1
|
Magallanes-Vallejo AG, López-Oyama AB, González ER, Del Angel-López D, Pulido-Barragán EU, García-Guendulain C, Madera-Santana TJ, Rodríguez-Beas C, Gámez-Corrales R. Study of the Influence of Chitosan-Wrapped Carbon Nanotubes on Biopolymer Film Properties. Polymers (Basel) 2025; 17:889. [PMID: 40219279 PMCID: PMC11991639 DOI: 10.3390/polym17070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Due to their biocompatibility and non-toxicity, biopolymer-based films hold significant importance in bioengineering. It is imperative to comprehend the influence of chitosan molecular weight and filler materials nature on the crystalline structure and their subsequent effect on film properties. The aim of this research was to determine how carbon nanotubes embedded within chitosan can significantly improve the performance of biopolymer-based films produced by the solvent-casting technique. Four probe measurements demonstrated that films of medium-molecular-weight chitosan/carbon nanotubes displayed an electrical conductivity value of 0.0132 S cm-1, resulting in films with a low sheet resistance value of 0.0156 mΩ/Υ. Based on XRD findings, it has been demonstrated that films containing carbon nanotubes have shifted the (002) plane of chitosan towards higher angles, favoring chitosan crystal form II, which could be responsible for the enhanced mechanical performance. Structural characteristics, such as lattice strain (e), grain size (D), and dislocation density, have been calculated using the Williamson-Hall method, in which the medium-molecular-weight chitosan/CNTs film samples displayed the best crystalline quality. SEM images revealed nanotube diameters ranging in size from 140 to 300 nm, suggesting that the chitosan was effectively wrapped along carbon nanotubes. Our results indicate that developing chitosan-wrapped carbon nanotube films introduces them as potential materials for bioengineering and biomedical research.
Collapse
Affiliation(s)
- Aurora G. Magallanes-Vallejo
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Altamira, Km 14.5 Carr, Tampico-Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (A.G.M.-V.); (D.D.A.-L.); (E.U.P.-B.)
| | - Ana B. López-Oyama
- Departamento de Investigación en Física (DIFUS), Universidad de Sonora, Blvd. Transversal S/N, Hermosillo 83000, Sonora, Mexico
- Secihti-DIFUS, Universidad de Sonora, Blvd. Transversal S/N, Hermosillo 83000, Sonora, Mexico
| | - Eugenio Rodríguez González
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Altamira, Km 14.5 Carr, Tampico-Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (A.G.M.-V.); (D.D.A.-L.); (E.U.P.-B.)
| | - Deyanira Del Angel-López
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Altamira, Km 14.5 Carr, Tampico-Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (A.G.M.-V.); (D.D.A.-L.); (E.U.P.-B.)
| | - Eder U. Pulido-Barragán
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Altamira, Km 14.5 Carr, Tampico-Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (A.G.M.-V.); (D.D.A.-L.); (E.U.P.-B.)
| | | | - Tomás J. Madera-Santana
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. Gustavo E. Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico;
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Blvd. Transversal S/N, Hermosillo 83000, Sonora, Mexico; (C.R.-B.)
| | - Rogelio Gámez-Corrales
- Departamento de Física, Universidad de Sonora, Blvd. Transversal S/N, Hermosillo 83000, Sonora, Mexico; (C.R.-B.)
