 2024; 20:8524-8537. [PMID: 39417217 DOI: 10.1039/d4sm00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Coexistence of lipid domains in cell membranes is associated with vital biological processes. Here, we investigate two such membranes: a multi-component membrane composed of DOPC and DPPC lipids with gel and fluid separated domains, and a single component membrane composed of PMPC lipids forming ripples. We characterize their mechanical properties below their melting point, where ordered and disordered regions coexist, and above their melting point, where they are in fluid phase. To conduct these inquiries, we create lipid bilayers in a microfluidic chip interfaced with a heating system and optical tweezers. The chip features a bubble trap and enables high-throughput formation of planar bilayers. Optical tweezers experiments reveal interfacial hydrodynamics (fluid-slip) and elastic properties (membrane tension and bending rigidity) at various temperatures. For PMPC bilayers, we demonstrate a higher fluid slip at the interface in the fluid-phase compared to the ripple phase, while for the DOPC:DPPC mixture, similar fluid slip is measured below and above the transition point. Membrane tension for both compositions increases after thermal fluidization. Bending rigidity is also measured using the forces required to extend a lipid nanotube pushed out of the freestanding membranes. This novel temperature-controlled microfluidic platform opens numerous possibilities for thermomechanical studies on freestanding planar membranes.
Collapse
Affiliation(s)
- Arash Yahyazadeh Shourabi
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Roland Kieffer
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Djanick de Jong
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Daniel Tam
- Laboratory for Aero and Hydrodynamics, Faculty of Mechanical Engineering, Delft University of Technology, 2628 CD, Delft, The Netherlands.
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
3
|
Liu P, Zabala-Ferrera O, Beltramo PJ. Fabrication and electromechanical characterization of freestanding asymmetric membranes. Biophys J 2021; 120:1755-1764. [PMID: 33675759 PMCID: PMC8204216 DOI: 10.1016/j.bpj.2021.02.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
All biological cell membranes maintain an electric transmembrane potential of around 100 mV, due in part to an asymmetric distribution of charged phospholipids across the membrane. This asymmetry is crucial to cell health and physiological processes such as intracell signaling, receptor-mediated endocytosis, and membrane protein function. Experimental artificial membrane systems incorporate essential cell membrane structures, such as the phospholipid bilayer, in a controllable manner in which specific properties and processes can be isolated and examined. Here, we describe an approach to fabricate and characterize planar, freestanding, asymmetric membranes and use it to examine the effect of headgroup charge on membrane stiffness. The approach relies on a thin film balance used to form a freestanding membrane by adsorbing aqueous phase lipid vesicles to an oil-water interface and subsequently thinning the oil to form a bilayer. We validate this lipid-in-aqueous approach by analyzing the thickness and compressibility of symmetric membranes with varying zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and anionic 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG) content as compared with previous lipid-in-oil methods. We find that as the concentration of DOPG increases, membranes become thicker and stiffer. Asymmetric membranes are fabricated by controlling the lipid vesicle composition in the aqueous reservoirs on either side of the oil. Membrane compositional asymmetry is qualitatively demonstrated using a fluorescence quenching assay and quantitatively characterized through voltage-dependent capacitance measurements. Stable asymmetric membranes with DOPC on one side and DOPC-DOPG mixtures on the other were created with transmembrane potentials ranging from 15 to 80 mV. Introducing membrane charge asymmetry decreases both the thickness and stiffness in comparison with symmetric membranes with the same overall phospholipid composition. These initial successes demonstrate a viable pathway to quantitatively characterize asymmetric bilayers that can be extended to accommodate more complex membranes and membrane processes in the future.
Collapse
Affiliation(s)
- Paige Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Oscar Zabala-Ferrera
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
4
|
Drabik D, Gavutis M, Valiokas RN, Ulčinas AR. Determination of the Mechanical Properties of Model Lipid Bilayers Using Atomic Force Microscopy Indentation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13251-13262. [PMID: 33125251 DOI: 10.1021/acs.langmuir.0c02181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By conducting a systematic study of model lipid membranes using the atomic force microscopy (AFM) indentation, we demonstrate the importance of an experimental protocol on the determination of their mechanical parameters. We refine the experimental approach by analyzing the influence of the contact mechanics models used to process the data, substrate preparation, and indenter geometry. We show that both bending rigidity and area compressibility can be determined from a single AFM indentation measurement.
