1
|
Duong LV, Tam NM, Karton A, Nguyen MT. Triple-chain boron clusters: lengthening via phosphorus doping and enhancing stability through {P} by {CH} substitution. Dalton Trans 2024; 53:18528-18541. [PMID: 39466602 DOI: 10.1039/d4dt02251c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This theoretical study presents novel insights into the doping of boron clusters with an increasing number of dopant atoms, ranging from 1 to 4, that preserve the integrity of the original boron framework. The triple-chain forms of clusters B10 and B16 remain unchanged upon sequential addition of P atoms, showcasing a perfect isolobal substitution of {P} with {CH}. Similarities in the number of delocalized electrons are observed between pure and doped boron clusters, alongside the subsequent substitution of {P} with {CH}. All triple-chain structures exhibit high thermodynamic stability, having low vertical attachment energies and high vertical ionization energies. The lowest-lying isomer of B16P4 has thus a triple-chain shape instead of a tetrahedral Td form as previously reported. While AdNDP analysis confirms the number of globally delocalized electrons, it differs much from a previous interpretation. The magnetic ring current maps support the double aromaticity of triple-chain structures. Electron counting rules established for triple-chain structures are verified. The particle-in-a-rectangular-box model elucidates the relationship between the structure size and electron configuration and aids in understanding the transition from antiaromatic to aromatic configurations. The self-locking phenomenon is crucial for adhering to the triple-chain model and satisfying electron configuration requirements.
Collapse
Affiliation(s)
- Long Van Duong
- Atomic Molecular and Optical Physics Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Tam
- Faculty of Basic Sciences, University of Phan Thiet, 225 Nguyen Thong, Phan Thiet City, Binh Thuan, Vietnam
| | - Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Minh Tho Nguyen
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Li SX, Yang YJ, Chen DL. Structural Evolution and Electronic Properties of Two Sulfur Atom-Doped Boron Clusters. ACS OMEGA 2023; 8:30757-30767. [PMID: 37636960 PMCID: PMC10448743 DOI: 10.1021/acsomega.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
We present a theoretical study of structural evolution, electronic properties, and photoelectron spectra of two sulfur atom-doped boron clusters S2Bn0/- (n = 2-13), which reveal that the global minima of the S2Bn0/- (n = 2-13) clusters show an evolution from a linear-chain structure to a planar or quasi-planar structure. Some S-doped boron clusters have the skeleton of corresponding pure boron clusters; however, the addition of two sulfur atoms modified and improved some of the pure boron cluster structures. Boron is electron-deficient and boron clusters do not form linear chains. Here, two sulfur atom doping can adjust the pure boron clusters to a linear-chain structure (S2B20/-, S2B30/-, and S2B4-), a quasi-linear-chain structure (S2B6-), single- and double-chain structures (S2B6 and S2B9-), and double-chain structures (S2B5, and S2B9). In particular, the smallest linear-chain boron clusters S2B20/- are shown with an S atom attached to each end of B2. The S2B2 cluster possesses the largest highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of 5.57 eV and the S2B2- cluster possesses the largest average binding energy Eb of 5.63 eV, which shows the superior chemical stability and relative stability, respectively. Interestingly, two S-atom doping can adjust the quasi-planar pure boron clusters (B7-, B10-, and B120/-) to a perfect planar structure. AdNDP bonding analyses reveal that linear S2B3 and planar SeB11- have π aromaticity and σ antiaromaticity; however, S2B2, planar S2B6, and planar S2B7- clusters have π antiaromaticity and σ aromaticity. Furthermore, AdNDP bonding analyses reveal that planar S2B4, S2B10, and S2B12 clusters are doubly (π and σ) aromatic, whereas S2B5-, S2B8, S2B9-, and S2B13- clusters are doubly (π and σ) antiaromatic. The electron localization function (ELF) analysis shows that S2Bn0/- (n = 2-13) clusters have different electron delocalization characteristics, and the spin density analysis shows that the open-shell clusters have different characteristics of electron spin distribution. The calculated photoelectron spectra indicate that S2Bn- (n = 2-13) have different characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these doped boron clusters. Our work enriches the new database of geometrical structures of doped boron clusters, provides new examples of aromaticity for doped boron clusters, and is promising to offer new ideas for nanomaterials and nanodevices.
