1
|
Ma D, Lei X, Cui C, Yi Q, Luo Z. Hydrogen Evolution Reactions of Hydrocarbons and Hydroborons Promoted by Superatomic Nb n- Clusters. J Phys Chem Lett 2024; 15:9888-9893. [PMID: 39303097 DOI: 10.1021/acs.jpclett.4c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Hydrogen evolution reactions (HER) are crucial for producing renewable and ecological hydrogen energy. Here we report the finding that ethyl acetylene (C2H2), borane (B2H6), and benzene (C6H6) undergo drastic dehydrogenation reactions upon interaction with niobium cluster anions (Nbn-). This finding was enabled by our very sensitive and specialized mass spectrometer, which monitored the cluster ions and the resulting metal carbide and boride products in real time. Through mass spectrometry experiments and density functional theory computations, we delved into the varying reactivities of these common gas molecules with small Nbn- clusters and elucidated the underlying reaction mechanisms. These findings shed light on the HER mechanisms of hydrocarbon and hydroboron molecules on superatomic Nbn- clusters, furnishing valuable insights pertinent to the advancement of hydrogen energy resources.
Collapse
Affiliation(s)
- Demiao Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiuhao Yi
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Peter BD, Pei W, Andrew GN, Zhou S, Luo Z. A luminescent Ag 8(DPPY) 6(PhCC) 6 cluster with a triangular superatomic Ag 8 core. NANOSCALE 2024; 16:8090-8095. [PMID: 38563406 DOI: 10.1039/d4nr00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have synthesized single crystals of a highly stable Ag8 nanocluster protected by six ligands of diphenyl-2-phosphinic pyridine (DPPY) plus six ligands of phenylacetylene (PhCC). This Ag8(DPPY)6(PhCC)6 cluster bears a triangular superatomic Ag8 core, with the vertex and edge Ag atoms (quasi-triangle Ag6) being protected by both P and N bidentate coordination of the six DPPY ligands; meanwhile, the six PhCC ligands via μ3-C coordination form coordination on the two central Ag atoms capped on both sides of the triangle facet. Apart from the well-organized coordination of the two ligands pertaining to the balanced interactions with the Ag8 core, this Ag8 nanocluster exhibits superatomic stability with two delocalized valence electrons (1S2||1P0), assuming that the six PhCC ligands fix 6 localized electrons from the Ag atoms. Interestingly, the Ag8(DPPY)6(PhCC)6 NCs display temperature-dependent dual emissions at 330 and 535 nm under deep ultraviolet excitation. TD-DFT calculations reproduced the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in such a superatomic metal cluster.
Collapse
Affiliation(s)
- Blessing D Peter
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Si Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Hu J, Ma J, Jin Z, Liu W, Huang L, Wang X, Xing X. Reactivity of cationic silver clusters with O 2: a probe of interplay between clusters' geometric and electronic structures. Phys Chem Chem Phys 2024; 26:7407-7415. [PMID: 38351849 DOI: 10.1039/d3cp05082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We explored the size-dependent reactivity of Agn+ (n = 2-22) with O2 under mild conditions and found that only a few sizes of Agn+, with even values of n = 4, 6, 12, 16, 18, and 22, are reactive. Possible structures of Agn+ (n = 2-22) were determined using a genetic algorithm with incomplete local optimizations at the DFT level, and the calculated bonding strengths of O2 on these structures are consistent with experimental observations. Analyses revealed a close relationship between the reactivity of Agn+ with O2 and its HOMO-LUMO gap: cationic silver clusters with a small HOMO-LUMO gap are reactive, which can be rationalized by the covalent character of chemical bonds between Agn+ and O2 involving their frontier orbitals. The peculiar size-dependent HOMO-LUMO gaps and reactivity with O2 correlate with the subtle interplay between the electronic configurations and geometric structures of these silver cluster cations.
Collapse
Affiliation(s)
- Jin Hu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Jun Ma
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Zhengqian Jin
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Wen Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Lulu Huang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xuefeng Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiaopeng Xing
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Controlled Synthesis of Au 25 Superatom Using a Dendrimer Template. Molecules 2022; 27:molecules27113398. [PMID: 35684336 PMCID: PMC9182415 DOI: 10.3390/molecules27113398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Superatoms are promising materials for their potential in elemental substitution and as new building blocks. Thus far, various synthesis methods of thiol-protected Au clusters including an Au25 superatom have been investigated. However, previously reported methods were mainly depending on the thermodynamic stability of the aimed clusters. In this report, a synthesis method for thiol-protected Au clusters using a dendrimers template is proposed. In this method, the number of Au atoms was controlled by the stepwise complexation feature of a phenylazomethine dendrimer. Therefore, synthesis speed was increased compared with the case without the dendrimer template. Hybridization for the Au25 superatoms was also achieved using the complexation control of metals.