Collapse
Affiliation(s)
- Dominik Drabik
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Martynas Gavutis
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu̧ 231, Vilnius LT-02300, Lithuania
| | - Ramu Nas Valiokas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu̧ 231, Vilnius LT-02300, Lithuania
| | - Artu Ras Ulčinas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu̧ 231, Vilnius LT-02300, Lithuania
| |
Collapse
|
5
|
Enhancing membrane modulus of giant unilamellar lipid vesicles by lateral co-assembly of amphiphilic triblock copolymers. J Colloid Interface Sci 2020; 561:318-326. [DOI: 10.1016/j.jcis.2019.10.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023]
|
6
|
Mondal D, Bandyopadhyay SN, Goswami D. Elucidating optical field directed hierarchical self-assembly of homogenous versus heterogeneous nanoclusters with femtosecond optical tweezers. PLoS One 2019; 14:e0223688. [PMID: 31671114 PMCID: PMC6822744 DOI: 10.1371/journal.pone.0223688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/25/2019] [Indexed: 12/03/2022] Open
Abstract
Insights into the morphology of nanoclusters would facilitate the design of nano-devices with improved optical, electrical, and magnetic responses. We have utilized optical gradient forces for the directed self-assembly of colloidal clusters using high-repetition-rate femtosecond laser pulses to delineate their structure and dynamics. We have ratified our experiments with theoretical models derived from the Langevin equation and defined the valid ranges of applicability. Our femtosecond optical tweezer-based technique characterizes the in-situ formation of hierarchical self-assembled clusters of homomers as well as heteromers by analyzing the back focal plane displacement signal. This technique is able to efficiently distinguish between nano-particles in heterogeneous clusters and is in accordance with our theory. Herein, we report results from our technique, and also develop a model to describe the mechanism of such processes where corner frequency changes. We show how the corner frequency changes enables us to recognize the structure and dynamics of the coagulation of colloidal homogeneous and heterogeneous clusters in condensed media over a broad range of nanoparticle sizes. The methods described here are advantageous, as the backscatter position-sensitive detection probes the in-situ self-assembly process while other light scattering approaches are leveraged for the characterization of isolated clusters.
Collapse
Affiliation(s)
- Dipankar Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | | | - Debabrata Goswami
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
- Center for Laser and Photonics, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
7
|
Collard L, Sinjab F, Notingher I. Raman Spectroscopy Study of Curvature-Mediated Lipid Packing and Sorting in Single Lipid Vesicles. Biophys J 2019; 117:1589-1598. [PMID: 31587827 PMCID: PMC6839040 DOI: 10.1016/j.bpj.2019.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular plasma membrane deformability and stability is important in a range of biological processes. Changes in local curvature of the membrane affect the lateral movement of lipids, affecting the biophysical properties of the membrane. An integrated holographic optical tweezers and Raman microscope was used to investigate the effect of curvature gradients induced by optically stretching individual giant unilamellar vesicles (GUVs) on lipid packing and lateral segregation of cholesterol in the bilayer. The spatially resolved Raman analysis enabled detection of induced phase separation and changes in lipid ordering in individual GUVs. Using deuterated cholesterol, the changes in lipid ordering and phase separation were linked to lateral sorting of cholesterol in the stretched GUVs. Stretching the GUVs in the range of elongation factors 1-1.3 led to an overall decrease in cholesterol concentration at the edges compared to the center of stretched GUVs. The Raman spectroscopy results were consistent with a model of the bilayer accounting for cholesterol sorting in both bilayer leaflets, with a compositional asymmetry of 0.63 ± 0.04 in favor of the outer leaflet. The results demonstrate the potential of the integrated holographic optical tweezers-Raman technique to induce deformations to individual lipid vesicles and to simultaneously provide quantitative and spatially resolved molecular information. Future studies can extend to include more realistic models of cell membranes and potentially live cells.
