1
|
Zhuang D, Riera M, Zhou R, Deary A, Paesani F. Hydration Structure of Na + and K + Ions in Solution Predicted by Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:9349-9360. [PMID: 36326071 DOI: 10.1021/acs.jpcb.2c05674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hydration structure of Na+ and K+ ions in solution is systematically investigated using a hierarchy of molecular models that progressively include more accurate representations of many-body interactions. We found that a conventional empirical pairwise additive force field that is commonly used in biomolecular simulations is unable to reproduce the extended X-ray absorption fine structure (EXAFS) spectra for both ions. In contrast, progressive inclusion of many-body effects rigorously derived from the many-body expansion of the energy allows the MB-nrg potential energy functions (PEFs) to achieve nearly quantitative agreement with the experimental EXAFS spectra, thus enabling the development of a molecular-level picture of the hydration structure of both Na+ and K+ in solution. Since the MB-nrg PEFs have already been shown to accurately describe isomeric equilibria and vibrational spectra of small ion-water clusters in the gas phase, the present study demonstrates that the MB-nrg PEFs effectively represent the long-sought-after models able to correctly predict the properties of ionic aqueous systems from the gas to the liquid phase, which has so far remained elusive.
Collapse
Affiliation(s)
- Debbie Zhuang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Alexander Deary
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
2
|
Study on the Structure of a Mixed KCl and K 2SO 4 Aqueous Solution Using a Modified X-ray Scattering Device, Raman Spectroscopy, and Molecular Dynamics Simulation. Molecules 2022; 27:molecules27175575. [PMID: 36080342 PMCID: PMC9457528 DOI: 10.3390/molecules27175575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022] Open
Abstract
The microstructure of a mixed KCl and K2SO4 aqueous solution was studied using X-ray scattering (XRS), Raman spectroscopy, and molecular dynamics simulation (MD). Reduced structure functions [F(Q)], reduced pair distribution functions [G(r)], Raman spectrum, and pair distribution functions (PDF) were obtained. The XRS results show that the main peak (r = 2.81 Å) of G(r) shifted to the right of the axis (r = 3.15 Å) with increased KCl and decreased K2SO4. The main peak was at r = 3.15 Å when the KCl concentration was 26.00% and the K2SO4 concentration was 0.00%. It is speculated that this phenomenon was caused by the main interaction changing, from K-OW (r = 2.80 Å) and OW-OW (r = 2.80 Å), to Cl−-OW (r = 3.14 Å) and K+-Cl− (r = 3.15 Å). According to the trend of the hydrogen bond structure in the Raman spectrum, when the concentration of KCl was high and K2SO4 was low, the destruction of the tetrahedral hydrogen bond network in the solution was more serious. This shows that the destruction strength of the anion to the hydrogen bond network structure in solution was Cl− > SO42−. In the MD simulations, the coordination number of OW-OW decreased with increasing KCl concentration, indicating that the tetrahedral hydrogen bond network was severely disrupted, which confirmed the results of the Raman spectroscopy. The hydration radius and coordination number of SO42− in the mixed solution were larger than Cl−, thus revealing the reason why the solubility of KCl in water was greater than that of K2SO4 at room temperature.
Collapse
|
3
|
Liu H, Zhou Y, An D, Wang G, Zhu F, Yamaguchi T. Structure of Aqueous KNO 3 Solutions by Wide-Angle X-ray Scattering and Density Functional Theory. J Phys Chem B 2022; 126:5866-5875. [PMID: 35895329 DOI: 10.1021/acs.jpcb.2c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of aqueous KNO3 solutions was studied by wide-angle X-ray scattering (WAXS) and density functional theory (DFT). The interference functions were subjected to empirical potential structure refinement (EPSR) modeling to extract the detailed hydration structure information. In aqueous KNO3 solutions with a concentration from 0.50 to 2.72 mol·dm-3, water molecules coordinate K+ with a mean coordination number (CN) from 6.6 ± 0.9 to 5.8 ± 1.2, respectively, and a K-OW(H2O) distance of 2.82 Å. To further describe the hydration properties of K+, a hydration factor (fh) was defined based on the orientational angle between the water O-H vector and the ion-oxygen vector. The fh value obtained for K+ is 0.792, 0.787, 0.766, and 0.765, and the corresponding average hydration numbers (HN) are 5.2, 5.1, 4.8, and 4.5. The reduced HN is compensated by the direct binding of oxygen atoms of NO3- with the average CN from 0.3 ± 0.7 to 2.6 ± 1.7, respectively, and the K-ON(NO3-) distance of 2.82 Å. The average number of water molecules around NO3- slightly reduces from 10.5 ± 1.5 to 9.6 ± 1.7 with rN-OW = 3.63 Å. K+-NO3- ion association is characterized by K-ON and K-N pair correlation functions (PCFs). A K-N peak is observed at 3.81 Å as the main peak with a shoulder at 3.42 Å in gK-N(r). This finding indicates that two occupancy sites are available for K+, i.e., the edge-shared bidentate (BCIP) and the corner-shared monodentate (MCIP) contact ion pairs. The structure and stability of the KNO3(H2O)10 cluster were investigated by a DFT method and cross-checked with the results from WAXS.
