1
|
Niemeyer N, Eschenbach P, Bensberg M, Tölle J, Hellmann L, Lampe L, Massolle A, Rikus A, Schnieders D, Unsleber JP, Neugebauer J. The subsystem quantum chemistry program
Serenity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niklas Niemeyer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Patrick Eschenbach
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Moritz Bensberg
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Johannes Tölle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lars Hellmann
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lukas Lampe
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anja Massolle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anton Rikus
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - David Schnieders
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Jan P. Unsleber
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| |
Collapse
|
2
|
Eschenbach P, Neugebauer J. Subsystem density-functional theory: A reliable tool for spin-density based properties. J Chem Phys 2022; 157:130902. [PMID: 36209003 DOI: 10.1063/5.0103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Subsystem density-functional theory compiles a set of features that allow for efficiently calculating properties of very large open-shell radical systems such as organic radical crystals, proteins, or deoxyribonucleic acid stacks. It is computationally less costly than correlated ab initio wave function approaches and can pragmatically avoid the overdelocalization problem of Kohn-Sham density-functional theory without employing hard constraints on the electron-density. Additionally, subsystem density-functional theory calculations commonly start from isolated fragment electron densities, pragmatically preserving a priori specified subsystem spin-patterns throughout the calculation. Methods based on subsystem density-functional theory have seen a rapid development over the past years and have become important tools for describing open-shell properties. In this Perspective, we address open questions and possible developments toward challenging future applications in connection with subsystem density-functional theory for spin-dependent properties.
Collapse
Affiliation(s)
- Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
3
|
Weak O 2 binding and strong H 2O 2 binding at the non-heme diiron center of trypanosome alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148356. [PMID: 33385341 DOI: 10.1016/j.bbabio.2020.148356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
Alternative oxidase (AOX) catalyzes the four-electron reduction of dioxygen to water as an additional terminal oxidase, and the catalytic reaction is critical for the parasite to survive in its bloodstream form. Recently, the X-ray crystal structure of trypanosome alternative oxidase (TAO) complexed with ferulenol was reported and the molecular structure of the non-heme diiron center was determined. The binding of O2 was a unique side-on type compared to other iron proteins. In order to characterize the O2 binding state of TAO, the O2 binding states were searched at a quantum mechanics/molecular mechanics (QM/MM) theoretical level in the present study. We found that the most stable O2 binding state is the end-on type, and the binding states of the side-on type are higher in energy. Based on the binding energies and electronic structure analyses, O2 binds very weakly to the TAO iron center (ΔE =6.7 kcal mol-1) in the electronic state of Fe(II)…OO, not in the suggested charge transferred state such as the superoxide state (Fe(III)OO· -) as seen in hemerythrin. Coordination of other ligands such as water, Cl-, CN-, CO, N3- and H2O2 was also examined, and H2O2 was found to bind most strongly to the Fe(II) site by ΔE = 14.0 kcal mol-1. This was confirmed experimentally through the measurement of ubiquinol oxidase activity of TAO and Cryptosporidium parvum AOX which was found to be inhibited by H2O2 in a dose-dependent and reversible manner.
Collapse
|
4
|
Massolle A, Neugebauer J. Subsystem density-functional theory for interacting open-shell systems: spin densities and magnetic exchange couplings. Faraday Discuss 2020; 224:201-226. [PMID: 33000819 DOI: 10.1039/d0fd00063a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigate the possibility of describing interacting open-shell systems in high-spin and broken-symmetry (BS) states with subsystem density-functional theory (sDFT). This subsystem method typically starts from the electronic-structure results obtained for individual systems, for which the spin states can be individually defined. Through the confining effect of the embedding potential and/or the use of monomer basis sets, these individual spin states can be preserved in sDFT calculations. This offers the possibility of easy convergence to broken-symmetry states with arbitrary local spin patterns. We show that the resulting spin densities are in very good agreement with successfully converged broken-symmetry Kohn-Sham density-functional theory (KS-DFT) calculations. Yet sDFT can even cure those BS cases where KS-DFT suffers from convergence problems or convergence to undesired spin states. In contrast to KS-DFT, the sDFT-results only show a mild exchange-correlation functional dependence. We also show that magnetic coupling constants from sDFT are not satisfactory with standard approximations for the non-additive kinetic energy. When this component is evaluated "exactly", i.e. based on potential reconstruction, however, the magnetic coupling constants derived from spin-state energy differences are greatly improved. Hence, the interacting radicals studied here represent cases where even (semi-)local approximations for the non-additive kinetic-energy potential work well, while the parent energy functionals do not yield satisfactory results for spin-state energy differences.
