1
|
Bethkenhagen M, Sharma A, Suryanarayana P, Pask JE, Sadigh B, Hamel S. Properties of carbon up to 10 million kelvin from Kohn-Sham density functional theory molecular dynamics. Phys Rev E 2023; 107:015306. [PMID: 36797894 DOI: 10.1103/physreve.107.015306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Accurately modeling dense plasmas over wide-ranging conditions of pressure and temperature is a grand challenge critically important to our understanding of stellar and planetary physics as well as inertial confinement fusion. In this work, we employ Kohn-Sham density functional theory (DFT) molecular dynamics (MD) to compute the properties of carbon at warm and hot dense matter conditions in the vicinity of the principal Hugoniot. In particular, we calculate the equation of state (EOS), Hugoniot, pair distribution functions, and diffusion coefficients for carbon at densities spanning 8 g/cm^{3} to 16 g/cm^{3} and temperatures ranging from 100 kK to 10 MK using the Spectral Quadrature method. We find that the computed EOS and Hugoniot are in good agreement with path integral Monte Carlo results and the sesame database. Additionally, we calculate the ion-ion structure factor and viscosity for selected points. All results presented are at the level of full Kohn-Sham DFT-MD, free of empirical parameters, average-atom, and orbital-free approximations employed previously at such conditions.
Collapse
Affiliation(s)
- Mandy Bethkenhagen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon, Cedex 07, France
| | - Abhiraj Sharma
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Phanish Suryanarayana
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - John E Pask
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Babak Sadigh
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Sebastien Hamel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
2
|
Nguyen M, Neuhauser D. Gapped-filtering for efficient Chebyshev expansion of the density projection operator. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Clérouin J, Blanchet A, Blancard C, Faussurier G, Soubiran F, Bethkenhagen M. Equivalence between pressure- and structure-defined ionization in hot dense carbon. Phys Rev E 2022; 106:045204. [PMID: 36397512 DOI: 10.1103/physreve.106.045204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The determination of the ionization of a system in the hot dense regime is a long standing issue. Recent studies have shown inconsistencies between standard predictions using average atom models and evaluations deduced from electronic transport properties computed with quantum molecular dynamics simulations [Bethkenhagen et al., Phys. Rev. Res. 2, 023260 (2020)]2643-156410.1103/PhysRevResearch.2.023260. Here, we propose a definition of the ionization based on its effect on the plasma structure as given by the pair distribution function (PDF), and on the concept of effective one-component plasma (eOCP). We also introduce a definition based on the total pressure and on a modelization of the electronic pressure. We show the equivalence of these definitions on two studies of carbon along the 100 eV isotherm and the 10 g/cm^{3} isochor. Simulations along the 100 eV isotherm are obtained with the newly implemented Ext. First principles molecular dynamics (Fpmd) method in Abinit for densities ranging from 1 to 500 g/cm^{3}and along the 10 g/cm^{3} isochor with the recently published Spectral quadrature DFT (Sqdft) simulations, between 8 and 860 eV. The resulting ionizations are compared to the predictions of the average-atom code Qaam which is based on the muffin-tin approximation. A disagreement between the eOCP and the actual PDFs (non-OCP behavior) is interpreted as the onset of bonding in the system.