Collapse
Affiliation(s)
- Hongyan Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources; Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province; Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Yongquan Zhou
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources; Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province; Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Dong An
- Department of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Guangguo Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources; Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province; Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fayan Zhu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources; Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province; Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Toshio Yamaguchi
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources; Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province; Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.,Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Smirnov PR, Grechin OV. Structure of the Immediate Environment of Ions in Aqueous Solutions of Calcium Chloride, Based on Data from X-ray Diffraction Analysis. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yashima Y, Okada Y, Harada M, Okada T. Structures of ions accommodated in salty ice Ih crystals. Phys Chem Chem Phys 2021; 23:17945-17952. [PMID: 34382049 DOI: 10.1039/d1cp01624e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Frozen aqueous electrolytes are ubiquitous and involved in various phenomena occurring in the natural environment. Although salts are expelled from ice during freezing of aqueous solutions, minor amounts of the constituent ions are accommodated in the crystal lattice of ice. This phenomenon was associated with the generation of the Workman-Reynolds freezing potential. Molecular simulations also confirmed the ion incorporation in the crystal lattice of ice Ih upon freezing of aqueous electrolytes and identified possible local structures of the ions. However, no experimental information is available on the structure of ions accommodated in the crystal lattice of ice Ih. In this work, we use X-ray absorption fine structure (XAFS) to study the local structures of K+ and Cl- accommodated in ice Ih single crystals. Previous molecular simulations predicted that ions are trapped in the hexagonal cavities of the ice structure or replace two water molecules in the crystal lattice. Four possible configurations are considered and optimized by the calculations using ONIOM (QM/QM/QM). The results are evaluated in terms of the agreement between the experimental XAFS spectra and those simulated from the optimized structures. The spectra are most reasonably interpreted by assuming that K+ replaces one water molecule in the ice crystal lattice and is accommodated in a tetrahedral coordination cage. Similarly, Cl- probably adopts the same configuration, because it explains the coordination number better than other structures, such as that assuming the replacement of two water molecules belonging to the same hexagonal planes.
Collapse
Affiliation(s)
- Yuga Yashima
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | |
Collapse
|
6
|
Shi R, Zhao Z, Huang X, Wang P, Su Y, Sai L, Liang X, Han H, Zhao J. Ground-State Structures of Hydrated Calcium Ion Clusters From Comprehensive Genetic Algorithm Search. Front Chem 2021; 9:637750. [PMID: 34277560 PMCID: PMC8277924 DOI: 10.3389/fchem.2021.637750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/02/2021] [Indexed: 12/03/2022] Open
Abstract
We searched the lowest-energy structures of hydrated calcium ion clusters Ca2+(H2O)n (n = 10-18) in the whole potential energy surface by the comprehensive genetic algorithm (CGA). The lowest-energy structures of Ca2+(H2O)10-12 clusters show that Ca2+ is always surrounded by six H2O molecules in the first shell. The number of first-shell water molecules changes from six to eight at n = 12. In the range of n = 12-18, the number of first-shell water molecules fluctuates between seven and eight, meaning that the cluster could pack the water molecules in the outer shell even though the inner shell is not full. Meanwhile, the number of water molecules in the second shell and the total hydrogen bonds increase with an increase in the cluster size. The distance between Ca2+ and the adjacent water molecules increases, while the average adjacent O-O distance decreases as the cluster size increases, indicating that the interaction between Ca2+ and the adjacent water molecules becomes weaker and the interaction between water molecules becomes stronger. The interaction energy and natural bond orbital results show that the interaction between Ca2+ and the water molecules is mainly derived from the interaction between Ca2+ and the adjacent water molecules. The charge transfer from the lone pair electron orbital of adjacent oxygen atoms to the empty orbital of Ca2+ plays a leading role in the interaction between Ca2+ and water molecules.