Collapse
Affiliation(s)
- Anja Massolle
- Theoretische Organische Chemie, Organisch-Chemisches Institut, Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| | | |
Collapse
|
5
|
Characterization of charge transfer excited states in [2Fe–2S] iron–sulfur clusters using conventional configuration interaction techniques. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02635-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe experimental UV–Vis spectra of the biologically relevant [2Fe–2S] iron–sulfur clusters feature typically three bands in the 300–800 nm range. Based on ground-state orbitals and using the one electron transition picture, these bands are said to be of charge transfer character. The key complication in the electronic structure calculations of these compounds are the antiferromagnetic coupling of the iron centers and high covalency of Fe–S bonds. Thus, the examples of the direct computations of electronically excited states of these systems are rare. Whereas low lying electronic excited states were subject of recent studies, higher energy states computed with many-body theories were never reported. In this work we present, for the first time, calculations of the electronic spectra of [Fe2S2](SMe)42−
biomimetic compound. We demonstrate that spin-averaged restricted open-shell Hartree–Fock orbitals are superior to high-spin orbitals and are convenient reference for subsequent configuration interaction calculations. Moreover, the use of conventional configuration interaction methods enabled us to study the nature of the excited states in details with the difference density maps. By systematic extension of the donor orbital space we show that key excitations in the 300–800 nm range are of Fe 3d ← (μ-S) character.
Collapse
|
6
|
Miyagawa K, Shoji M, Isobe H, Yamanaka S, Kawakami T, Okumura M, Yamaguchi K. Theory of chemical bonds in metalloenzymes XXIV electronic and spin structures of FeMoco and Fe-S clusters by classical and quantum computing. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1760388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Koichi Miyagawa
- The Institute for Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Japan
| | - Hiroshi Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shusuke Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Japan
- Division of Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Japan
| | - Takashi Kawakami
- Graduate School of Science, Osaka University, Toyonaka, Japan
- RIKEN Center for Computational Science, Kobe, Japan
| | | | - Kizashi Yamaguchi
- The Institute for Scientific and Industrial Research, Osaka University, Ibaraki, Japan
- Division of Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Japan
- RIKEN Center for Computational Science, Kobe, Japan
- Institute for Nanoscience Design, Osaka University, Toyonaka, Japan
| |
Collapse
|
7
|
Miyagawa K, Shoji M, Isobe H, Yamanaka S, Kawakami T, Okumura M, Yamaguchi K. UNO(ULO) active space for multireference calculations on classical and quantum computers. Revisit to the iron-sulfur complexes. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Concerted bond switching mechanism coupled with one-electron transfer for the oxygen-oxygen bond formation in the oxygen-evolving complex of photosystem II. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Structural Changes of the Trinuclear Copper Center in Bilirubin Oxidase upon Reduction. Molecules 2018; 24:molecules24010076. [PMID: 30587809 PMCID: PMC6337666 DOI: 10.3390/molecules24010076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
Geometric and electronic structure changes in the copper (Cu) centers in bilirubin oxidase (BOD) upon a four-electron reduction were investigated by quantum mechanics/molecular mechanics (QM/MM) calculations. For the QM region, the unrestricted density functional theory (UDFT) method was adopted for the open-shell system. We found new candidates of the native intermediate (NI, intermediate II) and the resting oxidized (RO) states, i.e., NIH+ and RO₀. Elongations of the Cu-Cu atomic distances for the trinuclear Cu center (TNC) and very small structural changes around the type I Cu (T1Cu) were calculated as the results of a four-electron reduction. The QM/MM optimized structures are in good agreement with recent high-resolution X-ray structures. As the structural change in the TNC upon reduction was revealed to be the change in the size of the triangle spanned by the three Cu atoms of TNC, we introduced a new index (l) to characterize the specific structural change. Not only the wild-type, but also the M467Q, which mutates the amino acid residue coordinating T1Cu, were precisely analyzed in terms of their molecular orbital levels, and the optimized redox potential of T1Cu was theoretically reconfirmed.