Collapse
Affiliation(s)
- Liam Collard
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Faris Sinjab
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom.
| |
Collapse
|
8
|
Dols-Perez A, Marin V, Amador GJ, Kieffer R, Tam D, Aubin-Tam ME. Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for Nanomanipulation and Mechanical Characterization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33620-33627. [PMID: 31448892 PMCID: PMC6753654 DOI: 10.1021/acsami.9b09983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cell lipid membranes are the site of vital biological processes, such as motility, trafficking, and sensing, many of which involve mechanical forces. Elucidating the interplay between such bioprocesses and mechanical forces requires the use of tools that apply and measure piconewton-level forces, e.g., optical tweezers. Here, we introduce the combination of optical tweezers with free-standing lipid bilayers, which are fully accessible on both sides of the membrane. In the vicinity of the lipid bilayer, optical trapping would normally be impossible due to optical distortions caused by pockets of the solvent trapped within the membrane. We solve this by drastically reducing the size of these pockets via tuning of the solvent and flow cell material. In the resulting flow cells, lipid nanotubes are straightforwardly pushed or pulled and reach lengths above half a millimeter. Moreover, the controlled pushing of a lipid nanotube with an optically trapped bead provides an accurate and direct measurement of important mechanical properties. In particular, we measure the membrane tension of a free-standing membrane composed of a mixture of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) to be 4.6 × 10-6 N/m. We demonstrate the potential of the platform for biophysical studies by inserting the cell-penetrating trans-activator of transcription (TAT) peptide in the lipid membrane. The interactions between the TAT peptide and the membrane are found to decrease the value of the membrane tension to 2.1 × 10-6 N/m. This method is also fully compatible with electrophysiological measurements and presents new possibilities for the study of membrane mechanics and the creation of artificial lipid tube networks of great importance in intra- and intercellular communication.
Collapse
Affiliation(s)
- Aurora Dols-Perez
- Department
of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Victor Marin
- Department
of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Guillermo J. Amador
- Department
of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
- Laboratory
for Aero and Hydrodynamics, Delft University
of Technology, Delft 2628 CD, The Netherlands
| | - Roland Kieffer
- Department
of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Daniel Tam
- Laboratory
for Aero and Hydrodynamics, Delft University
of Technology, Delft 2628 CD, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department
of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
- E-mail: (M.A.)
| |
Collapse
|
9
|
Doskocz J, Drabik D, Chodaczek G, Przybyło M, Langner M. Statistical Analysis of Bending Rigidity Coefficient Determined Using Fluorescence-Based Flicker-Noise Spectroscopy. J Membr Biol 2018; 251:601-608. [PMID: 29858612 DOI: 10.1007/s00232-018-0037-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.
Collapse
Affiliation(s)
- Joanna Doskocz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Pl. Grunwaldzki 13, 50-377, Wrocław, Poland.
| | - Dominik Drabik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Pl. Grunwaldzki 13, 50-377, Wrocław, Poland
| | - Grzegorz Chodaczek
- Wroclaw Research Centre EIT+, ul. Stabłowicka 147, 54-066, Wrocław, Poland
| | - Magdalena Przybyło
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Pl. Grunwaldzki 13, 50-377, Wrocław, Poland.,Lipid Systems sp. z o.o., ul. Krzemieniecka 48C, 54-613, Wrocław, Poland
| | - Marek Langner
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Pl. Grunwaldzki 13, 50-377, Wrocław, Poland.,Lipid Systems sp. z o.o., ul. Krzemieniecka 48C, 54-613, Wrocław, Poland
| |
Collapse
|
10
|
Miyazako H, Mabuchi K, Hoshino T. Dynamic electromechanical control of biomolecules using a nano virtual cathode display. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:889-892. [PMID: 29060015 DOI: 10.1109/embc.2017.8036967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The dynamic electromechanical control of spatial structures of biomolecules in aqueous solutions was demonstrated using a nano virtual cathode display. By generating a focused electric field around the biomolecules using an electron beam (EB), the molecules' spatiotemporal responses to the electrical stimuli, such as globule transition of DNA random coils and deformation of planar lipid bilayers and vesicles, were successfully observed. The proposed system may be applied to high resolution and high degree-of-freedom manipulations to measure the mechanical and structural properties of bio-nanomaterials.