| |
Collapse
|
2
|
Meng X, Zong H, Zheng Z, Xing J, Liu Z, Song F, Liu S. Ligand-targeted fishing of α-glucosidase inhibitors from Tribulus terrestris L. based on chitosan-functionalized multi-walled carbon nanotubes with immobilized α-glucosidase. Anal Bioanal Chem 2023; 415:2677-2692. [PMID: 37058167 DOI: 10.1007/s00216-023-04666-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
α-Glucosidase inhibitors in natural products are one of the promising drugs for the treatment of type 2 diabetes. However, due to the complexity of the matrix, it is challenging to comprehensibly clarify the specific pharmacodynamic substances. In this study, a novel high-throughput inhibitor screening strategy was established based on covalent binding of α-glucosidase on chitosan-functionalized multi-walled carbon nanotubes coupled with high-resolution mass spectrometry. The synthesized MWCNTs@CS@GA@α-Glu was characterized by TEM, SEM, FTIR, Raman, and TG. Performance studies showed that the microreactor exhibited stronger thermostability and pH tolerance than that of the free one while maintaining its inherent catalytic activity. Feasibility study applying a model mixture of known α-glucosidase ligand and non-ligands indicated the selectivity and specificity of the system. By integrating ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-QTOF-MS) with ion mobility mass spectrometry (IMS), 15 ligands were obtained and tentatively identified from Tribulus terrestris L., including 8 steroidal saponins, 4 flavonoids, and 3 alkaloids. These inhibitors were further validated by in vivo experiments and molecular docking simulation.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hou Zong
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junpeng Xing
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Kordzadeh A, Zarif M, Amjad-Iranagh S. Molecular dynamics insight of interaction between the functionalized-carbon nanotube and cancerous cell membrane in doxorubicin delivery. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107332. [PMID: 36603233 DOI: 10.1016/j.cmpb.2022.107332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/08/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Doxorubicin (DOX) is a known anticancer drug which is widely used in cancer therapy. Carbon nanotubes (CNTs) are among the most promising platforms for smart drug delivery applications. However, due to the toxicity and their low sulubility their application is limited and their functionalization with wide range of biomolecules are suggested. Therefore, the functionalized carbon nanotubes (f-CNT) with carboxyl (CNT-COO) and folic acid (CNT-COO-FA) were investigated as drug-carrier. METHODS Molecular dynamics (MD) simulation along with the Density Functional Theory (DFT) methods are being used to study the drug loading process on functionalized carbon nanotubes. RESULTS The results indicate that doxorubicin molecules interact more with CNT-COO-FA than CNT-COO. The embedded dipalmitoylphosphatidylcholine (DPPC) lipid bilayer with a folate receptor was considered a cancerous cell's representative model. Then the drug release from the f-CNTs near the lipid bilayer was simulated. The results showed that CNT-COO-FA with a pH and ligand-sensitive mechanism strongly interacts with cancerous cells, which led to higher drug release, in agreement with the experimental results. The conformational changes of the lipid bilayer and folate receptor during drug release were evaluated. The analysis showed that drug release from CNT-COO-FA has significantly changed lipid bilayer and receptor conformations. The obtained results were interpreted and justified by considering the molecular mechanisms which control the drug delivery in the studied systems. CONCLUSIONS Based on the obtained results, CNT-COO-FA has a better performance during the drug release compared to CNT-COO in delivering doxorubicin. Both pH and ligand sensitive mechanisms are found to be responsible for higher drug delivery efficiency of CNT-COO-FA. In contrast, CNT-COO can only enhance drug delivery efficiently with a pH-sensitive mechanism.
Collapse
Affiliation(s)
- Azadeh Kordzadeh
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran 145888-9694, Tehran, Iran
| | - Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Tehran, Iran.
| | - Sepideh Amjad-Iranagh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 115875-4313, Tehran, Iran.
| |
Collapse
|
4
|
Li L, Cao Q, Liu H, Qiao X, Gu Z, Yu Y, Zuo C. Understanding interactions between poly(styrene‐
co
‐sodium styrene sulfonate) and
single‐walled
carbon nanotubes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lujuan Li
- College of Mechanical and Electrical Engineering Jiaxing University Jiaxing China
| | - Qianqian Cao
- College of Mechanical and Electrical Engineering Jiaxing University Jiaxing China
| | - Hao Liu
- College of Mechanical and Electrical Engineering Jiaxing University Jiaxing China
| | - Xin Qiao