Collapse
Affiliation(s)
- Shi-Xiong Li
- School of Physics and Electronic
Science, Guizhou Education University, Guiyang 550018, China
| | - Yue-Ju Yang
- School of Physics and Electronic
Science, Guizhou Education University, Guiyang 550018, China
| | - De-Liang Chen
- School of Physics and Electronic
Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
3
|
Yang YJ, Li SX, Chen DL, Long ZW. Structural Evolution and Electronic Properties of Selenium-Doped Boron Clusters SeB n0/- (n = 3-16). Molecules 2023; 28:357. [PMID: 36615549 PMCID: PMC9824103 DOI: 10.3390/molecules28010357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
A theoretical research of structural evolution, electronic properties, and photoelectron spectra of selenium-doped boron clusters SeBn0/- (n = 3-16) is performed using particle swarm optimization (CALYPSO) software in combination with density functional theory calculations. The lowest energy structures of SeBn0/- (n = 3-16) clusters tend to form quasi-planar or planar structures. Some selenium-doped boron clusters keep a skeleton of the corresponding pure boron clusters; however, the addition of a Se atom modified and improved some of the pure boron cluster structures. In particular, the Se atoms of SeB7-, SeB8-, SeB10-, and SeB12- are connected to the pure quasi-planar B7-, B8-, B10-, and B12- clusters, which leads to planar SeB7-, SeB8-, SeB10-, and SeB12-, respectively. Interestingly, the lowest energy structure of SeB9- is a three-dimensional mushroom-shaped structure, and the SeB9- cluster displays the largest HOMO-LUMO gap of 5.08 eV, which shows the superior chemical stability. Adaptive natural density partitioning (AdNDP) bonding analysis reveals that SeB8 is doubly aromatic, with 6 delocalized π electrons and 6 delocalized σ electrons, whereas SeB9- is doubly antiaromatic, with 4 delocalized π electrons and 12 delocalized σ electrons. Similarly, quasi-planar SeB12 is doubly aromatic, with 6 delocalized π electrons and 14 delocalized σ electrons. The electron localization function (ELF) analysis shows that SeBn0/- (n = 3-16) clusters have different local electron delocalization and whole electron delocalization effects. The simulated photoelectron spectra of SeBn- (n = 3-16) have different characteristic bands that can identify and confirm SeBn- (n = 3-16) combined with future experimental photoelectron spectra. Our research enriches the geometrical structures of small doped boron clusters and can offer insight for boron-based nanomaterials.
Collapse
Affiliation(s)
- Yue-Ju Yang
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Shi-Xiong Li
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - De-Liang Chen
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Zheng-Wen Long
- College of Physics, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Li SX, Yang YJ, Chen DL, Long ZW. Structures, and electronic and spectral properties of single-atom transition metal-doped boron clusters MB 24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni). RSC Adv 2022; 12:16706-16716. [PMID: 35754907 PMCID: PMC9169616 DOI: 10.1039/d2ra02500k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
A theoretical study of geometrical structures, electronic properties, and spectral properties of single-atom transition metal-doped boron clusters MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) is performed using the CALYPSO approach for the global minimum search, followed by density functional theory calculations. The global minima obtained for the MB24 - (M = Sc, Ti, V, and Cr) clusters correspond to cage structures, and the MB24 - (M = Mn, Fe, and Co) clusters have similar distorted four-ring tubes with six boron atoms each. Interestingly, the global minima obtained for the NiB24 - cluster tend to a quasi-planar structure. Charge population analyses and valence electron density analyses reveal that almost one electron on the transition-metal atoms transfers to the boron atoms. The electron localization function (ELF) of MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) indicates that the local delocalization of MB24 - (M = Sc, Ti, V, Cr, and Ni) is weaker than that of MB24 - (M = Mn, Fe, and Co), and there is no obvious covalent bond between doped metal and B atoms. The spin density and spin population analyses reveal that open-shell MB24 - (M = Ti, Cr, Fe, and Ni) has different spin characteristics which are expected to lead to interesting magnetic properties and potential applications in molecular devices. The polarizability of MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) shows that MB24 - (M = Mn, Fe, and Co) has larger first hyperpolarizability, indicating that MB24 - (M = Mn, Fe, and Co) has a strong nonlinear optical response. Hence, MB24 - (M = Mn, Fe, and Co) might be considered as a promising nonlinear optical boron-based nanomaterial. The calculated spectra indicate that MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) has different and meaningful characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these single-atom transition metal-doped boron clusters. Our work enriches the database of geometrical structures of doped boron clusters and can provide an insight into new doped boron clusters.
Collapse
Affiliation(s)
- Shi-Xiong Li
- School of Physics and Electronic Science, Guizhou Education University Guiyang 550018 Guizhou People's Republic of China
| | - Yue-Ju Yang
- School of Physics and Electronic Science, Guizhou Education University Guiyang 550018 Guizhou People's Republic of China
| | - De-Liang Chen
- School of Physics and Electronic Science, Guizhou Education University Guiyang 550018 Guizhou People's Republic of China
| | - Zheng-Wen Long
- College of Physics, Guizhou University Guiyang 550025 Guizhou People's Republic of China
| |
Collapse
|
5
|
Barroso J, Pan S, Merino G. Structural transformations in boron clusters induced by metal doping. Chem Soc Rev 2022; 51:1098-1123. [PMID: 35029622 DOI: 10.1039/d1cs00747e] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the last decades, experimental techniques in conjunction with theoretical analyses have revealed the surprising structural diversity of boron clusters. Although the 2D to 3D transition thresholds are well-established, there is no certainty about the factors that determine the geometry adopted by these systems. The structural transformation induced by doping usually yields a minimum energy structure with a boron skeleton entirely different from that of the bare cluster. This review summarizes those clusters no larger than 40 boron atoms where one or two dopants show a radical transformation of the structure. Although the structures of these systems are not easy to predict, they often adopt familiar shapes such as umbrella-like, wheel, tubular, and cages in various cases.