Collapse
|
11
|
Su QP, Du W, Ji Q, Xue B, Jiang D, Zhu Y, Ren H, Zhang C, Lou J, Yu L, Sun Y. Vesicle Size Regulates Nanotube Formation in the Cell. Sci Rep 2016; 6:24002. [PMID: 27052881 PMCID: PMC4823757 DOI: 10.1038/srep24002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100–200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500–1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling.
Collapse
Affiliation(s)
- Qian Peter Su
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wanqing Du
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinghua Ji
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yueyao Zhu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - He Ren
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jizhong Lou
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Takei T, Yaguchi T, Fujii T, Nomoto T, Toyota T, Fujinami M. Measurement of membrane tension of free standing lipid bilayers via laser-induced surface deformation spectroscopy. SOFT MATTER 2015; 11:8641-7. [PMID: 26371704 DOI: 10.1039/c5sm01264c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Non-invasive measurement of the membrane tension of free-standing black lipid membranes (BLMs), with sensitivity on the order of μN m(-1), was achieved using laser-induced surface deformation (LISD) spectroscopy. A BLM was vertically formed via the folding method and aqueous phases with different refractive indices were added on each side in order to induce radiation pressure by a laser beam. The dynamic response of the deformed BLMs was measured under periodic intensity modulation and their tensions could be estimated. The dependence of membrane tension on the cholesterol concentration of BLMs composed of phosphatidylcholine and phosphatidylethanolamine was investigated, with the membrane tension increasing from 1.3 μN m(-1) to 68.1 μN m(-1) when the cholesterol concentration increased from zero to 33%. These tension values are much smaller than some of those previously reported, because this method does not suppress membrane fluctuation unlike other conventional methods. Our LISD system can be a promising tool for the measurement of membrane tension in BLMs.
Collapse
Affiliation(s)
- Tomohiko Takei
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
| | - Tatsuya Yaguchi
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
| | - Takuya Fujii
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
| | - Tomonori Nomoto
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
| | - Taro Toyota
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Masanori Fujinami
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
| |
Collapse
|
13
|
Park S, Choi SQ, Song C, Kim MW, Choi MC. Surface charge effects on optical trapping of nanometer-sized lipid vesicles. SOFT MATTER 2014; 10:8406-8412. [PMID: 25130878 DOI: 10.1039/c4sm01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Optical trapping of nanometer-sized lipid vesicles has been challenging due to the low refractive index contrast of the thin lipid bilayer to the aqueous medium. Using an "optical bottle", a recently developed technique to measure interactions of nanoparticles trapped by an infrared laser, we report, for the first time, quantitative measurements of the trapping energy of charged lipid vesicles. We found that the trapping energy increases with the relative amount of anionic lipids (DOPG) to neutral lipids (DOPC) in vesicles. Moreover, as monovalent salt is added into the exterior solution of vesicles, the trapping energy rapidly approaches zero, and this decrease in trapping energy strongly depends on the amount of anionic lipids in vesicles. A simple model with our experimental observations explains that the trapping energy of charged lipid vesicles is highly correlated with the surface charge density and electric double layer. In addition, we demonstrated selective trapping of a binary mixture of vesicles in different mole fractions of charged lipids, a strategy that has potential implications on charge selective vesicle sorting for engineering applications.