- Key Laboratory of E&M (Ministry of Education & Zhejiang Province) Zhejiang University of Technology Hangzhou China
| | - Zhiqing Gu
- College of Mechanical and Electrical Engineering Jiaxing University Jiaxing China
| | - Ying Yu
- College of Mechanical and Electrical Engineering Jiaxing University Jiaxing China
| | - Chuncheng Zuo
- College of Mechanical and Electrical Engineering Jiaxing University Jiaxing China
| |
Collapse
|
5
|
Patiño-Ruiz D, De Ávila G, Alarcón-Suesca C, González-Delgado ÁD, Herrera A. Ionic Cross-Linking Fabrication of Chitosan-Based Beads Modified with FeO and TiO 2 Nanoparticles: Adsorption Mechanism toward Naphthalene Removal in Seawater from Cartagena Bay Area. ACS OMEGA 2020; 5:26463-26475. [PMID: 33110974 PMCID: PMC7581239 DOI: 10.1021/acsomega.0c02984] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are complex molecules produced by the thermal decomposition of organic matter in anthropogenic activities. Novel composites with enhanced physicochemical properties aim to overcome limitations such as adsorption capacity, affinity, and stability for PAHs adsorption. Composites based on chitosan are promising due to the good biocompatibility and adsorption properties. This study focuses on the facile preparation of chitosan beads modified with iron oxide (FeO) and titanium dioxide (TiO2) nanoparticles via ionic cross-linking (Ch-FeO/TiO2). FeO and TiO2 were synthesized performing co-precipitation and green chemistry methods, respectively. The characterization evidenced the formation of Ch-FeO/TiO2 with good crystallinity, excellent thermal stability, and superparamagnetic response, attributed to the presence of FeO and TiO2 nanoparticles. High thermal stability up to 270 °C was related to the cross-linked chitosan network. The enhanced adsorption mechanism of Ch-FeO/TiO2 was determined by removing naphthalene from water and seawater samples. The Ch-FeO/TiO2 showed a higher adsorption capacity of 33.1 mg/g compared to 29.8 mg/g of the unmodified chitosan (un-Ch) beads. This is due to the higher functional surface area of 27.13 m2/g, compared to that of 0.708 m2/g for un-Ch. We found a rapid adsorption rate of 240 min and the maximum adsorption capacity of 149.3 mg/g for Ch-FeO/TiO2. A large number of actives sites allows for increasing the naphthalene molecules interaction. Adsorption in seawater samples from Cartagena Bay (Colombia) exhibits an outstanding efficiency of up to 90%. These results suggest a promising, cheap, and environmentally friendly composite for remediation of water sources contaminated with complex compounds.
Collapse
Affiliation(s)
- David
Alfonso Patiño-Ruiz
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| | - Gesira De Ávila
- Programa
de Ingeniería Química, Grupo de Diseño de Procesos
y Aprovechamiento de Biomasas, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| | - Carlos Alarcón-Suesca
- Departamento
de Física, Grupo de Física de Nuevos Materiales, Universidad Nacional de Colombia, AA 5997 Bogotá D.C., Colombia
- Laboratoire
de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, 15 Rue Baudelocque, 80039 Amiens Cedex, France
| | - Ángel Dario González-Delgado
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| | - Adriana Herrera
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| |
Collapse
|
6
|
Salamanca-Neto CAR, Olean-Oliveira A, Scremin J, Ceravolo GS, Dekker RFH, Barbosa-Dekker AM, Teixeira MFS, Sartori ER. Carboxymethyl-botryosphaeran stabilized carbon nanotubes aqueous dispersion: A new platform design for electrochemical sensing of desloratadine. Talanta 2019; 210:120642. [PMID: 31987177 DOI: 10.1016/j.talanta.2019.120642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022]
Abstract
The polysaccharide carboxymethyl-botryosphaeran (CMB) was used to improve the dispersion of multi-walled carbon nanotubes (MWCNTs) in water. This feature was applied in modifying a glassy carbon electrode (GCE) to construct a sensitive voltammetric sensor for the determination of desloratadine (DESL), a tricyclic antihistamine. The morphology and spectroscopic behavior of the sensor were evaluated. The modified sensor was characterized as homogeneous, and presented a higher electroactive area and a lower charge transfer resistance compared to the unmodified GCE. Using linear sweep voltammetry at 25 mV s-1, the developed sensor presented a sensitivity of 1.018 μA L μmol-1 in the linear working range of 1.99-32.9 μmol L-1, with a detection limit of 0.88 μmol L-1 of DESL in 0.10 mol L-1 potassium hydrogen-phosphate solution (pH 8.0). In addition, the sensor showed excellent repeatability with a relative standard deviation of only 1.02% for a sequence of 10 measurements. The sensor was successfully applied in the analysis of pharmaceutical preparations containing DESL, with equivalent results compared to a validated spectrophotometric method at the 95% confidence level. The sensor was also employed in the analysis of a spiked sample of DESL in rat serum.
