Kumar S, Yadav SK, Gupta A, Kumar R, Ahmed J, Chaudhary M, Kumar V. B-doped SnO
2 nanoparticles: a new insight into the photocatalytic hydrogen generation by water splitting and degradation of dyes.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022;
29:47448-47461. [PMID:
35182339 DOI:
10.1007/s11356-022-18946-0]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Boron-doped SnO2 (B:SnO2) has been synthesized via a facile wet chemical method to deal with increasing energy demand and environment-related issues. Powder XRD confirmed the rutile phase of the synthesized B:SnO2 nanoparticles. Energy dispersive X-ray analysis and elemental mapping confirmed 1% B doping into SnO2 lattice. A red shift was observed during the analysis of Raman and FTIR spectral data. The bands in FTIR and Raman spectra confirmed the in-plane and bridging oxygen vacancies in SnO2 lattice introduced due to B doping. These nanoparticles showed proficiency in photocatalytic hydrogen generation and degradation of crystal violet (CV) and rhodamine B (RhB) dyes. The degradation of CV and RhB dyes in the presence of B:SnO2 NPs and ethane-1,2-diaminetetracetic acid (EDTA) was found to be 83 and ~ 100%, respectively. To escalate the efficiency of dye degradation, the experiment was performed with different sacrificial agents (EDTA, methanol, and triethanolamine). The maximum hydrogen production rate (63.6184 µmol g-1 h-1) was observed for B:SnO2 along with Pd as co-catalyst, and methanol and EDTA solution as sacrificial agents.
Collapse