Collapse
Affiliation(s)
- Seongmin Park
- Department of Physics, KAIST, Daejeon, 305-701, Korea.
| | | | | | | | | |
Collapse
|
14
|
Piñón TM, Castelli AR, Hirst LS, Sharping JE. Fiber-optic trap-on-a-chip platform for probing low refractive index contrast biomaterials. APPLIED OPTICS 2013; 52:2340-2345. [PMID: 23670765 DOI: 10.1364/ao.52.002340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 03/06/2013] [Indexed: 06/02/2023]
Abstract
Dual-beam fiber trapping is a versatile technique for manipulating microparticles. We fabricate and evaluate the performance of a compact trap-on-a-chip design and demonstrate, for what we believe is the first time, trapping of low-contrast (m<1.005) lipid vesicles in solution. Counterpropagating fibers are fixed along the chip channel, and we calibrate the trap by optically displacing polystyrene microspheres from the trap center. Measured scattering forces are ~30-49 pN from each beam. Stable trapping and reversible deformation of lipid vesicles is demonstrated under femtonewton trapping forces. This chip has applications in probing a variety of soft biomaterials, such as biological cells, lipid membranes, and protein assemblies.
Collapse
Affiliation(s)
- Tessa M Piñón
- School of Engineering, University of California, Merced, California 95343, USA
| | | | | | | |
Collapse
|
15
|
Kodama T, Osaki T, Kawano R, Kamiya K, Miki N, Takeuchi S. Round-tip dielectrophoresis-based tweezers for single micro-object manipulation. Biosens Bioelectron 2013; 47:206-12. [PMID: 23570681 DOI: 10.1016/j.bios.2013.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 01/14/2023]
Abstract
In this paper, we present an efficient methodology to manipulate a single micro-object using round-tip positive dielectrophoresis-based tweezers. The tweezers consist of a glass needle with a round-tip and a pair of thin gold-film electrodes. The round-tip, which has a radius of 3µm, is formed by melting a finely pulled glass needle and concentrates the electric field at the tip of the tweezers, which allows the individual manipulation of single micro-objects. The tweezers successfully captured, conveyed, and positioned single cell-sized liposomes with diameters of 5-23µm, which are difficult to manipulate with conventional manipulation methodologies, such as optical tweezers or glass micropipettes, due to the similarities between their optical properties and those of the media, as well as the ease with which they are deformed or broken. We used Stokes' drag theory to experimentally evaluate the positive dielectrophoresis (pDEP) force generated by the tweezers as a function of the liposome size, the content of the surrounding media, and the applied AC voltage and frequency. The results agreed with the theoretically deduced pDEP force. Finally, we demonstrated the separation of labeled single cells from non-labeled cells with the tweezers. This device can be used as an efficient tool for precisely and individually manipulating biological micro-objects that are typically transparent and flexible.
Collapse
Affiliation(s)
- Taiga Kodama
- Kanagawa Academy of Science and Technology, KSP EAST 303, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Yamamoto A, Ichikawa M. Direct measurement of single soft lipid nanotubes: nanoscale information extracted in a noninvasive manner. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061905. [PMID: 23367974 DOI: 10.1103/physreve.86.061905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 09/07/2012] [Indexed: 06/01/2023]
Abstract
We investigated the dynamics of single soft nanotubes of phospholipids to extract nanoscale information such as the size of the tube, which were several tens to hundreds of nanometers thick. The dynamic properties of the tubes obtained from direct observation by fluorescent microscopy, such as their persistence length, enable us to access the nanoscale characteristics through a simple elastic model of the membrane. The present methodology should be applicable to the nanosized membrane structure in living cells.
Collapse
Affiliation(s)
- Akihisa Yamamoto
- Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | |
Collapse
|
17
|
Chen JZY. Pulling or compressing a vesicle by force: solution to the bending energy model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061910. [PMID: 23005130 DOI: 10.1103/physreve.85.061910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Indexed: 06/01/2023]
Abstract
The shape transformation induced by pulling or compressing a vesicle along the symmetric axis is discussed in light of the numerical solution to the bending energy model with fixed enclosing volume and surface area. A complete phase diagram in terms of the external force and reduced vesicle volume is investigated. Some experimental observations are explained by the solution.
Collapse
Affiliation(s)
- Jeff Z Y Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1.
| |
Collapse
|