Collapse
Affiliation(s)
- Carlos A R Salamanca-Neto
- Laboratório de Eletroanalítica e Sensores, Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, CEP, 86057-970, Londrina, PR, Brazil.
| | - André Olean-Oliveira
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Jessica Scremin
- Laboratório de Eletroanalítica e Sensores, Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, CEP, 86057-970, Londrina, PR, Brazil
| | - Graziela S Ceravolo
- Departamento de Fisiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, 86057-970, Brazil
| | - Robert F H Dekker
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Câmpus Londrina, CEP, 86036-370, Londrina, PR, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, CEP, 86057-970, Londrina, PR, Brazil
| | - Marcos F S Teixeira
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Elen R Sartori
- Laboratório de Eletroanalítica e Sensores, Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, CEP, 86057-970, Londrina, PR, Brazil.
| |
Collapse
|
7
|
Kordzadeh A, Amjad-Iranagh S, Zarif M, Modarress H. Adsorption and encapsulation of the drug doxorubicin on covalent functionalized carbon nanotubes: A scrutinized study by using molecular dynamics simulation and quantum mechanics calculation. J Mol Graph Model 2018; 88:11-22. [PMID: 30616088 DOI: 10.1016/j.jmgm.2018.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/20/2018] [Accepted: 12/12/2018] [Indexed: 01/18/2023]
Abstract
Adsorption of the drug doxorubicin (DOX) onto covalent functionalized carbon nanotubes (CNTs) as drug carriers was studied by employing molecular dynamics (MD) simulation. CNT was covalently functionalized by the chemical groups: amine, carboxyl and hydroxyl and the change in the electrostatic charge of CNT as a result of functionalization was investigated by quantum mechanics calculations. The drug adsorption onto the functionalized CNTs (f-CNT) was examined by analyzing the evaluated radial probability of the drug by MD simulation. Overall consideration of the results demonstrated that surface functionalization enhances the loading capacity of CNT for the drug encapsulation, also agglomeration of unprotonated drug molecules has increased encapsulation capacity. Analysis of the obtained results indicated that carboxyl and amine f-CNTs can act as a pH sensitive drug carrier where their protonation in acidic condition can decrease the electrostatic interactions of the loaded drug with the f-CNT and as a result can promote the drug release.
Collapse
Affiliation(s)
- Azadeh Kordzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sepideh Amjad-Iranagh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Hamid Modarress
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
8
|
Khezri A, Karimi A, Yazdian F, Jokar M, Mofradnia SR, Rashedi H, Tavakoli Z. Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: Emphasis on biofilm reduction. Int J Biol Macromol 2018; 114:972-978. [DOI: 10.1016/j.ijbiomac.2018.03.100] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
|
9
|
Phunpee S, Suktham K, Surassmo S, Jarussophon S, Rungnim C, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR. Controllable encapsulation of α-mangostin with quaternized β-cyclodextrin grafted chitosan using high shear mixing. Int J Pharm 2017; 538:21-29. [PMID: 29225100 DOI: 10.1016/j.ijpharm.2017.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/06/2017] [Accepted: 12/06/2017] [Indexed: 11/17/2022]
Abstract
In this study, the inclusion complex formation between α-mangostin and water-soluble quaternized β-CD grafted-chitosan (QCD-g-CS) was investigated. Inclusion complex formation with encapsulation efficiency (%EE) of 5, 15 and 75% can be varied using high speed homogenizer. Tuning %EE plays a role on physicochemical and biological properties of α-mangostin/QCD-g-CS complex. Molecular dynamics simulations indicate that α-mangostin is included within the hydrophobic β-CD cavity and being absorbed on the QCD-g-CS surface, with these results being confirmed by Fourier transform infrared (FTIR) spectroscopy. Probing the release characteristics of the inclusion complex at various %EE (5%, 15% and 75%) in simulated saliva (pH 6.8) demonstrated that α-mangostin release rates were dependent on % EE (order 5% > 15% > 75%). Additionally, higher antimicrobial and anti-inflammation activities were observed for the inclusion complex than those of free α-mangostin due to enhance the solubility of α-mangostin through the inclusion complex with QCD-g-CS.