Collapse
Affiliation(s)
- Jean Clérouin
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Augustin Blanchet
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Christophe Blancard
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Gérald Faussurier
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - François Soubiran
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Mandy Bethkenhagen
- CNRS, École Normale Supérieure de Lyon, Laboratoire de Géologie de Lyon LGLTPE UMR 5276, Centre Blaise Pascal, 46 allée d'Italie Lyon 69364, France
| |
Collapse
|
4
|
Zhang S, Karasiev VV, Shaffer N, Mihaylov DI, Nichols K, Paul R, Goshadze RMN, Ghosh M, Hinz J, Epstein R, Goedecker S, Hu SX. First-principles equation of state of CHON resin for inertial confinement fusion applications. Phys Rev E 2022; 106:045207. [PMID: 36397594 DOI: 10.1103/physreve.106.045207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
A wide-range (0 to 1044.0 g/cm^{3} and 0 to 10^{9} K) equation-of-state (EOS) table for a CH_{1.72}O_{0.37}N_{0.086} quaternary compound has been constructed based on density-functional theory (DFT) molecular-dynamics (MD) calculations using a combination of Kohn-Sham DFT MD, orbital-free DFT MD, and numerical extrapolation. The first-principles EOS data are compared with predictions of simple models, including the fully ionized ideal gas and the Fermi-degenerate electron gas models, to chart their temperature-density conditions of applicability. The shock Hugoniot, thermodynamic properties, and bulk sound velocities are predicted based on the EOS table and compared to those of C-H compounds. The Hugoniot results show the maximum compression ratio of the C-H-O-N resin is larger than that of CH polystyrene due to the existence of oxygen and nitrogen; while the other properties are similar between CHON and CH. Radiation hydrodynamic simulations have been performed using the table for inertial confinement fusion targets with a CHON ablator and compared with a similar design with CH. The simulations show CHON outperforms CH as the ablator for laser-direct-drive target designs.
Collapse
Affiliation(s)
- Shuai Zhang
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Valentin V Karasiev
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Nathaniel Shaffer
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Deyan I Mihaylov
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Katarina Nichols
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Reetam Paul
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - R M N Goshadze
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Maitrayee Ghosh
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Joshua Hinz
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Reuben Epstein
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Stefan Goedecker
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - S X Hu
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| |
Collapse
|
5
|
Xu Q, Jing X, Zhang B, Pask J, Suryanarayana P. Real-space density kernel method for Kohn-Sham density functional theory calculations at high temperature. J Chem Phys 2022; 156:094105. [DOI: 10.1063/5.0082523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Qimen Xu
- Georgia Institute of Technology, United States of America
| | - Xin Jing
- School of Computational Science and Engineering, Georgia Institute of Technology, United States of America
| | - Boqin Zhang
- Georgia Institute of Technology, United States of America
| | - John Pask
- Physics, LLNL, United States of America
| | | |
Collapse
|
6
|
Wu CJ, Myint PC, Pask JE, Prisbrey CJ, Correa AA, Suryanarayana P, Varley JB. Development of a Multiphase Beryllium Equation of State and Physics-based Variations. J Phys Chem A 2021; 125:1610-1636. [PMID: 33587640 DOI: 10.1021/acs.jpca.0c09809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We construct a family of beryllium (Be) multiphase equation of state (EOS) models that consists of a baseline ("optimal") EOS and variations on the baseline to account for physics-based uncertainties. The Be baseline EOS is constructed to reproduce a set of self-consistent data and theory including known phase boundaries, the principal Hugoniot, isobars, and isotherms from diamond-anvil cell experiments. Three phases are considered, including the known hexagonal closed-packed (hcp) phase, the liquid, and the theoretically predicted high-pressure body-centered cubic (bcc) phase. Since both the high-temperature liquid and high-pressure bcc phases lack any experimental data, we carry out ab initio density functional theory (DFT) calculations to obtain new information about the EOS properties for these two regions. At extremely high temperature conditions (>87 eV), DFT-based quantum molecular dynamics simulations are performed for multiple liquid densities using the state-of-the-art Spectral Quadrature methodology in order to validate our selected models for the ion- and electron-thermal free energies of the liquid. We have also performed DFT simulations of hcp and bcc with different exchange-correlation functionals to examine their impact on bcc compressibility, which bound the hcp-bcc transition pressure to within 4 ± 0.5 Mbar. Our baseline EOS predicts the first density maximum along the Hugoniot to be 4.4-fold in compression, while the hcp-bcc-liquid triple-point pressure is predicted to be at 2.25 Mbar. In addition to the baseline EOS, we have generated eight variations to accommodate multiple sources of potential uncertainties such as (1) the choice of free-energy models, (2) differences in theoretical treatments, (3) experimental uncertainties, and (4) lack of information. These variations are designed to provide a reasonable representation of nonstatistical uncertainties for the Be EOS and may be used to assess its sensitivity to different inertial-confinement fusion capsule designs.