Collapse
|
10
|
Akter M, Tokiwa T, Shoji M, Nishikawa K, Shigeta Y, Sakurai T, Higuchi Y, Kataoka K, Shibata N. Redox Potential-Dependent Formation of an Unusual His-Trp Bond in Bilirubin Oxidase. Chemistry 2018; 24:18052-18058. [PMID: 30156345 DOI: 10.1002/chem.201803798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 11/06/2022]
Abstract
Bilirubin oxidase (BOD) belongs to the family of blue multicopper oxidases, and catalyzes the concomitant oxidation of bilirubin to biliverdin and the reduction of molecular oxygen to water via a four-electron reduction system. The active sites of BOD comprise four copper atoms; type I copper (T1Cu) forms a mononuclear site, and a cluster of three copper atoms forms a trinuclear center. In the present study, we determined the high-resolution crystal structures of BOD from the fungus Myrothecium verrucaria. We investigated wild-type (WT) BOD and a BOD mutant called Met467Gln, which is inactive against bilirubin. The structures revealed that a novel post-translational crosslink between Trp396 and His398 is formed in the vicinity of the T1Cu site in WT BOD, whereas it is absent in the Met467Gln mutant. Our structural and computational studies suggest that the His-Trp crosslink adjusts the redox potential of T1Cu to that of bilirubin to efficiently abstract electrons from the substrate.
Collapse
Affiliation(s)
- Mahfuza Akter
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Takaki Tokiwa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Koji Nishikawa
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takeshi Sakurai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yoshiki Higuchi
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan.,The RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sato-gun, Hyogo, 678-5248, Japan
| | - Kunishige Kataoka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Naoki Shibata
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan.,The RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sato-gun, Hyogo, 678-5248, Japan
| |
Collapse
|
11
|
Kurniawan I, Kawaguchi K, Shoji M, Matsui T, Shigeta Y, Nagao H. A Theoretical Study on Redox Potential and p Kaof [2Fe-2S] Cluster Model from Iron-Sulfur Proteins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Isman Kurniawan
- Division of Mathematical and Physical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- School of Computing, Telkom University, Terusan Buah Batu, Bandung, 40257 Indonesia
| | - Kazutomo Kawaguchi
- Division of Mathematical and Physical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Matsui
- College of Chemistry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hidemi Nagao
- Division of Mathematical and Physical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
12
|
Kubas A, Maszota P. Theoretical Insights into the Unique Ligation of [Fe
4
S
4
] Iron–Sulfur Clusters. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Kubas
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Paweł Maszota
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| |
Collapse
|
13
|
Shoji M, Isobe H, Shigeta Y, Nakajima T, Yamaguchi K. Concerted Mechanism of Water Insertion and O2 Release during the S4 to S0 Transition of the Oxygen-Evolving Complex in Photosystem II. J Phys Chem B 2018; 122:6491-6502. [DOI: 10.1021/acs.jpcb.8b03465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Japan
| | - Hiroshi Isobe
- Graduate School of Natural Science and Technology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Japan
| | | | - Kizashi Yamaguchi
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Handairigaku Techno-Research (NPO), Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
14
|
Kawakami T, Saito T, Sharma S, Yamanaka S, Yamada S, Nakajima T, Okumura M, Yamaguchi K. Full-valence density matrix renormalisation group calculations on meta-benzyne based on unrestricted natural orbitals. Revisit of seamless continuation from broken-symmetry to symmetry-adapted models for diradicals. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1337251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Riken Advanced Institute for Computational Science, Hyogo, Japan
| | - Toru Saito
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Sandeep Sharma
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Shusuke Yamanaka
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Satoru Yamada
- Riken Advanced Institute for Computational Science, Hyogo, Japan
| | | | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kizashi Yamaguchi
- Riken Advanced Institute for Computational Science, Hyogo, Japan
- NanoScience Design Center, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Kawakami T, Sano S, Saito T, Sharma S, Shoji M, Yamada S, Takano Y, Yamanaka S, Okumura M, Nakajima T, Yamaguchi K. UNO DMRG CASCI calculations of effective exchange integrals for m-phenylene-bis-methylene spin clusters. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1301586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
| | - Shinsuke Sano
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Toru Saito
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
| | - Sandeep Sharma
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CL, USA
| | - Mitsuo Shoji
- Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Yamada
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
| | - Yu Takano
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
| | - Shusuke Yamanaka
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takahito Nakajima
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
| | - Kizashi Yamaguchi
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
- NanoScience Design Center, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
16
|
Shoji M, Isobe H, Shen JR, Yamaguchi K. Geometric and electronic structures of the synthetic Mn₄CaO₄ model compound mimicking the photosynthetic oxygen-evolving complex. Phys Chem Chem Phys 2017; 18:11330-40. [PMID: 27055567 DOI: 10.1039/c5cp07226c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(Bu(t)COO)8(py)(Bu(t)COOH)2] (1) closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of 1 using the density functional theory method. Our results showed that the geometric structure of 1 can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between 1 and the native OEC. We also revealed two different valence states in the one-electron oxidized state of 1 (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between 1 and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in 1. The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond 1.
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Japan and Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan.
| | - Hiroshi Isobe
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan and Handairigaku Techno-Research (NPO), Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|