Collapse
Affiliation(s)
- Sarunya Phunpee
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Kunat Suktham
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Suvimol Surassmo
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Suwatchai Jarussophon
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Chompoonut Rungnim
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Apinan Soottitantawat
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Satit Puttipipatkhachorn
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
10
|
Xu K, Wang Y, Zhang H, Yang Q, Wei X, Xu P, Zhou Y. Solid-phase extraction of DNA by using a composite prepared from multiwalled carbon nanotubes, chitosan, Fe3O4 and a poly(ethylene glycol)-based deep eutectic solvent. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2444-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Wu S, Duan B, Zeng X, Lu A, Xu X, Wang Y, Ye Q, Zhang L. Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. J Mater Chem B 2017; 5:2952-2963. [DOI: 10.1039/c7tb00101k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel lysine-immobilized chitin/carbon nanotube microspheres are prepared with excellent bilirubin adsorption properties and good blood compatibility for blood purified therapy.
Collapse
Affiliation(s)
- Shuangquan Wu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
- Zhongnan Hospital of Wuhan University
| | - Bo Duan
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xianpeng Zeng
- Zhongnan Hospital of Wuhan University
- Institute of Hepatobiliary Diseases of Wuhan University
- Transplant Center of Wuhan University
- Hubei Key Laboratory of Medical Technology on Transplantation
- Wuhan 430071
| | - Ang Lu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University
- Institute of Hepatobiliary Diseases of Wuhan University
- Transplant Center of Wuhan University
- Hubei Key Laboratory of Medical Technology on Transplantation
- Wuhan 430071
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University
- Institute of Hepatobiliary Diseases of Wuhan University
- Transplant Center of Wuhan University
- Hubei Key Laboratory of Medical Technology on Transplantation
- Wuhan 430071
| | - Lina Zhang
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
12
|
Kinetic and thermodynamic studies of methotrexate adsorption on chitosan-modified magnetic multi-walled carbon nanotubes. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1753-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations. J Mol Graph Model 2016; 70:70-76. [PMID: 27677150 DOI: 10.1016/j.jmgm.2016.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022]
Abstract
In the present study, we describe here the pH condition activating doxorubicin (DOX) anticancer drugs loading and release over single-wall carbon nanotube (SWNT) non-covalently wrapped with chitosan (CS). The possibility of drug displacement on DOX/CS/SWNT nanocarrier was investigated using molecular dynamics simulations. The drug loading and release were monitored via displacement analysis and binding energy calculations. The simulated results clearly showed that the drugs well interacted with the CS/SWNT at physiological pH (pH 7.4), where CS was in the deprotonated form. Contrastingly, in weakly acidic environments (pH 5.0-6.5) which is a pH characteristics of certain cancer environments, the protonated CS became loosen wrapped around the SWNT and triggered drugs release as a result of charge-charge repulsion between CS and drug molecules. The obtained data fulfil the understanding at atomic level of drug loading and release controlled by pH-sensitive polymer, which might be useful for further cancer therapy researches.
Collapse
|
14
|
Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today 2016; 21:585-97. [DOI: 10.1016/j.drudis.2015.11.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
|
15
|
Rungnim C, Rungrotmongkol T, Kungwan N, Hannongbua S. Protein-protein interactions between SWCNT/chitosan/EGF and EGF receptor: a model of drug delivery system. J Biomol Struct Dyn 2016; 34:1919-29. [PMID: 26381241 DOI: 10.1080/07391102.2015.1095114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Epidermal growth factor (EGF) was used as the targeting ligand to enhance the specificity of a cancer drug delivery system (DDS) via its specific interaction with the EGF receptor (EGFR) that is overexpressed on the surface of some cancer cells. To investigate the intermolecular interaction and binding affinity between the EGF-conjugated DDS and the EGFR, 50 ns molecular dynamics simulations were performed on the complex of tethered EGFR and EGF linked to single-wall carbon nanotube (SWCNT) through a biopolymer chitosan wrapping the tube outer surface (EGFR·EGF-CS-SWCNT-Drug complex), and compared to the EGFR·EGF complex and free EGFR. The binding pattern of the EGF-CS-SWCNT-Drug complex to the EGFR was broadly comparable to that for EGF, but the binding affinity of the EGF-CS-SWCNT-Drug complex was predicted to be somewhat better than that for EGF alone. Additionally, the chitosan chain could prevent undesired interactions of SWCNT at the binding pocket region. Therefore, EGF connected to SWCNT via a chitosan linker is a seemingly good formulation for developing a smart DDS served as part of an alternative cancer therapy.