Collapse
Affiliation(s)
- Ruili Shi
- School of Mathematics and Physics, Hebei University of Engineering, Handan, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, China
| | - Zhi Zhao
- School of Mathematics and Physics, Hebei University of Engineering, Handan, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, China
| | - Xiaoming Huang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, China
| | - Pengju Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, China
| | - Linwei Sai
- Department of Mathematics and Physics, Hohai University, Changzhou, China
| | - Xiaoqing Liang
- School of Electronics and Information Engineering, Taizhou University, Taizhou, China
| | - Haiyan Han
- School of Mathematics and Physics, Hebei University of Engineering, Handan, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, China
| |
Collapse
|
7
|
Smirnov PR. Structural Parameters of the Nearest Surrounding of Group II
Metal Ions in Oxygen-Containing Solvents. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Smirnov PR. Structure of the Nearest Environment of
Na+, K+,
Rb+, and Cs+ Ions in
Oxygen-Containing Solvents. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220090169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
|
10
|
Characterization of the F−-water and Cl−-water hydrogen bonds in aqueous solution: From “interior” (I) to “surface” (S) states. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Chaiyasit P, Tongraar A, Kerdcharoen T. Characteristics of methylammonium ion (CH 3 NH 3 + ) in aqueous electrolyte solution: An ONIOM-XS MD simulation study. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Characteristics of K + and Rb + as “structure-breaking” ions in dilute aqueous solution: Insights from ONIOM-XS MD simulations. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
|
14
|
Sripa P, Tongraar A, Kerdcharoen T. Structure and dynamics of the Li+ hydrates: A comparative study of conventional QM/MM and ONIOM-XS MD simulations. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kabbalee P, Sripa P, Tongraar A, Kerdcharoen T. Solvation structure and dynamics of K+ in aqueous ammonia solution: Insights from an ONIOM-XS MD simulation. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Yan X, Fan J, Yu Y, Xu J, Zhang M. Transport behavior of a single Ca(2+), K(+), and Na(+) in a water-filled transmembrane cyclic peptide nanotube. J Chem Inf Model 2015; 55:998-1011. [PMID: 25894098 DOI: 10.1021/acs.jcim.5b00025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations have been performed to investigate the transport properties of a single Ca(2+), K(+), and Na(+) in a water-filled transmembrane cyclic peptide nanotube (CPNT). Two transmembrane CPNTs, i.e., 8×(WL)n=4,5/POPE (with uniform lengths but various radii), were applied to clarify the dependence of ionic transport properties on the channel radius. A huge energy barrier keeps Ca(2+) out of the octa-CPNT, while Na(+) and K(+) can be trapped in two CPNTs. The dominant electrostatic interaction of a cation with water molecules leads to a high distribution of channel water around the cation and D-defects in the first and last gaps, and significantly reduces the axial diffusion of channel water. Water-bridged interactions were mostly found between the artificially introduced Ca(2+) and the framework of the octa-CPNT, and direct coordinations with the tube wall mostly occur for K(+) in the octa-CPNT. A cation may drift rapidly or behave lazily in a CPNT. K(+) behaves most actively and can visit the whole deca-CPNT quickly. The first solvation shells of Ca(2+) and Na(+) are basically saturated in two CPNTs, while the hydration of K(+) is incomplete in the octa-CPNT. The solvation structure of Ca(2+) in the octa-CPNT is most stable, while that of K(+) in the deca-CPNT is most labile. Increasing the channel radius induces numerous interchange attempts between the first-shell water molecules of a cation and the ones in the outer region, especially for the K(+) system.
Collapse
Affiliation(s)
- Xiliang Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianfen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yi Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jian Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Mingming Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
17
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 814] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
18
|
Preferential solvation and dynamics of Li+ in aqueous ammonia solution: An ONIOM-XS MD simulation study. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2014.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Shiga M, Masia M. Boundary based on exchange symmetry theory for multilevel simulations. II. Multiple time scale approach. J Chem Phys 2013; 139:144103. [DOI: 10.1063/1.4823729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Sripa P, Tongraar A, Kerdcharoen T. “Structure-Making” Ability of Na+ in Dilute Aqueous Solution: An ONIOM-XS MD Simulation Study. J Phys Chem A 2013; 117:1826-33. [DOI: 10.1021/jp312230g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pattrawan Sripa
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anan Tongraar
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Teerakiat Kerdcharoen
- Department of Physics and NANOTEC Center
of Excellence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
21
|
Rudolph WW, Irmer G. Hydration of the calcium(ii) ion in an aqueous solution of common anions (ClO4−, Cl−, Br−, and NO3−). Dalton Trans 2013; 42:3919-35. [DOI: 10.1039/c2dt31718d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|