Collapse
|
5
|
Periodicity of Superatomic Hybrid Orbitals in Substituted Superatoms and Superatomic-like X@Ga12 (X = Li~Kr) Clusters. CRYSTALS 2022. [DOI: 10.3390/cryst12040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A superatom is a cluster composed of a specific number of atoms. We recently found that the superatom-like X@Ga12 (X = Li~Kr) clusters has the periodic energy levels of the specific orbitals 2S and 2P by means of the DV-Xα molecular orbital calculation method. This periodicity in energy levels has not been seen in 1D or 1F orbitals. We supposed that the periodicity of the energy levels of the 2S and 2P superatomic-like orbitals come from the same symmetry between atomic orbitals as the central atom X and the surrounding specific orbitals, according to the Jellium model. Both the s and p atomic orbitals of the central atom X in the superatom-like X@Ga12 have a large shielding effect, suggesting that the s and p atomic orbitals interact strongly with both 2S and 2P superatomic-like orbitals. The energy level periodicity has the potential to periodically change the number of electrons located in the 1D and 1F orbitals, which is related to magnetic properties and is expected to be useful for novel magnetic devices by periodically controlling the magnetism of superatoms.
Collapse
|
6
|
|
7
|
Yin B, Geng L, Zhang H, Jia Y, Luo Z. Probing Cluster-π Interactions between Cu n- and C 2H 2/C 2H 4 for Gas Separation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2391-2398. [PMID: 34327992 DOI: 10.1021/jasms.1c00177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Copper-related materials are used for separation of ethylene and acetylene gases in chemistry; however, the precise mechanism regarding selectivity is elusive to be fully understood. Here, we have conducted a joint experimental and theoretical study of the Cun- (n = 7-30) clusters in reacting with C2H4 and C2H2. It is found that all of the Cun- clusters readily react with C2H2, giving rise to C2H2-addition products; however, Cu18- and Cu19- do not react with C2H4. We illustrate the superatomic stability of Cu18- and advocate its availability to separate C2H4 from C2H2. Further, we demonstrate the atomically precise mechanism regarding selectivity by fully unveiling the size-dependent cluster-π interactions.
Collapse
Affiliation(s)
- Baoqi Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences. Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences. Beijing 100190, P.R. China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences. Beijing 100190, P.R. China
| | - Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences. Beijing 100190, P.R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences. Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
8
|
|
9
|
Yin B, Du Q, Geng L, Zhang H, Luo Z, Zhou S, Zhao J. Anionic Copper Clusters Reacting with NO: An Open-Shell Superatom Cu 18. J Phys Chem Lett 2020; 11:5807-5814. [PMID: 32597656 DOI: 10.1021/acs.jpclett.0c01643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gas-phase metal clusters have been a subject of research interest for allowing reliable strategies to explore the stability and reactivity of materials at reduced sizes with atomic precision. Here we have prepared well-resolved copper cluster anions Cun- (n = 7-37) and systematically studied their reactivity with O2, NO, and CO. We found remarkable stability of an open-shell cluster Cu18-, which is comparable with the closed-shell clusters Cu17- and Cu19- within the picture of an electronic shell model. Even without having a magic number of valence electrons, intriguingly, the unpaired electron on the singly occupied molecular orbital of Cu18- is mainly contributed by the central copper atom, while the other 18 delocalized valence electrons occupy the lower-energy superatomic orbitals of the cluster. The finding of such an open-shell superatom Cu18-, with an electron configuration of 1S21P61D102S1||1F0, is interesting in the sense that an elementary cluster of coinage metal atoms could still behave as a superatom mimicking coinage metals like silver or gold atoms with an empty f orbital. The superatomic stability of this Cu18- cluster is reinforced by the unique electrostatic interaction between the Cu- core and Cu17 shell, which provides new insights into the chemistry of metal clusters.
Collapse
Affiliation(s)
- Baoqi Yin
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuying Du
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Lijun Geng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
10
|
Yang M, Wu H, Huang B, Luo Z, Hansen K. Iodization Threshold in Size-Dependent Reactions of Lead Clusters Pb n+ with Iodomethane. J Phys Chem A 2020; 124:2505-2512. [PMID: 32091897 DOI: 10.1021/acs.jpca.0c01413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Utilizing a magnetron-sputtering (MagS) source in tandem with a multiple-ion laminar flow tube (MIFT) reactor and a customized triple quadrupole mass spectrometer (TQMS), we have prepared clean Pbn+ (n = 1-13) clusters and measured their reactivity with iodomethane under high carrier gas pressures. Strong size dependences are found for the reactivity of these cationic Pbn+ clusters with CH3I. For the Pbn+ with n ≤ 4, iodinated clusters PbnI+ were found to be the dominant products, in strong contrast to n > 4 where no such products were seen. Quantum chemical studies show that with an increasing number of Pb atoms, the Pb-Pb interatomic interactions become stronger compared with the Pb-I bonding in PbnI+ clusters. Furthermore, the reactions of Pb1-4+ with CH3I have fairly small transition state energy barriers, in contrast to those for Pbn>4+ clusters which have magnitudes that will prevent reactions under the ambient conditions.