Collapse
Affiliation(s)
- Chompoonut Rungnim
- a NANOTEC, National Science and Technology Development Agency (NSTDA) , Pathum Thani , 12120 , Thailand
| | - Thanyada Rungrotmongkol
- b Department of Biochemistry, Faculty of Science , Chulalongkorn University , Bangkok , Thailand.,c PhD Program in Bioinformatics and Computational Biology, Faculty of Science , Chulalongkorn University , Bangkok , Thailand
| | - Nawee Kungwan
- d Department of Chemistry, Faculty of Science , Chiang Mai University , Chiang Mai 50200 , Thailand
| | - Supot Hannongbua
- e Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| |
Collapse
|
16
|
Gou Z, Xu D, Dong Q, Wu X. Comparison studies on covalently and non-covalently modified MWNTs using chitosan and their starch nanocomposites. STARCH-STARKE 2015. [DOI: 10.1002/star.201500143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhenqiong Gou
- College of Food Science; Southwest University; Chongqing P.R. China
| | - Dan Xu
- College of Food Science; Southwest University; Chongqing P.R. China
| | - Quan Dong
- College of Food Science; Southwest University; Chongqing P.R. China
| | - Xiyu Wu
- College of Food Science; Southwest University; Chongqing P.R. China
| |
Collapse
|
17
|
Nutho B, Khuntawee W, Rungnim C, Pongsawasdi P, Wolschann P, Karpfen A, Kungwan N, Rungrotmongkol T. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes. Beilstein J Org Chem 2014; 10:2789-99. [PMID: 25550745 PMCID: PMC4273227 DOI: 10.3762/bjoc.10.296] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022] Open
Abstract
In the present study, our aim is to investigate the preferential binding mode and encapsulation of the flavonoid fisetin in the nano-pore of β-cyclodextrin (β-CD) at the molecular level using various theoretical approaches: molecular docking, molecular dynamics (MD) simulations and binding free energy calculations. The molecular docking suggested four possible fisetin orientations in the cavity through its chromone or phenyl ring with two different geometries of fisetin due to the rotatable bond between the two rings. From the multiple MD results, the phenyl ring of fisetin favours its inclusion into the β-CD cavity, whilst less binding or even unbinding preference was observed in the complexes where the larger chromone ring is located in the cavity. All MM- and QM-PBSA/GBSA free energy predictions supported the more stable fisetin/β-CD complex of the bound phenyl ring. Van der Waals interaction is the key force in forming the complexes. In addition, the quantum mechanics calculations with M06-2X/6-31G(d,p) clearly showed that both solvation effect and BSSE correction cannot be neglected for the energy determination of the chosen system.
Collapse
Affiliation(s)
- Bodee Nutho
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wasinee Khuntawee
- Nanoscience and Technology Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chompoonut Rungnim
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter Wolschann
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria ; Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Alfred Karpfen
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanyada Rungrotmongkol
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Trigueiro JPC, Silva GG, Pereira FV, Lavall RL. Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. J Colloid Interface Sci 2014; 432:214-20. [DOI: 10.1016/j.jcis.2014.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 01/03/2023]
|
19
|
Pan H, Pan Y, Wang W, Song L, Hu Y, Liew KM. Synergistic Effect of Layer-by-Layer Assembled Thin Films Based on Clay and Carbon Nanotubes To Reduce the Flammability of Flexible Polyurethane Foam. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502215p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haifeng Pan
- State
Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Suzhou
Key Laboratory of Urban Public Safety, Suzhou Institute of University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Ying Pan
- State
Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Wei Wang
- State
Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Lei Song
- State
Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Yuan Hu
- State
Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Suzhou
Key Laboratory of Urban Public Safety, Suzhou Institute of University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Kim Meow Liew
- Suzhou
Key Laboratory of Urban Public Safety, Suzhou Institute of University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
- Department
of Building and Construction, City University of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| |
Collapse
|
20
|