Collapse
Affiliation(s)
- Christine J Wu
- Lawrence Livermore National Laboratory, Livermore, California 94588, United States
| | - Philip C Myint
- Lawrence Livermore National Laboratory, Livermore, California 94588, United States
| | - John E Pask
- Lawrence Livermore National Laboratory, Livermore, California 94588, United States
| | - Carrie J Prisbrey
- Lawrence Livermore National Laboratory, Livermore, California 94588, United States
| | - Alfredo A Correa
- Lawrence Livermore National Laboratory, Livermore, California 94588, United States
| | - Phanish Suryanarayana
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joel B Varley
- Lawrence Livermore National Laboratory, Livermore, California 94588, United States
| |
Collapse
|
7
|
Luo Z, Qin X, Wan L, Hu W, Yang J. Parallel Implementation of Large-Scale Linear Scaling Density Functional Theory Calculations With Numerical Atomic Orbitals in HONPAS. Front Chem 2020; 8:589910. [PMID: 33324611 PMCID: PMC7726133 DOI: 10.3389/fchem.2020.589910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
Linear-scaling density functional theory (DFT) is an efficient method to describe the electronic structures of molecules, semiconductors, and insulators to avoid the high cubic-scaling cost in conventional DFT calculations. Here, we present a parallel implementation of linear-scaling density matrix trace correcting (TC) purification algorithm to solve the Kohn-Sham (KS) equations with the numerical atomic orbitals in the HONPAS package. Such a linear-scaling density matrix purification algorithm is based on the Kohn's nearsightedness principle, resulting in a sparse Hamiltonian matrix with localized basis sets in the DFT calculations. Therefore, sparse matrix multiplication is the most time-consuming step in the density matrix purification algorithm for linear-scaling DFT calculations. We propose to use the MPI_Allgather function for parallel programming to deal with the sparse matrix multiplication within the compressed sparse row (CSR) format, which can scale up to hundreds of processing cores on modern heterogeneous supercomputers. We demonstrate the computational accuracy and efficiency of this parallel density matrix purification algorithm by performing large-scale DFT calculations on boron nitrogen nanotubes containing tens of thousands of atoms.
Collapse
Affiliation(s)
| | - Xinming Qin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | | | - Wei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | | |
Collapse
|
8
|
Sharma A, Hamel S, Bethkenhagen M, Pask JE, Suryanarayana P. Real-space formulation of the stress tensor for O(N) density functional theory: Application to high temperature calculations. J Chem Phys 2020; 153:034112. [PMID: 32716199 DOI: 10.1063/5.0016783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an accurate and efficient real-space formulation of the Hellmann-Feynman stress tensor for O(N) Kohn-Sham density functional theory (DFT). While applicable at any temperature, the formulation is most efficient at high temperature where the Fermi-Dirac distribution becomes smoother and the density matrix becomes correspondingly more localized. We first rewrite the orbital-dependent stress tensor for real-space DFT in terms of the density matrix, thereby making it amenable to O(N) methods. We then describe its evaluation within the O(N) infinite-cell Clenshaw-Curtis Spectral Quadrature (SQ) method, a technique that is applicable to metallic and insulating systems, is highly parallelizable, becomes increasingly efficient with increasing temperature, and provides results corresponding to the infinite crystal without the need of Brillouin zone integration. We demonstrate systematic convergence of the resulting formulation with respect to SQ parameters to exact diagonalization results and show convergence with respect to mesh size to the established plane wave results. We employ the new formulation to compute the viscosity of hydrogen at 106 K from Kohn-Sham quantum molecular dynamics, where we find agreement with previous more approximate orbital-free density functional methods.