Collapse
Affiliation(s)
- Mengzhou Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Benben Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Klavs Hansen
- Joint Centre for Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, P. R. China.,Department of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| |
Collapse
|
11
|
Yang M, Wu H, Huang B, Luo Z. Cluster−π Interactions Cause Size-Selective Reactivity of Cationic Silver Clusters with Acetylene: The Distinctive Ag7+[C2H2]. J Phys Chem A 2019; 123:6921-6926. [DOI: 10.1021/acs.jpca.9b06502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mengzhou Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Benben Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
|
13
|
Pembere AM, Luo Z. Jones oxidation of glycerol catalysed by small gold clusters. Phys Chem Chem Phys 2017; 19:6620-6625. [DOI: 10.1039/c6cp07941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here a joint theoretical and experimental study on the oxidation reactivity of glycerol catalysed by chemically pure small Au clusters in the absence and presence of H2O2.
Collapse
Affiliation(s)
- Anthony M. Pembere
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
14
|
Affiliation(s)
- Zhixun Luo
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - A. W. Castleman
- Departments
of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shiv N. Khanna
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
15
|
Wleklinski M, Sarkar D, Hollerbach A, Pradeep T, Cooks RG. Ambient preparation and reactions of gas phase silver cluster cations and anions. Phys Chem Chem Phys 2015; 17:18364-73. [DOI: 10.1039/c5cp01538c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The production and reactivity of silver cluster cations and anions at atmospheric pressure is demonstrated.
Collapse
Affiliation(s)
- Michael Wleklinski
- Department of Chemistry and Center for Analytical Instrumentation Development
- Purdue University
- West Lafayette
- USA
| | - Depanjan Sarkar
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Adam Hollerbach
- Department of Chemistry and Center for Analytical Instrumentation Development
- Purdue University
- West Lafayette
- USA
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - R. Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
16
|
Abstract
Bridging the gap between atoms and macroscopic matter, clusters continue to be a subject of increasing research interest. Among the realm of cluster investigations, an exciting development is the realization that chosen stable clusters can mimic the chemical behavior of an atom or a group of the periodic table of elements. This major finding known as a superatom concept was originated experimentally from the study of aluminum cluster reactivity conducted in 1989 by noting a dramatic size dependence of the reactivity where cluster anions containing a certain number of Al atoms were unreactive toward oxygen while the other species were etched away. This observation was well interpreted by shell closings on the basis of the jellium model, and the related concept (originally termed "unified atom") spawned a wide range of pioneering studies in the 1990s pertaining to the understanding of factors governing the properties of clusters. Under the inspiration of a superatom concept, advances in cluster science in finding stable species not only shed light on magic clusters (i.e., superatomic noble gas) but also enlightened the exploration of stable clusters to mimic the chemical behavior of atoms leading to the discovery of superhalogens, alkaline-earth metals, superalkalis, etc. Among them, certain clusters could enable isovalent isomorphism of precious metals, indicating application potential for inexpensive superatoms for industrial catalysis, while a few superalkalis were found to validate the interesting "harpoon mechanism" involved in the superatomic cluster reactivity; recently also found were the magnetic superatoms of which the cluster-assembled materials could be used in spin electronics. Up to now, extensive studies in cluster science have allowed the stability of superatomic clusters to be understood within a few models, including the jellium model, also aromaticity and Wade-Mingos rules depending on the geometry and metallicity of the cluster. However, the scope of application of the jellium model and modification of the theory to account for nonspherical symmetry and nonmetal-doped metal clusters are still illusive to be further developed. It is still worth mentioning that a superatom concept has also been introduced in ligand-stabilized metal clusters which could also follow the major shell-closing electron count for a spherical, square-well potential. By proposing a new concept named as special and general superatoms, herein we try to summarize all these investigations in series, expecting to provide an overview of this field with a primary focus on the joint undertakings which have given rise to the superatom concept. To be specific, for special superatoms, we limit to clusters under a strict jellium model and simply classify them into groups based on their valence electron counts. While for general superatoms we emphasize on nonmetal-doped metal clusters and ligand-stabilized metal clusters, as well as a few isovalent cluster systems. Hopefully this summary of special and general superatoms benefits the further development of cluster-related theory, and lights up the prospect of using them as building blocks of new materials with tailored properties, such as inexpensive isovalent systems for industrial catalysis, semiconductive superatoms for transistors, and magnetic superatoms for spin electronics.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Departments of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - A. Welford Castleman
- Departments of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Luo Z, Gamboa GU, Jia M, Reber AC, Khanna SN, Castleman AW. Reactivity of Silver Clusters Anions with Ethanethiol. J Phys Chem A 2014; 118:8345-50. [DOI: 10.1021/jp501164g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zhixun Luo
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Departments
of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gabriel U. Gamboa
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Meiye Jia
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Arthur C. Reber
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Shiv N. Khanna
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - A. W. Castleman
- Departments
of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|