Layer-by-layer deposition of cationic and anionic carbon nanotubes into thin films with improved electrical properties. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Dispersion of single-walled carbon nanotubes in aqueous solution with a thermo-responsive pentablock terpolymer. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3068-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Replica exchange molecular dynamics simulation of chitosan for drug delivery system based on carbon nanotube. J Mol Graph Model 2013; 39:183-92. [DOI: 10.1016/j.jmgm.2012.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/29/2012] [Accepted: 11/03/2012] [Indexed: 11/21/2022]
|
23
|
Rungnim C, Arsawang U, Rungrotmongkol T, Hannongbua S. Molecular dynamics properties of varying amounts of the anticancer drug gemcitabine inside an open-ended single-walled carbon nanotube. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.08.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Liu Y, Chipot C, Shao X, Cai W. Edge effects control helical wrapping of carbon nanotubes by polysaccharides. NANOSCALE 2012; 4:2584-2589. [PMID: 22415663 DOI: 10.1039/c2nr11979j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Carbon nanotubes (CNTs) wrapped by polysaccharide chains via noncovalent interactions have been shown to be soluble and dispersed in aqueous environments, and have several potential chemical and biomedical applications. The wrapping mechanism, in particular the role played by the end of the CNT, remains, however, unknown. In this work, a hybrid complex formed by an amylose (AMYL) chain and a single-walled carbon nanotube (SWNT) has been examined by means of atomistic molecular dynamics (MD) simulations to assess its propensity toward self-assembly, alongside its structural characteristics in water. To explore edge effects, the middle and end regions of the SWNT have been chosen as two initial wrapping sites, to which two relative orientations have been assigned, i.e. parallel and orthogonal. The present results prove that AMYL can wrap spontaneously around the tubular surface, starting from the end of the SWNT and driven by both favorable van der Waals attraction and hydrophobic interactions, and resulting in a perfectly compact, helical conformation stabilized by an interlaced hydrogen-bond network. Principal component analysis carried out over the MD trajectories reveals that stepwise burial of hydrophobic faces of pyranose rings controlled by hydrophobic interactions is a key step in the formation of the helix. Conversely, if wrapping proceeds from the middle of the SWNT, self-organization into a helical structure is not observed due to strong van der Waals attractions preventing the hydrophobic faces of the AMYL chain generating enough contacts with the tubular surface.
Collapse
Affiliation(s)
- Yingzhe Liu
- College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | | | | | | |
Collapse
|
25
|
Chen C, Xie XX, Zhou Q, Zhang FY, Wang QL, Liu YQ, Zou Y, Tao Q, Ji XM, Yu SQ. EGF-functionalized single-walled carbon nanotubes for targeting delivery of etoposide. NANOTECHNOLOGY 2012; 23:045104. [PMID: 22222202 DOI: 10.1088/0957-4484/23/4/045104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To enhance the therapeutic potential of etoposide (ETO), we devised a targeted drug delivery system (TDDS) of epidermal growth factor-chitosan-carboxyl single-walled carbon nanotubes-ETO (EGF/CHI/SWNT-COOHs/ETO) using modified SWNTs (m-SWNTs) as the carrier, EGF-functionalized SWNTs (f-SWNTs) as the targeted moiety and ETO as the drug. After SWNT-COOHs were conjugated with CHI (CHI/SWNT-COOHs/ETO), they displayed high solubility and stable dispersion in aqueous solution. The drug loading capacity was approximately 25-27%. The m-SWNTs and f-SWNTs had only slight cytotoxicity. ETO was released from EGF/CHI/SWNT-COOHs/ETO at low pH and taken up by tumour cells via adenosine triphosphate (ATP)-dependent endocytosis. The cell death induced by EGF/CHI/SWNT-COOHs/ETO was as much as 2.7 times that due to ETO alone. In summary, these results demonstrated that our TDDS had a greater anticancer effect than free ETO in vitro.
Collapse
Affiliation(s)
- Cheng Chen
- Jiangsu Key Laboratory for Supramolecular Medical Materials and Applications, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu J, Wang B, Xiong X, Luo J, Liu X. Aqueous Dispersions of Carbon Nanotubes with Self-assembled Micelles of Photosensitive Amphiphilic Random Copolymer Containing Coumarin. CHEM LETT 2012. [DOI: 10.1246/cl.2012.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingcheng Liu
- School of Chemical and Material Engineering, Jiangnan University
| | - Baoqing Wang
- School of Chemical and Material Engineering, Jiangnan University
| | - Xiaomei Xiong
- School of Chemical and Material Engineering, Jiangnan University
| | - Jing Luo
- School of Chemical and Material Engineering, Jiangnan University
| | - Xiaoya Liu
- School of Chemical and Material Engineering, Jiangnan University
| |
Collapse
|