Collapse
Affiliation(s)
- Jorge Barroso
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex 97310, Mérida, Yuc., Mexico.
| | - Sudip Pan
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex 97310, Mérida, Yuc., Mexico.
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex 97310, Mérida, Yuc., Mexico.
| |
Collapse
|
6
|
Yang YJ, Li SX, Chen DL, Long ZW. Structural and Electronic Properties of Single-Atom Transition Metal-Doped Boron Clusters MB 24 (M = Sc, V, and Mn). ACS OMEGA 2021; 6:30442-30450. [PMID: 34805674 PMCID: PMC8600523 DOI: 10.1021/acsomega.1c03740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
A theoretical study of geometrical structures, electronic properties, and spectral properties of single-atom transition metal-doped boron clusters MB24 (M = Sc, V, and Mn) is performed using the CALYPSO approach for the global minimum search, followed by density functional theory calculations. The global minima obtained for the VB24 and MnB24 clusters correspond to cage structures. Interestingly, the global minima obtained for the ScB24 cluster tend to a three-ring tubular structure. Population analyses and valence electron density analyses reveal that partial electrons on transition-metal atoms transfer to boron atoms. The localized orbital locator of MB24 (M = Sc, V, and Mn) indicates that the electron delocalization of ScB24 is stronger than that of VB24 and MnB24, and there is no obvious covalent bond between doped metals and B atoms. The spin density and spin population analyses reveal that MB24 (M = Sc, V, and Mn) have different spin characteristics which are expected to lead to interesting magnetic properties and potential applications in molecular devices. The calculated spectra indicate that MB24 (M = Sc, V, and Mn) has meaningful characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these single-atom transition metal-doped boron clusters. Our work enriches the database of geometrical structures of doped boron clusters and can provide an insight into new doped boron clusters.
Collapse
Affiliation(s)
- Yue-Ju Yang
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Shi-Xiong Li
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - De-Liang Chen
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Zheng-Wen Long
- College
of Physics, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Li SX, Zhang ZP, Long ZW, Chen DL. Structures, Electronic, and Spectral Properties of Doped Boron Clusters MB 12 0/- (M = Li, Na, and K). ACS OMEGA 2020; 5:20525-20534. [PMID: 32832805 PMCID: PMC7439372 DOI: 10.1021/acsomega.0c02693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Structures and electronic properties of alkali metal atom-doped boron clusters MB12 0/- (M = Li, Na, K) are determined using the CALYPSO method for the global minimum search followed by density functional theory. It is found that the global minima obtained for the neutral clusters correspond to the half-sandwich structure and those of the monoanionic clusters correspond to the boat-shaped structure. The neutral MB12 (M = Li, Na, K) can be considered as a member of the half-sandwich doped B12 clusters, and the geometrical pattern of anion MB12 - (M = Li, Na, K) is a new structure that is different from other doped B12 clusters. Natural population and chemical bonding analyses reveal that the alkali metal atom-doped boron clusters MB12 - are characterized as charge transfer complexes, M+B12 2-, resulting in symmetrically distributed chemical bonds and electrostatic interactions between cationic M+ and boron atoms. The calculated spectra indicate that MB12 0/- (M = Li, Na, K) has meaningful spectral features that can be compared with future experimental data. Our work enriches the varieties of geometrical structures of doped boron clusters and can provide much insight into boron nanomaterials.
Collapse
Affiliation(s)
- Shi-Xiong Li
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Zheng-Ping Zhang
- College
of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
| | - Zheng-Wen Long
- College
of physics, Guizhou University, Guiyang 550025, China
| | - De-Liang Chen
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| |
Collapse
|
8
|
Wang LS. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1147816] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Tai TB, Nguyen MT. Electronic structure and photoelectron spectra of Bnwith n = 26–29: an overview of structural characteristics and growth mechanism of boron clusters. Phys Chem Chem Phys 2015; 17:13672-9. [DOI: 10.1039/c5cp01851j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this report, the electronic structure and photoelectron spectra of boron clusters B26–29were theoretically investigated and an overview of the growth mechanism of boron clusters was shown.
Collapse
Affiliation(s)
- Truong Ba Tai
- Department of Chemistry
- University of Leuven
- Celestijnenlaan 200F
- B-3001 Leuven
- Belgium
| | - Minh Tho Nguyen
- Department of Chemistry
- University of Leuven
- Celestijnenlaan 200F
- B-3001 Leuven
- Belgium
| |
Collapse
|
10
|
Benzene analogues of (quasi-)planar M@BnHn compounds (M = V−, Cr, Mn+): A theoretical investigation. J Chem Phys 2013; 139:174310. [DOI: 10.1063/1.4827517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
|