Collapse
Affiliation(s)
- Abhiraj Sharma
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Sebastien Hamel
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Mandy Bethkenhagen
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USAPhysics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USACNRS, École Normale Supérieure de Lyon, Laboratoire de Géologie de Lyon LGLTPE UMR5276, Centre Blaise Pascal, 46 Allée D'Italie, Lyon 69364, France
| | - John E Pask
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Phanish Suryanarayana
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
9
|
Prentice JCA, Aarons J, Womack JC, Allen AEA, Andrinopoulos L, Anton L, Bell RA, Bhandari A, Bramley GA, Charlton RJ, Clements RJ, Cole DJ, Constantinescu G, Corsetti F, Dubois SMM, Duff KKB, Escartín JM, Greco A, Hill Q, Lee LP, Linscott E, O'Regan DD, Phipps MJS, Ratcliff LE, Serrano ÁR, Tait EW, Teobaldi G, Vitale V, Yeung N, Zuehlsdorff TJ, Dziedzic J, Haynes PD, Hine NDM, Mostofi AA, Payne MC, Skylaris CK. The ONETEP linear-scaling density functional theory program. J Chem Phys 2020; 152:174111. [PMID: 32384832 DOI: 10.1063/5.0004445] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints. By taking advantage of localization, onetep is able to perform calculations including thousands of atoms with computational effort, which scales linearly with the number or atoms. The code has a large and diverse range of capabilities, explored in this paper, including different boundary conditions, various exchange-correlation functionals (with and without exact exchange), finite electronic temperature methods for metallic systems, methods for strongly correlated systems, molecular dynamics, vibrational calculations, time-dependent DFT, electronic transport, core loss spectroscopy, implicit solvation, quantum mechanical (QM)/molecular mechanical and QM-in-QM embedding, density of states calculations, distributed multipole analysis, and methods for partitioning charges and interactions between fragments. Calculations with onetep provide unique insights into large and complex systems that require an accurate atomic-level description, ranging from biomolecular to chemical, to materials, and to physical problems, as we show with a small selection of illustrative examples. onetep has always aimed to be at the cutting edge of method and software developments, and it serves as a platform for developing new methods of electronic structure simulation. We therefore conclude by describing some of the challenges and directions for its future developments and applications.
Collapse
Affiliation(s)
- Joseph C A Prentice
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jolyon Aarons
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - James C Womack
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Alice E A Allen
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lampros Andrinopoulos
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lucian Anton
- UKAEA, Culham Science Centre, Abingdon OX14 3DB, United Kingdom
| | - Robert A Bell
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Arihant Bhandari
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Gabriel A Bramley
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Robert J Charlton
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Rebecca J Clements
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Gabriel Constantinescu
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Fabiano Corsetti
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Simon M-M Dubois
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kevin K B Duff
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - José María Escartín
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Andrea Greco
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Quintin Hill
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Louis P Lee
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Edward Linscott
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - David D O'Regan
- School of Physics, AMBER, and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Maximillian J S Phipps
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Laura E Ratcliff
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Álvaro Ruiz Serrano
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Edward W Tait
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Gilberto Teobaldi
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Valerio Vitale
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nelson Yeung
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Peter D Haynes
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas D M Hine
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Arash A Mostofi
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mike C Payne
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
10
|
Aarons J, Skylaris CK. Electronic annealing Fermi operator expansion for DFT calculations on metallic systems. J Chem Phys 2018; 148:074107. [PMID: 29471650 DOI: 10.1063/1.5001340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jolyon Aarons
- Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Chris-Kriton Skylaris
- Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
11
|
Suryanarayana P. On nearsightedness in metallic systems for O(N) Density Functional Theory calculations: A case study on aluminum. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|